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In the next years many scientific and demonstration missions will target the cislunar environment to
consolidate existing technologies and foster the development of new space systems to support a future
human exploration of Mars. Among those, the Lunar Orbital Platform Gateway (LOP-G) will operate as a
long-term modular infrastructure in deep-space, offering services to both manned and unmanned missions to
the Moon. To safely accomplish many of its tasks, rendezvous and docking/undocking operations must be
reliably performed on highly non-Keplerian orbits. However, despite rendezvous and relative navigation are
well-known for Earth-centred missions, no autonomous proximity operation has ever been performed in the
cislunar domain. Within this framework, the paper assesses the applicability of Bearing-Only measurements
to perform relative navigation between distant heterogeneous non-Keplerian orbits. Starting from the
absolute motion, a useful discrete-time approximation of the non-Keplerian relative dynamics is presented
to support the development of a computationally efficient Guidance, Navigation and Control (GNC)
architecture based on a Shrinking Horizon - Model Predictive Control (SH-MPC) strategy. The outcomes
of two different test scenarios are critically discussed to prove the effectiveness of the proposed method and
highlight potential solutions that enhance the filter observability with minimum fuel consumption.

Keywords: Relative Non-Keplerian Dynamics, Bearing-Only Navigation, Shrinking Horizon - Model
Predictive Control

Abbreviations:
DRO Distant Retrograde Orbit MPC Model Predictive Control
LEO Low Earth Orbit SH Shrinking Horizon
GNC Guidance, Navigation and Control STM  State Transition Matrix
1. INTRODUCTION is for certain among the most ambitious and interest-

ing project, that will enable the possibility to have
astronauts medium-term permanence in the cis-lunar
environment. Its construction will be performed fol-
lowing a modular assembly approach, starting from
the first modules in the mid-20s, through a series of
mission within the NASA program Artemis. Starting
from its assembly and continuing during the opera-
tional years, the Gateway will require the capabil-
ities to perform docking and undocking operations,
for which rendez-vous with different transportation
spacecraft will be performed, to provide cargo, sup-
ply, scientific experiments or astronauts themselves.

The latest decades have seen a renewed interest
in Moon exploration missions, due to the envisaged
roadmaps that define the lunar system as a perfect
training environment for the development and ad-
vancement of space system technologies to support
the human Mars exploration. Indeed, in such direc-
tion joint efforts are being performed by many space
agencies to realise infrastructures to support the up-
coming technological demonstration mission that will
explore the Moon, such as GNSS constellations or

modular space stations. Concerning the latter chal- Perticularly basic Guid Navieati qC 1
lenge, the Lunar Orbital Platform Gateway (LOP-G) articularly basic Guidance Navigation and Contro
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functionalities are needed by the avionic system on-
board the involved agents and the possibility to in-
crease the autonomy level of such system is a huge
opportunity to reduce costs and human intervention.
A great deal of experience has been gained by the
international space community in the more familiar
Low Earth Orbit environment through the ISS pro-
gram, but no experiment at all has been conducted
in the cis-lunar Non-Keplerian one.

A very promising technique that is able to provide
autonomous GNC capabilities to spacecraft employ-
ing limited sensing resources is found in the Bearing-
Only Navigation, whose goal is the exploitation of the
relative line-of-sight vector measurement only to re-
construct the complete relative state vector. The at-
tractiveness of such technique resides in the very lim-
ited sensors requirement in terms of mass, power and
costs, which makes it suitable practically to all space-
craft classes, from cargo modules down to nanosatel-
lites, such as CubeSats. The associated downsides,
which make it little appealing in some terms, are the
limited reduced observability capabilities.

