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Abstract. The results obtained by an Automatic Shape Optimization tool are strongly
e↵ected by the mesh deformation method used. A computationally e�cient Radial Basis
Function (RBF) grid deformation is coded with two data reduction schemes: multi-level
greedy surface point selection algorithms and volume point reduction methods. Following,
it is combined with the discrete adjoint inside the open-source software SU2. The robust-
ness of the method, the ability to handle complex shapes and apply large deformations
makes possible to optimize also a non planar geometry like a wing provided with a winglet.
The surface sensitivity, besides also the final value of the objective function, depends on
how the grid is updated, since for the computation of the adjoint variables the process is
di↵erentiated by Automatic Di↵erentiation. Finally, the gradient based algorithm ”Se-
quential Least Squares Programming” drives the research of a new local minimum by
gradually morphing the geometrical shape

Keywords: discrete adjoint, design, optimization, mesh deformation, radial basis func-
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1 INTRODUCTION

Automatic Shape Optimization (ASO), based on Computational Fluid Dynamics (CFD)
and guided by a gradient method, is becoming a powerful tool available to engineers for
aircraft design. It can be applied to improve the aero-performance of airfoils, wings and
rotors. The Optimization chain described in this paper is implemented in the open-source
multiphysics solver SU2 [1], the several modulus needed are implemented in C++ and
executed in the correct sequence by a python routine. The search of the optimal shape is
driven by a gradient based algorithms named “Sequential Least Squares Programming”
(SLSQP) [2], which has been proved to deliver the most robust solution [3]. In this context
“optimal” is intended as a morphed form of the original body which provides a significant
reduction of the objective function selected J , usually an aerodynamic coe�cient or a
combination of them. The general problem can be expressed as:

min
↵

J(U(↵), X(↵))

subject to U(↵) = G(U(↵), X(↵)) (1)

X(↵) = M(↵) .

Where X is the computational grid which can be considered as sum of two di↵erent com-
ponents X = Xvol + Xsurf = M(↵) where Xvol = Xvol(Xsurf). It means that the volume
grid depends explicitly on the wall mesh, that depends in a smooth way on the problem
variables ↵. No assumptions on the structure of M are considered, except that is dif-
ferentiable. Instead, U is the Reynolds Average Navier-Stokes (RANS) flow state that
can be found solving the fixed point equation Un+1 =: G(Un). The local minimum found
depends on the starting point and belongs to its close neighbour, besides the final value
of J is linked to the amount of geometrical and aero-constraints and the number of design
variables.
First, a mathematical description of the wall surface is needed, in this paper the interpola-
tion method Free Form Deformation (FFD) is selected [4]. The body is immersed inside a
plastic box, split in smaller bricks which vertices are selected as design variables ↵ whose
positions control the geometry. The displacement of the Design Variables (DVs) is ob-
tained projecting into the design space the sensitivity of the target function with respect
to the them. FFD can be applied to any kind of mesh and does not modify the connectiv-
ity. One the body is properly parametrize, the flow variables U and the current value of
the objective function J must be computed, therefore Reynolds Averaged Navier-Stokes
equations (RANS) are solved. Regarding this work, the one-equation Spalart Allmaras[5]
turbulence model is used without wall functions. The following step is to determine how
the objective function is going to change to a perturbation of one of the design variable,
thus the surface sensitivity must be computed how it is done in SU2 is explained in Sec. 2.
Once it is known how the body has to be morphed, the surface and fluid volume grid has
to be adapted. This step is crucial for two reasons. First, the mesh deformation method
selected is di↵erentiated inside the process for computing the surface sensitivity therefore
the direction of search in the design space is method dependent. Second, how the grid
is updated, especially in case of large displacements and complex geometry, can generate
a progressive lost in the quality of the mesh jeopardising the entire design process. His-
torically the first methods were based on an analogy to a continuum: springs or linear
elasticity (ELA) [6, 7]. They both require the connectivity of the grid, they well handle
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only small deformations and are computationally expensive [8]. Therefore a method for
morphing the grid based on interpolation is introduced and coupled with the adjoint,
the technique is extensively described in Sec. 3. Concerning shape optimization, ELA is
widely used also in SU2 [9–11], thus in this work it is used as comparison with the new
optimization chain.
The design loop is repeated until the Karush-Kuhn-Tucker conditions (KKT) are re-
spected or the maximum number of iterations is reached [12]. Most of the times the
convergence history is not monotone, the maximum reduction of the objective function is
reached before the last loop.

