g,
AW m,
S Y,

S 2
S n 2,
S <5 %,

é:{ : POLITECNICO
[ MILANO 1863

“ N
"y s
LTI

Aty
My

!
\\\\\

RE.PUBLIC@POLIMI

Research Publications at Politecnico di Milano

Post-Print

This is the accepted version of:

S. Meraglia, M. Lovera

Smoother-Based lterative Learning Control for UAV Trajectory Tracking
IEEE Control Systems Letters, Vol. 6, 2022, p. 1501-1506
doi:10.1109/LCSYS.2021.3116263

The final publication is available at https://doi.org/10.1109/LCSYS.2021.3116263

Access to the published version may require subscription.

When citing this work, cite the original published paper.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

Permanent link to this version
http://hdl.handle.net/11311/1192248




Smoother-based lterative Learning Control for
UAV Trajectory Tracking

Salvatore Meraglia', Marco Lovera!

Abstract—This letter presents a data-based control ap-
proach to achieve high-performance trajectory tracking
with Unmanned Aerial Vehicles (UAVs). We revisit an ex-
isting Iterative Learning Control (ILC) algorithm based on
the notion that the performance of a system that executes
the same task multiple times can be improved by learning
from previous executions. While we will specifically refer to
multirotor platforms for the experimental validation, the for-
mulation can be applied to any dynamic system (including
systems with underlying feedback loops). The novelty of
this work is the introduction of a smoother to estimate the
repetitive disturbance to improve the learning performance.
This estimator must rely on an accurate system model that
has been obtained through a black-box identification pro-
cedure using the Predictor-Based Subspace Identification
(PBSID) algorithm. A Monte Carlo analysis has been carried
out with the aim of showing the performance improvements
and limitations of the proposed algorithm with respect to
existing approaches. Finally, the proposed approach has
been validated through experimental activities involving a
small quadrotor performing an aggressive manoeuvetr.

Index Terms— Aerospace, iterative learning control.

[. INTRODUCTION

N recent years, the study of Unmanned Aerial Vehicles
I(UAVs) has received increasing attention thanks to their
wide range of application. Certain problems of practical in-
terest require the generation and repeated execution of a path,
where the choice of path and the related tracking accuracy can
have a dramatic impact on performance. As an example, UAVs
have been widely used for performing a persistent surveillance
mission over a very small domain, where they are required to
precisely track a desired trajectory in order to perform the task
safely and effectively.

Trajectory tracking with UAVs is typically achieved using
feedback control approaches [1]. Specifically, linear control
techniques are widely used in commercial autopilots, but are
not usually able to achieve high performance. On the other
hand, non linear methods (e.g., exact input—output feedback
linearization, backstepping, etc..) can yield controllers with
a significantly better performance, but require a careful ad-
hoc tuning of the parameters. Moreover, the performance of
feedback control approaches is limited by the accuracy of
the dynamics model and the causality of the control action
that is compensating only for disturbances as they occur. To
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overcome these limitations, when a system executes the same
task multiple times, Iterative Learning Control (ILC) can be
used. ILC is based on the notion that the performance of
a system that executes the same task multiple times can be
improved by learning from previous executions. The goal of
ILC is to generate a feedforward control that tracks a specific
reference or rejects a repeating disturbance exploiting the past
tracking errors. ILC has been successfully applied to many
practical industrial systems in manufacturing, robotics, and
chemical processing, where mass production on an assembly
line entails repetition. For details, the readers are referred to
the survey papers [2], [3] and references therein. In recent
years ILC algorithms have been also developed and applied
to UAVs [4], [5], [6]. In this letter, we revisit the data-based
control approach presented in [6]. It modifies the reference
before sending it to the UAYV, therefore it is an add-on
algorithm that fits with any commercial controllers. Moreover
it requires only the knowledge of the UAV complementary
sensitivity function (the transfer function from the reference
to the actual trajectory) without going into details of the open-
loop dynamics and the baseline controller. The novelty of this
work is the introduction of a smoother to estimate the repetitive
disturbance to improve the learning performance and speed up
the convergence. Namely, a fixed-interval smoothing algorithm
is implemented that uses the entire batch of measurements
over a fixed interval to estimate all the states in the interval.
This smoother can be derived from a combination of two
Kalman filters, one of which works forward over the data and
the other of which works backward over the fixed interval
[7]. In contrast to previous estimation-based ILC algorithms
(see, e.g., [8], [9]), the proposed estimator works in the time-
domain and can be extremely helpful when accuracy is an
issue. As highlighted in [10], the time-domain estimator in
the ILC framework must rely on an accurate system model to
not degrade the performance. For the experimental activities
involving a small quadrotor, the system model has been ob-
tained through a black-box identification procedure using the
Predictor-Based Subspace Identification (PBSID) algorithm
[11]. A Monte Carlo analysis has been carried out to show
the performance improvements and limitations of the proposed
algorithm with respect to existing approaches. In the final
part of the letter, experimental results obtained on a quadrotor
performing an aggressive manoeuver are reported to show that
the proposed approach is capable of remarkably reducing the
tracking errors in few iterations.