Such reduced observability performances have
been studied in the last decade in depth for their
application in LEO scenarios by Woffinden [1] and
Grzymisch [2], proving that the execution of orbital
manoeuvres capable of providing a change in the Line
of Sight (LoS) angular measurement between the nat-
ural and controlled trajectory can lead to the observ-
ability of the system. Different metrics have been
proposed in order to quantify the extent of such incre-
ment of the observability, based on geometric feature
of the scenario. Specificaly, the approach where the
observability is linked to the angular offset of the LoS
unit vector in the non-controlled trajectory with the
LoS of the controlled one, has been proven to be ef-
fective. In particular, such formulation can be easily
implemented in the guidance optimal problem along-
side any other guidance objective, such as the fuel ex-
penditure. The work of the author presented in [3,4]
explored the applicability of such GNC strategy for
the relative state observability enhancement in the
extremely challenging environment of the rendez-vous
with the LOP-G in the cislunar region. The approach
has been proved to be successful in terms of error es-
timation performances and, consequently, of rendez-
vous execution capabilities. The goal of the current
paper is to show the application of the same strat-
egy in a different mission scenario, where instead of a
rendez-vous mission, a bounded motion between two
cooperative spacecraft (here still named chaser and
target) is forsaken, remaining in the cislunar region,
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thus still targeting the environment of interest for
the next decades lunar exploration missions. After
this brief introduction, Section 2 will introduce the
problem geometry and the GNC mathematical foun-
dations. Section 3 will then present the results of
the proposed application with two peculiar mission
scenarios, providing also comments on the strategy’s
validity boundaries, before driving the final conclu-
sions in Section 4.

2. PROBLEM DEFINITION AND GNC STRATEGY

This section will introduce the basics of the
Bearing-Only navigation strategy and the proposed
architecture for the on-board Guidance Navigation
and Control loop.

2.1 Bearing-Only geometry and rationale

In order to properly illustrate the bearing-only
range detectability, Fig. 1 displays both the target,
the grey dot fixed in the origin of the reference frame,
and the chaser, red dot, before and after the execu-
tion of an observable manoeuvre. The figure repre-
sents also the observability angle 6, namely the angu-
lar distance between the two LoS unit-vectors with or
without the control action. Ideally, with perfect mea-
surements, the relative distance p can be obtained by
trigonometry, but if a level of noise ¢ is introduced in
the sensors, a perturbation in the range estimation
dp is added to the range estimation.

A useful design parameter for typical relative mo-
tion applications can be found in the relative range
uncertainty itself. Following the work by Woffinden
in [5], assuming small measurement errors, coming
e.g. by the camera detector or by the image pro-
cessing routines, this metric can be expressed as in

Eq. (1).

r_ < o

p  sin
From such expression it is easily understood that two
distinct ways to minimise the uncertainty are pos-
sible: either by improving the sensor accuracy or by
maximising the observation angle §. The former solu-
tion is unfortunately not always feasible due to tech-
nological limitations that provide a minimum value
for € below which it is quite difficult to go. More-
over, the philosophy behind bearing-only navigation
techniques is definitely related to the exploitation of a
single camera, which provides a great advantage from
the economical perspective and from the simplicity
of the hardware implementation. Consequently, from
this simple formula it is possible to understand that
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Figure 1: Range detectability geometry in the ideal (left) and real (right) scenario. r is the position vector
of the real trajectory whereas T represents the natural dynamics. Image readapted from [5].

the best approach for reducing the relative range esti-
mation error is by looking at trajectory designs which
maximise the value of . To perform that, however
a specific Guidance and Control strategy has to be
implemented which needs to be directly connected to
the proposed navigation strategy. In the following
subsection the details of the GNC architecture are
introduced.

2.2 GNC Architecture

When dealing with a bearing-only architecture,
the navigation process is directly influenced by the
shape of the trajectory, therefore, it is mandatory
to include inside the trajectory design a contribu-
tion that allows to improve the navigation perfor-
mance. In this work, a Shrinking Horizon — Model
Predictive Control (SH-MPC) is selected to compute
the manoeuvres required to bring the spacecraft to
a desired location. In this formulation, the trajec-
tory is discretised into a series of points, arbitrarily
spaced in time. However, differently from a stan-
dard MPC approach [6], with a shrinking horizon
the transfer duration is fixed, and the problem is
always solved from the current epoch until the fi-
nal time, thus the time window shrinks at each re-
optimisation according to the remaining optimisation
time. The course of action for this kind of architec-
ture is displayed in Fig. 2. Calling 7,4, the desired
rendezvous time, the trajectory is discretised into n
steps tar = [tar,s tayy -, tar, ] and at each of those a
manoeuvre is allowed. At the same time, the num-
ber m of reoptimisation performed along the trajec-
tory is scheduled for to = [to,, to,, .- to,,] and is
such that tp, does not necessarily equal t;7,. Once
the guidance is initialised, for each update time ¢; it
checks whether an optimisation is planned at the cur-
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rent epoch. If that is the case, the minimisation algo-
rithms sets the estimated relative state as the initial
point and searches a solution for the remaining dis-
cretisation points, eventually updating the manoeu-
vre scheme U,,;. Afterwards, it also controls if a
manoeuvre is planned; whenever that is the case, the
chaser executes the control action according to Ugp,.
Finally, the cycle is stopped when T4, is reached.
Please notice that in a real implementation, it might
not be feasible to solve the optimisation problem and
execute a manoeuvre at the exact same epoch. Nev-
ertheless, it is here assumed that the two tasks can
be accomplished simultaneously.