Figure 1: Optimization Design Loop

The comparison between the two ASO is made with the 3D commonly used planar
wing the Onera M6 in Sec. 4.1. The cad is than modify to obtain a non planar wing to
optimize in Sec. 4.3. The optimization histories are compared also the virtual memory
consumption during the mesh deformation step is monitored.

2 SENSITIVITY COMPUTATION

Regarding SU2, dJ
d↵ is computed through the discrete adjoint, which has been imple-

mented by Albring, Saugeman and Gauge [13] with a state of art double system method
[14]. The required Jacobians are constructed by Automatic Di↵erentiation (AD), coded
taking advantage of expression templates and operator overloading. This choice makes
possible to di↵erentiate viscous RANS equations with any turbulence model or easily
extend the optimization problem to multiphysics pdes. Taking advantage of the library
named CoDiPack [15], AD is implemented at statement-level, where the information that
need to be stored are independent from the number of operations internally involved [16].
In particular “Reverse Mode” is used since it is attractive for all that kind of problems
where a single or a small number of objective functions depend on a large set of variables.
Discrete Adjoint is a perfect example since we need the sensitivity of J with respect to
the long vector ↵. In contrast to the forward modality, a single output is selected and the
first-order derivative with respect to each of the intermediate variables and the input vari-
ables is calculated in an unique process. Reverse AD, coded using expression templates,
is 2.7-4 times slower than a direct simulation, making it comparable to the hand-written
Jacobians. However, reverse AD requires a large amount of physical memory, some tech-
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niques as local preaccumulation and the usage of checkpoints can help to contain the ram
consumption [17].
Discrete Adjoint provides the sensitivity with a computational cost scaling with the num-
ber of objective functions, therefore not with the length of ↵ as finite di↵erence, and
without computing the volume mesh sensitivity.

⇤f =
@JT

@U
+
@GT

@U
⇤f (2)

⇤g =
@JT

@X
+
@GT

@X
⇤f

where ⇤f represents the adjoint variables linked with the flow state, meanwhile ⇤g is a
set of dual variables related to the grid movement problem.
It must be highlighted that the surface sensitivity still depends on the grid deformation
method selected. Moreover, it strongly influence the ability to properly explore the design
space, the complexity of the geometry manageable and the dimension of the displacements
applied, resulting in a final value of the target function dependent on the method used.
Mesh deformation algorithms can generate a slow degradation of the mesh quality which
could cause the divergence of the RANS simulation thus even of the optimization process.

3 RADIAL BASIS FUNCTION

In this work, a Radial Basis Function technique, implemented by Morelli and Bellosta
[18] for ice accretion prediction, is introduced in the ASO for its robustness and the
ability to transfer a large displacement from the surface into the fluid grid. This helps
to preserve the quality of the original grid and subsequently improve the robustness of
the whole optimization process. As FFD it does not need the grid connectivity, therefore
the described optimization chain can handle any type of mesh. It belongs to the class
of interpolation methods, it takes as inputs a known boundary displacement field and a
continuous base function �(r, ri) = � (kr� rik), where the distance corresponds to the
radial basis centre, ri between two nodes. A certain amounts of control points are selected
then, the wall movement is interpolated and propagated in the whole fluid by a weighted
sum of basis functions:

f(r) =
NX

i=1

↵i� (kr� rik) (3)

A linear system to obtain the weight coe�cients need to be solved. This method
requires the knowledge of the desired displacement of the entire surface grid. Concerning
the optimization process implemented in SU2, from the adjoint solution projected into
the design space the movement of the vertices of the FFD box is computed. Subsequently,
with the free form deformation routine, which is also in this case an interpolation inside
the control volume, the surface displacement is obtained. The vector �X collect the
surface nodes movement which is underlined by the subscript “s”, it is described by:

�Xs = [�xs1 ,�xs2 , . . . ,�xNs
]

�Ys = [�ys1 ,�ys2 , . . . ,�yNs
] (4)