II. PROBLEM STATEMENT: ILC-ENHANCED TRACKING

In this section we introduce and formalize the problem
of trajectory tracking in the ILC framework. While we will
specifically refer to multirotor platforms for the experimental
validation, the formulation is general and can be applied
to any dynamic system (including systems with underlying
feedback loops). Firstly, we briefly describe the system to be
controlled following the approach in [3] focusing on Linear
Time-Invariant Single Input Single Output (LTI SISO) systems
for the sake of simplicity. Then we present the goal and the
structure of the proposed learning algorithm.

A. System description

Consider the discrete-time LTI SISO 2-dimensional system
¥j(k) = F(q)uj(k) +d(k) with y;(0)=yo (1)

where q is the forward time-shift operator qx(k) = x(k+1), y;
is the output, u; is the control input, and d is an exogenous
signal that repeats at each iteration; the plant F(q) is a proper
rational function of q with a delay, or equivalently relative
degree, of m; k represents discrete-time points along the time
axis and the subscript j represents the iteration trial number
along the iteration axis. Notice that y;(0) = yo for all j. This
is a key assumption in the ILC process and is called the
initial reset condition [2]. We assume that F(q) is asymptot-
ically stable' and the plant delay? m = 1. In the following
we consider the N-sample sequence of inputs and outputs
(uj(k), ke {0,1,...,N—1} and y;(k), k€ {1,2,...,N})
and the desired system output (yz(k), k € {1,2,...,N}). The
performance or error signal is defined by e;(k) = yq(k) —y;(k).
When the system is described in the time-domain, the so called
lifted-representation is preferred in describing the input/output
relation and the ILC update algorithm [3]. The lifted form,
in fact, allows to write the SISO time and iteration-domain
dynamic system (1) as a Multiple Input Multiple Output
(MIMO) iteration-domain dynamic system. To obtain the lifted
form, the rational LTI plant (1) is first expanded as an infinite
power series by dividing its denominator into its numerator:

F(Q =fq '+hq 2+ 7+ )

where the coefficients f; are the Markov parameters. Note that
f1 # 0 since m =1 is assumed. Considering the state space
description

xj(k+1) = Ax;(k) + Bu;(k) 3)
yj(k) = Cx;(k)

we have that f; = CA*"!B. Stacking the signals in vectors,
the system dynamics in (1) can be written equivalently as the

'"When F(q) is not asymptotically stable, it can be stabilized with a
feedback controller, and the ILC can be applied to the closed-loop system. This
agrees with the focus of the ILC algorithm that is to improve the performance
of the system [3].

>This assumption is made only in this section to simplify the system
description without loss of generality. For the analysis with a generic plant
delay the interested reader is referred to [3].

lifted system:
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The proposed learning algorithm fundamentally relies on the
static linear mapping (4) and is explained in the following.

B. Learning algorithm

In most physical implementations, a well-designed feedback
controller must be used in combination with ILC [2]. In many
cases, a feedback controller already exists on the system,
and ILC can be implemented without modifying the feedback
controller. Specifically, we combine ILC with the feedback
loop in a serial arrangement, where the ILC control input is
applied to the reference before the feedback loop [12]. This
concept is useful when applying ILC to a pre-existing system
that uses a commercial controller that does not allow to modify
the control signal to the plant.