2.3 Dynamic Model

The absolute dynamics of an object in the cislunar
domain can be approximated as:

(2)

where aggp is the traditional Circular Restricted
Three Body Problem (CR3BP) contribution and the
remaining two terms are the perturbing effects of
the Sun’s gravitational force and the Solar Radiation
Pressure (SRP), respectively. The relative transla-
tional dynamics is obtained from the derivative of
the relative position vector of the chaser with respect
to the target, denoted as x:

f(x) = aspp (x) + aun (x) + agrp (x)

X =7, — 1y (3)
where 1. and ¥; are the absolute acceleration vectors
of the two spacecraft. A useful approximation be-
comes available by linearising Eq. (3) with respect to
the target state, holding true as long as the relative
distance between the satellites is much smaller than
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Figure 2: Guidance Flow-chart.

that between the target and the primaries [7]:

ﬁ — A(xi(8)) m + B(u + 6a)

X

(4)

with u the control input and da the perturbing accel-
erations. Since the matrix A depends on the absolute
position of the target, the propagation of the rela-
tive dynamics requires knowledge of both the relative
state and the absolute state of either spacecraft. To
apply traditional linear control techniques and avoid
an excessive computational burden, a closed-form an-
alytical solution to system as in Eq. (4) is desirable,
however such solution does not exist because the ab-
solute dynamics of the target requires numerical in-
tegration. Nevertheless, a discrete-time solution over
the time interval [t;,%;—1] can be obtained by sepa-
rating the free and forced contribution through the
State Transition Matrix (STM) ® and the input ma-
trix G [4]:

x(tg) = ®(tg, tp—1)x(tk—1) + G(tg, tg—1)u (5)

Notice that only in few cases the solution of the forced
response (i.e., the convolution integral of the time-
varying manoeuvre) can be expressed as the product
between a matrix and a vector, as in Eq. (5). In this
paper, such representation has been obtained assum-
ing impulsive controls at the beginning of each time
interval, making the input matrix readily available
once the STM is known. Despite this hypothesis, the
results presented in Section 3 will highlight that im-
pulsive manoeuvres can also be used to approximate
a low-thrust continuous control.

The model in Eq. (4) is a time-varying linear sys-
tem, meaning that if ¢; # t, then ® (¢ + At, tg) #
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®(t; + At,t;) because the dependence of ® on the
target state generates different results for different
initial times as x;(t;) # x¢(tx). Therefore, even if a
uniform time-step is adopted, ® must be computed
at each discretisation point. To reduce the computa-
tional burden of such evaluation (the exact compu-
tation of ® and G requires the integration of 42 dif-
ferential equations), the STM is approximated with
a 2nd order Taylor series as:

B (1 + At ty) = I + ApAt + (A2 + Ap)At?2/2 (6)

where Ay used to indicate the value of A(t) at time
tk.

2.4 Optimisation Problem

The optimisation problem to solve at each re-
optimisation epoch is expressed as the minimisation
of a fuel objective subject to both linear and non-
linear constraints:

m}}n Tr(y) (7a)
subject to Ay = b,

Aigy < big

L <y<uw

c(y) <0

where y is the vector of independent variables, con-
taining the manoeuvres directions and, possibly,
other associated quantities. A., and A;, are the ma-
trices that express the equality and inequality con-
straints, respectively. These become useful to bound
the relative motion to specific regions of space and
specify the boundary conditions; i.e., the initial and
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final relative states. The lower 1; and upper bound-
aries u, limit the solution search space and allow to
account for system engineering limitations, such as
the maximum thrust available. ¢(y) is a non-linear
constraint that forces a desired observability angle
at a given epoch to aid the convergence of the nav-
igation filter. Finally, Jr is the objective function
used to represent the fuel consumption, either via
a linear or quadratic expression of the optimisation
variables. For what concerns the future notation, as-
suming the time-interval is discretised in n points,
the relative states can be collected inside a vector
X = [xT xT ... xI]7 of size 6n x 1. At the same time,
a manoeuvre is admissible at every point but the last
one, otherwise an additional relative state would be
produced. Thus, in a similar fashion they are col-
lected inside a global vector U = [uf ul ... ul_;]7
of size 3(n — 1) x 1.