�Zs = [�zs1 ,�zs2 , . . . ,�zNs
]
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The three Cartesian directions can be combined in a more simplified formulation:

�S = �Xsx̂+�Ysŷ +�Zsẑ (5)

In analogy also the weight coe�cients are collected in a vector:

↵x = [↵x,s1 ,↵x,s2 , . . . ,↵x,Ns]
T (6)

The y and z coe�cients are analogous. Following, the weights can be extracted by solving
the linear system:

�S = �s,s↵ (7)

where � is the universal basis matrix, it is generated with the radial basis function eval-
uated at each surface nodes, meaning that the matrix has size of N2

s . The compact form
of the universal basis function is expressed as:

�sj ,si = �||rsi � rsj || (8)

The next step is to compute the volume base matrix �v,s of size Nv ⇥Ns, where “v” indi-
cates a volume point. Finally, the volume displacement can be interpolated multiplying
the above-mentioned matrix with the weights previously computed:

�V = �v,s↵ (9)

RBF in the context of design optimization is not widely used due to the elevated com-
putational cost. Even if its potential has been already highlighted by [19], there is no
notion of RBF coupled with the discrete version of the adjoint and automatically di↵er-
entiated. The SU2 versions becomes practicable since it introduces two data reduction
schemes to increase the e�ciency: multi-level greedy surface point selection algorithms
[20] and volume point reduction methods [21]. To guide the greedy algorithm when se-
lecting control points an error vector E is introduced, which is based on the di↵erence
between actual surface displacements and computed surface displacements:

E = �S ��s,c↵ (10)

The node with the largest error is selected as new control point. Denoting the control,
surface, and volume points respectively by subscripts c, s, and v and the number of levels
is described by the superscript l.Each time that a node is selected the linear system to
obtain the weights must be solved. Therefore, the CPU cost of the greedy algorithm is
of the order of N4

c , where the final number of control points selected is the number of
iterations of the process plus one. In the case of large displacement of complex geometry
the computational cost of the simple greedy scheme becomes too large. The problem has
been overtaken by introducing a multi-level subspace radial basis function interpolation,
firstly introduced by Wang [20]. The object for the second level of interpolation is set
equal to the error of the first step E(0). In a general form, it can be expressed as:

�Sl+1 = E(l) (11)

where the next step of the multi-level selection process is indicated by the subscript “l+1”.
The residual of Eq. 7 at the second level can be expressed as:

�S(1) = �S(0)
� �W (1) = �S � �(↵(0) + ↵(1)) (12)
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the size of the displacement is strongly reduced �Sl+1 << �Sl. The computational cost
for the multilevel greedy algorithm is now of order of Nl ⇥ N4

c instead of (Nl ⇥ Nc)4 for
the single step. The multi-level selection process can be summarised as follows:

�S =
Pi=Nl�1

i=0
�S(i) =

Pi=Nl�1

i=0
�(i)

s,c↵
(i) (13)

�V =
Pi=Nl�1

i=0
�V (i) =

Pi=Nl�1

i=0
�(i)

v,c↵
(i) (14)

The CPU cost of the volume interpolation, after the multi greedy point selection, is now
of the order of Nl ⇥Nc ⇥Nv. In the case of large scale geometry, it is of interest to find
how to decrease Nv. One method was proposed by Xie and Liu [21]. They introduced a
function which value is based on the distance from the closest wall:

 =  

✓
d(r)

D

◆
. (15)

where d(r) is the space distance and D a support value imposed. We define the ratio
between the two distances as ⇠. The function decays in value when the distance increase
and is zero outside the supported distance, so it is a compact support function. It can be
expressed as:

 (⇠) =

(
(1� ⇠) 0  ⇠ < 1

0 ⇠ � 1
(16)

The value of support distanceD depends on the maximum surface displacement multiplied
for a volume reduction factor k imposed by the used. Mathematically it can be expressed
as:

D = k(�Sl)
max (17)

k in practice defines the range around the body inside which the flow nodes are going to
be shifted, besides we are requiring that the elements outside this volume are not a↵ected
by the surface movement. It can be notice that is exactly the opposite behaviour respect
to the linear elasticity analogy of the previous section where the higher sti↵ness of the
grid’s elements close to the wall boundary cases that the distortion is absorbed by the
largest elements which are close to the farfield.
In the end the interpolation Eq. 3 is modified in order to include the wall distance cor-
rection:

f(r) =  

✓
d(r)

D

◆ NX

i=1

↵i'(||r � ri||) (18)

It is attractive the possibility to directly control the intrinsic interpolation error, the con-
sumption of virtual memory and the wall time selecting the base function, the maximum
amount of control points and the number of levels for the greedy algorithm.