We revisit the data-based control approach proposed in
[6], whose goal is to achieve high-performance tracking of a
dynamic system executing multiple times the same task. The
related algorithm is an optimization-based (also called norm-
optimal) ILC [13]. As such, it uses information of the input
and the error at the current trial to design the next trial input
that minimizes the tracking error, i.e., the discrepancy between
the actual and the desired output at the upcoming iteration.
Namely, in [6] Schoellig et al. introduce a Kalman filter that
estimates the repetitive disturbance based on the current input
and error measurement. This estimate is then used to update
the next trial input that is generated by solving an optimization
problem (with possible constraints in the input).

The novelty of this work is the introduction of a smoother
to estimate the repetitive disturbance to improve the learning
performance and speed up the convergence. In contrast to pre-
vious estimation-based ILC algorithms, the proposed estimator
works in the time-domain and can be extremely helpful when
accuracy is an issue, exploiting the potentiality of the batch
state estimation [14].

[1l. SMOOTHER-BASED ILC

In this section the two steps of the proposed learning
algorithm are described highlighting the novelties with the
existing approaches. The overall approach is schematized in
Figure 1.
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Fig. 1. Estimator-based ILC block diagram in the iteration domain.

A. Disturbance estimation: Smoother

The iteration-to-iteration learning of ILC provides oppor-
tunities for advanced filtering and signal processing [3]. For
instance, zero-phase filtering [15], which is non-causal, allows
for high-frequency attenuation without introducing lag. Previ-
ous works estimate the repetitive disturbance using sequential
measurements in the iteration domain [8], [9].

In this work the disturbance has been estimated in the time
domain: since the estimation is carried out offline, a batch
estimation method is used to achieve high accuracy. In fact,
batch state estimation methods (also known as smoothers,
since they are typically used to smooth out the effects of
measurement noise) have the advantage of providing state
estimates with a smaller error covariance than sequential ones.
Basically, smoothers are used to estimate the state at time f,
using measurements obtained both before and after . To ac-
complish this task, two filters are usually used: a forward-time
filter and a backward-time filter. The first practical smoothing
algorithms are attributed to Bryson and Frazier [16], as well as
Rauch, Tung, and Striebel (RTS) [17]. In particular, the RTS
smoothing algorithm has maintained its popularity since the
initial paper, and is likely the most widely used algorithm for
smoothing to date. In fact, it is one of the most convenient
and efficient forms of the fixed-interval smoother, because it
combines the backward filter and smoother into one single
backward recursion [14]. Using this algorithm, the disturbance
estimate d is obtained at each iteration j by applying the RTS
smoother to the discrete-time stochastic model®

dk+1)=d(k)+ w(k) (6)
with the measurement model

y(k) = F(q)u;(k) +d(k) + u(k) @)

where w and u are two random vectors described as Gaussian
noises with zero mean values and given variance matrices:
(k) ~N(0,0), u(k) ~N(0,R). In the proposed model, the
disturbance d represents the state of the dynamical system,
while the error e defines the output measurement. The imple-
mentation of the RTS smoother specialized for this problem
is shown in Algorithm 1.

3If a more accurate model of the disturbance is available, it can be
incorporated into this algorithm.

Assuming the disturbance remains constant among the dif-
ferent trials, the next iteration predicted error can be written
as a function of the disturbance estimate and the next input.
Namely, the lifted form is £;4{(Uj+1) =F Uj11 —Yq+D;.

Remark 1: The use of a time-domain filter in ILC can be
effective at reducing the variance of the output error resulting
from random process and measurement noise. However, an
important issue is the influence of having an imperfect model
used to design the filter [10]. This error could produce de-
terministic non-zero steady state errors; however if the model
is accurate, then the filter is optimal and will outperform a
simpler model-free method. As a consequence, an accurate
model is required to exploit this design. a

Algorithm 1 Disturbance estimator: RTS Smoother
Forward Filter Initialization:
Disturbance: dy (0) = d o
Covariance: Py (0) =E {d} (0) d? (0)}
for each k€ 1,2,...,N do
Kalman Gain Computation:

“1
K(k) = P; (k) [P’ (k) +R}

! f
Forward State Propagation:

dy(k+1) = dy(k) + K (k) [y(k) —df (k) — F ()u; (k)]
Forward Covariance Update:
P/ (k) = [1—K(k)] Py (k)
Forward Covariance Propagation:
P (k+1) =P/ (k) +0Q
end for

Smoother Initialization:
Disturbance: d(N) = ds(N)
for each ke N—1,N—2,...,1 do

Smoother Gain:
H (k) = P} (k) (Pj?(k—i— 1))
Smoother Estimate:
d(k) =ds(k)+ 7 (k) [d(k+1) —dy(k+1)]
end for

—1

B. Input Update: Quadratically-Optimal Design

The learning algorithm is completed by the input update
step using a quadratically optimal design. A huge body of
literature is available on this design (see, e.g., [18] in which
the robustness of this algorithm is analysed). Specifically, the
next input U;,; is obtained in the lifted system minimizing
the quadratic cost criterion:

J=E] \WEj +AU[ \Wa AU + U WU (8)

where AUj1 = Uji1 —Uj, W, is a positive-definite matrix,
and Wy,, W, are positive-semidefinite matrices. The optimiza-
tion formulation enables the integration of input and output
constraints as shown in [19] and the resulting minimization
is a convex optimization problem which can be solved very
efficiently by existing software tools.

Remark 2: As noted in [3], the weight on the change in
control Wy, has no effect on the asymptotic error, but affects



how quickly the ILC converges. Instead, the weight on the
control W, degrades the asymptotic performance, but may
be useful for limiting the control action to prevent actuator
saturation, particularly for non-minimum phase systems. .

V. SIMULATION RESULTS

In this section we compare in simulation the proposed
approach with the Kalman-filter-based ILC (K-ILC) presented
in [8]. We apply these algorithms on a 1D mass-spring-damper
system using the nominal model:

o

Gls) = 52 +2E w5 + @? ©
with natural frequency @, = 1.8 rad/s and damping ratio
£ = 0.8. The algorithms performance is evaluated in a real-
istic scenario in which the system is affected by parametric
uncertainties. Further, as in [8], we add a disturbance d(t) =
0.5sin? (t) and a Gaussian noise A” ~ (0,0.01) to the output
signal y(¢). The learning parameters chosen are listed in Table
I and the desired trajectory is y,(¢) = sin (0.57¢).

TABLE |
PARAMETERS USED IN THE SIMULATIONS.
W, Wau W,  P(0) R 0
Proposed Oy 0.01 Iy Iy 0.1 0.01 0.1
K-ILC Oy 001y Iy O01Iy 001y O0.11Iy

Firstly, a Monte Carlo study has been carried out with
respect to uncertainty (assuming standard deviation equal to
5% of the nominal values) on the natural frequency and on the
damping ratio. The learning process (30 iterations of ILC algo-
rithm with a sampling time #;7c = 0.01 s) has been performed
simulating different plants (100 dynamic parameters samples),
maintaining the same model in the learning algorithm. For
each plant the results have been averaged repeating the entire
process 10 times to reduce the noise influence. The most
relevant statistics (mean and standard deviation) of the error
2-norm (||Ej|2) at the first iteration and at steady-state* are
collected in Table II.

TABLE Il
ERROR 2-NORM WITH 5% LEVEL OF UNCERTAINTY.

Algorithm  First Iteration  Steady-State
Proposed 0.84+0.10 0.23+£0.01
K-ILC 1.46+0.21 0.234+0.01

To visualize the algorithms rate of convergence, the error
evolution in the iteration domain of a learning cycle’ is shown
in Figure 2. We can see that the proposed approach achieves a
faster convergence with respect to K-ILC maintaining similar
steady-state performance.

4The steady-state error norm was approximated by the average error norms
of iterations 20 to 30.

5The error evolution for most of the learning cycles has a behaviour similar
to the one in Figure 2.

After that, 3 different Monte Carlo studies have been carried
out with respect to larger uncertainties (standard deviation
equal respectively to 10%, 20%, 40% of the nominal values)
on the dynamic parameters to assess the robustness of the
proposed approach. The results are summarized in Table III.
We can notice that the proposed approach is capable to
improve the performance also with a considerable error in the
parameters (20% standard deviation).