Fuel Objective

The fuel performance are traditionally quantified
through the AV, unfortunately, such parameter can
only be expressed as a non-linear function of the op-
timisation variables because it involves a square root
by definition. In this work, two MPC workarounds
are exploited, expressing Jr as a linear or quadratic
function of the optimisation variables.

The most common approach is to is to exploit a
quadratic objective Jr,, written as function of U as
[6]:

(®)

with O a diagonal weighting matrix used to either
prioritise or penalise the manoeuvres associated to
certain epochs. The exploitation of a quadratic fuel
objective usually guarantees a smooth control action
and the resulting dynamics is more robust to distur-
bances and off-nominal conditions. However, the so-
lution coming from the minimisation of this cost func-
tion may not be optimal in terms of overall fuel con-
sumption [8]. Whenever this cost function is adopted,
the optimisation vector Y is equal to the global ma-
noeuvre vector U.

A more realistic representation of the fuel expendi-
ture is obtained by exploiting a 1-norm objective, i.e.,
the sum of the absolute values of all thrust elements
inside U:

1
Tk, = 5UTQU

3(n—1)

T = ) |
k=1

This class of cost function generally yields solutions
with smaller AV with respect to quadratic control

(9)
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objectives. Moreover, the manoeuvre plan consists
of sparser control actions that are quite appealing
if a continuous firing is not possible. The objec-
tive in Eq. (9) is a piece-wise linear function and a
conversion is desirable to efficiently solve the opti-
misation problem. Therefore, the optimisation vec-
tor Y is augmented with a new set of variables
S = [s¥ s ... sT |17, named slack variables [9].
Then, by adding specific inequality constraints, each
of the elements inside S can be set equal to the abso-
lute value of the corresponding element in U. Defin-
ing Y = [U? ST]” the augmented optimisation vec-
tor, the cost function in Eq. (9) is written as:

Jr. = F1Y (10)

where the vector F has the first 3(n — 1) elements
equal to zero and the remaining set to one. To ensure
S equals the absolute value of U, all the individual
constraints are grouped through a matrix as:

Im _Im
AS N |:_Im _Im:| (11)

with m = 3(n — 1). This representation becomes
particularly useful when fuel-optimal trajectories are
sought because it allows to solve the optimisation
problem with a linear programming algorithm.

A,Y <05, where

Boundary Conditions

A desired destination point is enforced by writing
the final position as function of the global manoeuvre
vector U and of the initial conditions:

x, = GU+ A,,x; (12)

where x; is the initial point and A is defined as:

j7

1
Ay =T itj>i

P (13)
Ay =1 ifj <i
and G is a 6 X m matrix equal to:
G=1[G Gn—
Gy 1] 14)

The equality constraint is then expressed as follows:
ApcY =D

BC ; BC (15)

bpo =Xpc — Ainxy

where X is the desired final point. Whenever the
quadratic objective [J, is used, Apc equals the ma-
trix G defined in Eq. (14), otherwise it must be prop-
erly expanded to account for the presence of the slack
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variables inside the optimisation vector [3,4]. Finally,
thrust magnitude constraints are straightforwardly
added through the lower and upper bound vectors.

Non-linear Observability Constraint

In Section 2.2 it was highlighted that to minimise
the relative range navigation error, the observabil-
ity angle 6 should be maximised. The easiest and
most efficient way to implement such parameter in-
side the optimisation problem is to introduce a non-
linear constraint, demanding that after M steps the
observability angle should be greater or equal than a
given threshold. The number of steps can be used as
an additional tuning parameter. Mathematically, the
constraint is expressed as:

KIA}X]V[ (U)

c(U) =6 —cos ! (
(U) = brum o [T (O]

> <0 (16)

where X,; depends only on the initial conditions. By
formulating this constraint as an inequality, the solver
will automatically find the solution with the lowest
fuel consumption among all the possible values of 6 >
Orur- The two vectors in the previous expression are
easily computed as:

xv = A yx;
(17)
XM = )_(M + GMU

The matrix Gy is similar to Eq. (14) but is evaluated
only up to the (M — 1)-th term:

Gy =[G: Gu-1 0 ... 0]
. (18)
Wlth Gj = A(j+1)MGj

The evaluation of the non-linear constraint can be
accelerated by pre-computing these matrices.