4 RESULTS

In this section the old framework, with Ela as deformation mesh method, and the
new one with RBF are compared. The optimization of a 3D planar wing is presented in
Sec. 4.1. Moreover, to show the improved robustness of the new ASO the optimization
of a full non planar wing is conducted in Sec. 4.3. Finally, the virtual memory allocation
during the single deformation process is monitored and reported in Sec. 4.2
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4.1 ONERA M6

The ONERA M6 can be described as a swept, semi-span wing with no twist. The
symmetric ONERA D section is used as an airfoil. It is a typical test case for turbulence
flow over a transonic wing, widely adopted for CFD validation. Experimental data for
the comparison of the pressure distribution are provided in [22]. The flight conditions are
chosen to deal with a strong shock on the upper part of the wing collocated close to the
25% of the chord.

Mach 0.84
AoA 3.06
Re 14.6E6

Temperature 300K

Table 1: Free Stream Conditions Onera M6

Firstly, mesh convergence has been performed, four hybrid meshes are generated. The
smallest one is used for optimization. This choice is dictated by the computational power
available. The first three layers of the mesh have constant height than the growth ratio
decrease from the coarse to the finer grid. The number of layers of the structured part
has an opposite behaviour. Since the surface grid is almost everywhere structured, the
number of points in the x,y direction are easily multiplied by a factor of 1.5 for the
convergence. The following figures report the aerodynamic coe�cients obtained and the
relative error also the predicted value for an infinity dense mesh is marked. Moreover, the
Cp distribution at four di↵erent stations is monitored.
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Figure 2: Onera M6: Cd Convergence
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Figure 3: Onera M6: Cl Convergence
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Figure 4: Onera M6: Cp Convergence
y=80%b
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Figure 5: Onera M6: Cp Convergence
y=95%b

The goal of the optimization is to reduce the drag without decreasing the lift and the
volume of the body. The angle of attack is free to change, the variation of the torque
moment is only monitored. Six geometrical constraints are imposed: the final maximum
thickness at di↵erent span stations cannot be lower than the 75% of the initial value. The
gradient based optimization using the SLSQP algorithm is performed once with RBF
as mesh deformation method, then with ELA. Regarding RBF, the maximum number of
control points selectable is the 10% of the surface’s nodes, the volume reduction factor k is
set at 5 and the Wendland C0 is selected as the interpolation function. This configuration
makes RBF really robust, fast, and computationally cheap. Instead, considering ELA a
final residual of 10(�10) is required for the solution of the linear system and the sti↵ness
of the cells is computed inversely with respect to their volume. Results are reported in
the following figures:
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Figure 6: Onera M6: Cd Variation
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Figure 7: Onera M6: volume and torque variation

Fig 6 clearly shows that both methods are able to conserve the lift and reduce the drag,
however the optimization history seems to be more robust using RBF with a more clear
convergence. Regarding RBF, the overall drag reduction is around 9.15%, particularly the
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drag reduction between the last two loops is insignificant underlying the achievement of a
minimum. Instead, ELA obtains a slightly smaller reduction of the Cd around 8.57%. The
evolution of the drag with respect to the deformation loops is oscillating, this behaviour
has been observed also by other researchers [23]. Further, the optimum is obtained at
the 18th iteration than a big jump happens and this seems to be typical of the old SU2
optimization chain [24]. Both method increase the torque of the 2% and slightly reduce
the volume even if a specific geometrical constraint is imposed. How the shape of the
sections and thus the pressure distribution are modified after the optimization is shown
in the next pics. The sections close to the root are more morphed, instead the tip of
the wing is just more twisted. Especially close to the wing’s tip, the peak of suction
is decreased and this results in a less intense shock wave, accordingly a lower jump of
pressure Fig. 10.