However, as expected from Remark I, when the model is
very inaccurate (40% standard deviation), K-ILC outperforms
our approach at steady-state due to the deterministic error
caused by an imperfect knowledge of the model.

© Proposed ++ K-ILC

Error 2-norm ||Ejj||»

Iterations

Fig. 2. Error 2-norm evolution in the iteration domain (first 10 iterations).

TABLE IlI
ERROR 2-NORM WITH DIFFERENT LEVELS OF UNCERTAINTY.

Algorithm  Uncertainty level  First Iteration  Steady-State
+10% 1.30+£0.32 0.23+0.01

Proposed +20% 2.39+0.65 0.23+0.01
+40% 4.33+2.53 0.38+0.25

+10% 1.99+0.42 0.234+0.01

K-ILC +20% 2.74£0.66 0.23+0.01
+40% 4.10+2.16 0.28+0.18

V. EXPERIMENTAL RESULTS

In this section we apply the proposed ILC algorithm and
the K-ILC to a multirotor UAV to achieve high performance
tracking. Firstly we specialized the algorithm for this task and
then we present the results obtained in the experiments.

A. Applying ILC to UAV trajectory tracking

The ILC scheme of Section III can be applied to any
dynamic systems with underlying feedback loops. Specifically,
it is applied to improve the tracking accuracy in executing a
complex manoeuver with an UAV guided by a commercial
controller.

Remark 3: As pointed out in Section II-A, the ILC scheme
requires the disturbance to be iteration-invariant (or at least
slowly iteration-varying). In this application, this can be rea-
sonably assumed true, because the ILC objective is to achieve



a high level of performance eliminating the unmodelled (pos-
sibly nonlinear) dynamics (e.g., aerodynamic effects). Other
iteration-varying disturbances (e.g., wind) have to be counter-
acted by the feedback controller. Furthermore, the feedback
loop allows us to use a linear model as a good approximation
of the UAV closed-loop dynamics. a

In this work we consider without loss of generality the
case of in-plane trajectory (yq = [xg, v4|7). This is done
by acting on the set-points (u = [x;p, ysp]7) commanded to
the stock controller exploiting measurements of the position
(v = [xm, ym]) to estimate the disturbance.

To analyse the learning performance, the following metrics
are defined. A synthetic indicator at a specific iteration j is
the average position error along the trajectory:

Jp— ! - \/ (k k)2 (k k)2
e”"“"-’*ﬁkg (2m, (k) — xa(k)) + (vm,j (k) = ya(k))> .

(10)

This indicator can be adimentionalized with respect the aver-

age position error at the initial iteration ?’—’(’) Additionally the
pos,

performance indicator “22:L—°2%:/-! hag been used to highlight
. pos.i R
the difference between two consecutive iterations.

B. Experimental setup

Flight tests are carried out inside the Flying Arena for
Rotorcraft Technologies (FlyART) of Politecnico di Milano
which is an indoor facility equipped with a Motion Cap-
ture system (Mo-Cap). The drone is a fixed-pitch quadrotor
designed by ANT-X [20], with a maximum take-off weight
below 300g. Data is collected through the Mo-Cap system
composed by 12 cameras which detect markers mounted on the
drones. A ground control station receives measurements from
the Mo-Cap system, reconstructs the state of the drone and,
then, computes the next iteration set-points according to the
proposed approach. The overall strategy has been integrated
in the PX4 autopilot [21] using the ANT-X rapid prototyping
system for multirotor control.

C. Model Identification

The system dynamics (i.e., the complementary sensitivity
of the UAV) was identified as a black-box model, by ap-
plying the Predictor-Based Subspace Identification algorithm
(PBSID, see also [22], [23], [24] for applications of PBSID to
rotorcraft dynamics) to input-output data gathered in dedicated
identification experiments. The model for the transfer function
from Xy, to Xy, is®

0.08s41.94

5 . (11)
s2+1.7525s +2.01

The model was validated against flight data collected in
another experiment. Figure 3 shows the measured response to
the reference signal against the simulated response obtained
with the identified model, showing a close match to the
measured data.

Gx(s) — 670.25\* .