3. SIMULATION AND RESULTS

To assess the capability of the proposed architecture
to improve the relative state estimation of a satellite,
the SH - MPC guidance is tested in a closed-loop sys-
tem along with a navigation filter, as shown in Fig. 3.
The selected scenarios involve two spacecraft flying
on heterogeneous non-keplerian orbits, with distances
in the order of thousands of kilometres. Since it
is here desired that the chaser remains bounded to
its nominal orbit, the final boundary conditions of
the optimisation problem are set to guarantee that
at the end of the relative navigation phase the chas-
ing spacecraft finds himself on its original orbit, as if
nothing had happened. A high-fidelity propagator is
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used to model the chaser and target absolute dynam-
ics, together with the perturbing effects of the Sun
gravitational force and the Solar Radiation Pressure
(SRP). As the propagation of the relative dynam-
ics in the navigation filter requires knowledge of the
target dynamics, it is here supposed that at each re-
optimisation epoch, an uncertain estimate of the tar-
get absolute state is transmitted to the chaser. Then,
exploiting the results of [3], a time-invariant approxi-
mation of the STM is adopted to predict the relative
dynamics evolution until the next re-optimisation oc-
curs. An Unscented Kalman Filter (UKF) is used to
re-construct the relative state, with an update fre-
quency of 0.1 Hz. Finally, to stress the architecture
robustness and statistically evaluate the navigation
performance, 100 Monte Carlo simulations are run
for each scenario, changing the filter initialisation and
the noise effects.

3.1 DRO to Lyapunov Navigation

The chaser is settled on a L2 Lyapunov while the
target is on a Distant Retrograde Orbit (DRO), with
an initial distance between the spacecraft of 5300
km. The navigation filter is initialised with relative
position and velocity uncertainties of 10% and 2.5%,
respectively. The effects of three different desired
observability angles are analysed in the following
figures. Simultaneously, a comparison between the
two fuel cost functions is performed representing
high and low-trust engines with the linear and
quadratic objectives, respectively. Notice that as the
final state is selected on the original nominal orbit,
the observability angles at the end of the simulation
are always null. Therefore, the constraint on the
observability angle has been imposed in the middle
of the simulation because the resulting symmetry
guarantees the lowest fuel consumption. The two
engines result in similar navigation performance,
although the low-thrust always requires an extra 10
m/s. The lowest relative error (the yellow line) is
around the 0.4% of the range, which corresponds
to approximately 60 km; 10 times lower than the
original value. Interestingly, for the impulsive case
the greater improvements in the relative navigation
error happen immediately after the execution of
the manoeuvres, and then remain approximately
constant throughout the whole coasting phase. How-
ever, since the distance between the spacecraft keeps
increasing, the absolute estimation error increases as
well. Indeed, throughout the simulation the range
constantly increases from the initial 5300 km up to
16.500 km.
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Figure 3: Simulation environment.
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Figure 9 shows that by solving for the quadratic fuel
objective, the impulsive approximation of the forced
response effectively approximates the behaviour
of a low-thrust continuous control. This result is
extremely useful since the convolution integral of
a generic continuous thrust vector u(t), cannot be
written in discrete form as the product between a
matrix and a vector. Thus, the quadratic objective
makes possible to model a pseudo low-thrust control
within a discrete-time framework.
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Figure 9: Low-thrust - AV.

A few considerations can be extrapolated from
these outcomes. When the goal is to reduce the
absolute uncertainty below a given threshold, various
possibilities are available. If the target is fixed (i.e.,
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the relative distance), the necessary observability
angle is directly obtained from Eq. (1). On the other
hand, if different spacecraft can be exploited as a
target for measurements, it is more convenient to
choose the one that is closer to the chaser.