6The PBSID algorithm returns a discrete time state space model, but the
continuous time transfer function obtained with the Tustin approximation has
been reported to give more physical insight. In fact, in this formulation we
can clearly notice that the system is characterized by a natural frequency
, ~ 1.4 rad /s and damping ratio & = 0.6.

- - Measured — Simulated--- Input | - ;------

North position [m ]

—0.6

—0.8F

31 32 33 34 35 36 37 38 39 40 41 42 43
Time [s]

Fig. 3. Validation of the identified model.

Note that due to symmetry, and based on previous experi-
ence, we can use the model identified for longitudinal dynam-
ics (x-direction) also for the lateral dynamics (y-direction), i.e.,
assume that (Gi(s) = Gy(s)).

These models are used in the estimation step (time-domain)
and in the input update step (iteration-domain) constructing F
following the approach in [12].

D. Results

In this section, we present the results obtained by applying
the proposed algorithm and the K-ILC on the ANT-X UAV
with the same learning parameters used in Section IV and with
a sampling time #;7¢c = 0.05 5. In the experiment the manoeuvre
to be learned is an aggressive eight-shape trajectory flown
in the horizontal plane characterized by a maximum velocity
Vimax = 2.1m/s and maximum acceleration @, =4m/ s2. The
quadrotor is required to hover at the beginning of the eight-
shape trajectory: the learning motion starts and ends in the
same hovering point. The acceleration and deceleration phases
at the beginning and the end of the eight-figure must also
be learned precisely. The data comparison between the two
methods is reported in Table IV. We can notice that, as in
Section IV, the proposed approach achieves faster convergence
with respect to K-ILC.

TABLE IV
LEARNING PERFORMANCE RESULTS FOR 8-SHAPE TRAJECTORY.

l’]m.rj ‘epnsj *eposj

ST [%]

Iteration  epos; [m] e -100 [%] Tepas;1]
j=0 0.422 100.0 -
Proposed approach
j=1 0.040 9.59 90.41
j=2 0.018 4.29 55.33
K-ILC
j=1 0.072 17.2 82.84
j=2 0.050 11.9 30.52
j=3 0.044 10.5 12.13

Due to space limitations only the trajectories obtained by
to the proposed approach are plotted in the following figures.



Specifically, in Figure 4 the evolution in xy-plane is depicted
without the acceleration and deceleration phases, while in
Figure 5 the time evolution of the North position is plotted
(the East direction shares similar behaviour).

0.75 T T T T T T T T T

0.5

025

0.25

—05F

North position [m]

—0.75 | . B

[+ Desired- - Initial -~ First iteration — Second iteration

i I I i I I
—0.25 0 0.25 0.5 0.75 1 1.25

East position [m]

I i
—0.75 —0.5

Fig. 4. 8-shape trajectories for the iterations 0, 1 and 2.

" - Xm0 Xm ]l —Xm2

North position [m]

Acceleration Deceleration
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i | i I I | i i i i
0 1 2 3 4 5 6 7 8 9 10 11 12

Time [s]

Fig. 5. UAV North-position for iterations 0, 1 and 2.

We can state that the proposed approach is very effective in
improving the tracking performance of the UAV, while being
robust to small initial errors in the positioning, unmodelled
system dynamics, process and measurement noises.

VI. CONCLUSIONS

In this letter, we tackled the problem of high-performance
tracking of UAVs for the solution of which an ILC-based
control approach has been developed. The novelty of this work
is the introduction of a smoother to estimate the repetitive dis-
turbance and the usage of a black-box identification procedure
to obtain an accurate system model. A Monte Carlo analysis
has been carried out to show the performance improvement
and limits of the proposed algorithm with respect to existing
approaches. Finally, an experimental campaign involving a
small quadrotor has shown the effectiveness of the proposed
strategy.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]
[19]
[20]
[21]
[22]

(23]

[24]

REFERENCES

M.-H. Hua, T. Hamel, P. Morin, and C. Samson, “Introduction to
feedback control of underactuated VTOL vehicles: A review of basic
control design ideas and principles,” IEEE Control Systems Magazine,
vol. 33, no. 1, pp. 61-75, 2013.

H. Ahn, Y. Chen, and K. Moore, “Iterative Learning Control: Brief
Survey and Categorization,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 37, no. 6, pp. 1099—
1121, Nov 2007.

D. Bristow, M. Tharayil, and A. Alleyne, “A survey of Iterative Learning
Control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96-114,
June 2006.

R. Adlakha and M. Zheng, “Two-Step Optimization-Based Iterative
Learning Control for Quadrotor UAVs,” Journal of Dynamic Systems,
Measurement, and Control, 2021.

M. Cobb, K. Barton, H. Fathy, and C. Vermillion, “An Iterative Learning
Approach for Online Flight Path Optimization for Tethered Energy Sys-
tems Undergoing Cyclic Spooling Motion,” in 2019 American Control
Conference (ACC), 2019, pp. 2164-2170.

A. Schoellig and R. D’Andrea, “Optimization-based Iterative Learning
Control for trajectory tracking,” in 2009 European Control Conference
(ECC), 2009, pp. 1505-1510.

D. Fraser and J. Potter, “The optimum linear smoother as a combination
of two optimum linear filters,” IEEE Transactions on Automatic Control,
vol. 14, no. 4, pp. 387-390, 1969.

N. Degen and A. Schoellig, “Design of norm-optimal Iterative Learning
controllers: The effect of an iteration-domain Kalman filter for distur-
bance estimation,” in 53rd IEEE Conference on Decision and Control,
2014, pp. 3590-3596.

M. Norrlof, “An adaptive Iterative Learning Control algorithm with
experiments on an industrial robot,” IEEE Transactions on Robotics and
Automation, vol. 18, no. 2, pp. 245-251, 2002.

B. Panomruttanarug and R. Longman, “Using Kalman filter to attenuate
noise in learning and repetitive control can easily degrade performance,”
in 2008 SICE Annual Conference, 2008, pp. 3453-3458.

G. V. der Veen, J.-W. van Wingerden, M. Bergamasco, M. Lovera,
and M. Verhaegen, “Closed-loop subspace identification methods: an
overview,” IET Control Theory and Applications, vol. 7, no. 10, pp.
1339-1358, 2013.

R. Longman, “Iterative Learning Control and Repetitive Control for
engineering practice,” International Journal of Control, vol. 73, no. 10,
pp. 930-954, 2000.

S. Gunnarsson and M. Norrlof, “On the design of ILC algorithms using
optimization,” Automatica, vol. 37, no. 12, pp. 2011-2016, 2001.

J. Crassidis and J. Junkins, Optimal Estimation of Dynamic Systems.
Chapman and Hall/CRC, 2011.

H. Elci, R. Longman, M. Phan, J.-N. Juang, and R. Ugoletti, “Simple
learning control made practical by zero-phase filtering: applications to
robotics,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 49, no. 6, pp. 753-767, 2002.

A. Bryson and M. Frazier, “Smoothing for linear and nonlinear dynamic
systems,” in Proceedings of the optimum system synthesis conference,
1963, pp. 353-364.

H. E. Rauch, F. Tung, and C. Striebel, “Maximum likelihood estimates
of linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp. 1445-1450,
1965.

D. Gorinevsky, “Loop shaping for Iterative Control of batch processes,”
IEEE Control Systems Magazine, vol. 22, no. 6, pp. 55-65, 2002.

D. Owens and J. Hétonen, “Iterative Learning Control — An optimiza-
tion paradigm,” Annual Reviews in Control, vol. 29, no. 1, pp. 57-70,
2005.

ANT-X Website. [Online]. Available: https://antx.it/.

PX4 community, Dronecode Project, Inc., San Francisco, CA, USA.
[Online]. Available: https://docs.px4.io/en/.

M. Bergamasco and M. Lovera, “Continuous-time predictor-based sub-
space identification for helicopter dynamics,” in 37th European Rotor-
craft Forum, Gallarate, Italy, 2011.

J. Wartmann and S. Seher-Weiss, “Application of the Predictor-Based
Subspace Identification Method to Rotorcraft System Identification,” in
39th European Rotorcraft Forum, Moscow, Russia, 2013.

M. Bergamasco and M. Lovera, “Identification of Linear Models for
the Dynamics of a Hovering Quadrotor,” IEEE Transactions on Control
Systems Technology, vol. 22, no. 5, pp. 1696-1707, 2014.



	FronteRivista
	MERAS02-22