3.2 Halo to DRO Navigation

In the previous scenario, a high relative distance was
selected with the sole purpose of proving the validity
of the Guidance and Navigation (GN) architecture.
However, it is always desirable to work with smaller
values because, given the angle 6, the AV required
to perturb the natural trajectory grows as function
of the range between the spacecraft. In the following
simulation the chaser has been placed on a L2 Halo
orbit, whereas the location of the target has remained
unchanged. Thus, the resulting relative motion will
include both in-plane and out-of-plane components.
Additionally, the initial positions have been selected
to generate a relative motion whose range gradually
reduces in time (contrary to the previous configura-
tion). The optimal manoeuvre plan was computed
assuming a high-thrust engine and a desired mini-
mum observability angle of 1 degree.

12

10 +

oo
T

Relative Error [%)
(=]

Time [hours]

Figure 10: Relative position error.

Figure 10 shows that despite a small observability
angle was selected, the navigation filter is capable of
improving the initial error up to 1% of the range.
As visible in Fig. 12 the distance steadily decreases
throughout the first half of the simulation; thus from
an absolute point of view, the position error drops
from more than 700 km to just 20 km. Then, as
the satellites move away from each other, the abso-
lute error deteriorates accordingly. Interestingly, in
this scenario the filter convergence is almost exclu-
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sively due to the range reduction: enforcing higher
observability angles yields only minor navigation im-
provements, which are not worth the extra-fuel con-
sumption. Therefore, a careful selection of the nat-
ural relative motion can provide potential trajecto-
ries that enhance the filter observability with mini-
mum fuel consumption. Indeed, thanks to both the
smaller distance and lower observability angle, the
total AV required is only of 4.58 m/s, less than half
the smallest value of the previous case. Notice that
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Figure 12: Range evolution.

towards the end of the simulation, Fig. 10 displays
an increment of the relative error, contrary to Fig. 4
and 5 which are characterised only by constant or
decreasing sections. This issue is associated with the
quality of the linear approximation adopted to pre-
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dict the relative dynamics. Indeed, the linearisation
of the original non-linear relative system was carried
out assuming the range between the satellites to be
much smaller than the target-Moon distance. The ra-
tio between these two values, named error index, can
be used as a reference for the quality of the linear
approximation and has been reported in Fig. 13. By
comparing these results with the relative position er-
ror, the final performance reduction can be correlated
with the linear approximation deterioration. As the
error index gets worse, the model accuracy declines
and the relative error grow rate increases (i.e., the
faster increment at the end is caused by a worse rel-
ative model quality). As a reference, the previous
simulation scenario had an accuracy index of 2.5%.
Unfortunately, this parameter drastically reduces the

14

Error Index [%)]
» = I

(=2}
T

Time [hours]

Figure 13: Linear model error index.

potential orbital combinations that can be exploited
with the proposed architecture. For example, when
selecting orbits belonging to different non-keplerian
families, there are only few points where the error in-
dex is small enough to guarantee the convergence of
the navigation filter. The results prove that an error
index smaller than 10% is enough to provide an im-
provement of the initial error, whereas a value below
5% is recommended to guarantee that the relative
error remains within a bounded interval.

4. CONCLUSIONS

The present work has analysed the applicability of
bearing-only navigation to improve the relative state
estimation of a spacecraft in the cis-lunar environ-
ment. The effectiveness of the proposed quasi-
autonomous SH-MPC architecture were explored in
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two case studies: a planar DRO to L2 Lyapunov nav-
igation and a DRO to Halo relative motion. In both
cases, the GNC scheme has proven capable of com-
puting observable relative trajectories through the
concept of observability angle, reducing the relative
error to a small fraction of the initial value. A strat-
egy to approximate low-thrust trajectories was pre-
sented, showing that despite the convolution inte-
gral of the forced response is simplified under the as-
sumption of impulsive manoeuvres, the adoption of
a quadratic fuel objective generates trajectory with a
piece-wise continuous and smooth control action. Fi-
nally, the characteristics of potential low-AV" trajec-
tories were identified, together with the boundaries
in which the linear approximation holds. The out-
comes of this paper broaden the range of operations
for which angle-only measurements can successfully
be exploited, from close-range rendezvous to long-
range scenario, opening the door to a variety of mis-
sions that entail solving for the relative dynamics in
multi-gravitational environments.
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