Figure 8: Onera M6: Isopressure Lines Upper Surface

Figure 9: Onera M6: Isopressure Lines Bottom Surface
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Figure 10: Onera M6: Cp Optimization

Moreover, Fig. 11 shows that the control points selected on the upper part of the wing,
the distribution is strictly linked to the shape of the deformation wanted. In this case, the
movement was the result of the first loop of optimization and it is evident that the tip is
not touched instead the leading edge and the central part of the wing are more a↵ected.
The region of greater displacement should correspond to a zone of the surface with higher
sensitive. It is confirmed by Fig. 12 where is shown the value of the adjoint variables
for the last equation of the adjoint system and the magnitude of the three momentum
equations combined.

Figure 11: Onera M6: RBF Case 1 Control Points
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Figure 12: Onera M6: Adjoint Variable

4.2 MESH DEFORMATION PERFORMANCE

The Onera M6 test case has been used to compare the wall time and the ram con-
sumption of the two mesh deformation considered in this text. The grid considered is
hybrid, with 7319 surface nodes and 446685 cells. The performances of RBF are mea-
sured considering di↵erent settings: interpolation function, k, number of levels, amount of
control points in percentage of the total surface nodes. The mesh deformation processes
are executed on a single core of an AMD EPYCTM of 2.4 GHz. The next table reports
the combination of the parameters tested and the results obtained.

N. Wendland Control Points K N. Levels

0 C0 5% 5 one
1 C0 10% 5 one
2 C0 15% 5 one
3 C0 10% 10 one
4 C0 10% 5 two
5 C2 10% 5 one

Table 2: RBF Parameters

Three outputs are monitored: the maximum virtual memory allocated, the wall time
excluded the deallocation of the data, and the error due to the surface interpolation.
Regarding ELA, the sti↵ness of the cells is set with an inverse volume logical. The final
linear system has to be solved with a final residual of 10(�10) in maximum 800 iterations,
this is the classical setting proposed in the SU2 tutorials. The results are reported in the
next table:
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N. RAM (Gb) Interpolation Error Cpu Time (min)

RBF.0 1.94 2.18% 1.81
RBF.1 2.55 1.07% 3.33
RBF.2 5.41 0.51% 7.89
RBF.3 2.55 0.98% 3.4
RBF.4 3.68 0.47% 6.46
RBF.5 2.74 0.15% 6.53
ELA 14.8 0% 13.66

Table 3: Performance Results

The comparison between ELA and the RBF number one, which is used for the opti-
mization, shows remarkable results. The RAM usage is almost six times lower and the
time employed is one quarter. Considering only RBF, in order to have a very low in-
terpolation error maintaining excellent performance, the comparison shows that is better
to increase the order of the interpolation function instead of the number of levels of the
greedy algorithm. In every 3D optimization ELA has shown a better ability to conserve
the volume of the wing, it could be linked to the interpolation error introduced using RBF.
This underline the necessity to contain as much as possible the approximation introduced.
The following figures show the allocation of the data in the virtual memory with respect
to the cpu time. It can be noticed that the behavior of RBF and ELA are completely
di↵erent, RBF is progressive, instead ELA quickly allocate all necessary information, then
the ram consumption remains constant until the linear system is solved.

Figure 13: Onera M6: Case 1 Rbf Figure 14: Onera M6: Case 4 Rbf

Figure 15: Onera M6: Case 5 Rbf Figure 16: Onera M6: Performance Ela
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4.3 ONERA M6 WITH WINGLET

The optimization of a non planar wing has been conducted in SU2 previously by
Palacio in the project NERONE[25]. However, only Euler equations are solved and a new
unstructured grid is generated at each iteration loop. In this section a RANS optimization
is performed, with SA as turbulence model and RBF for updating the grid which can be
of arbitrary topology. The winglet is obtained with a loft from the tip of the old planar
configuration, generating a contraction of the final section.

Figure 17: Onera M6 With Winglet Attached CAD

The free stream conditions and the target of the optimizations are the same of Sec. 4.1.
The section constraints are imposed also for two station of the winglet so on two planes
with z norm. With the same criteria previously used the convergence of the mesh is
conducted at fixed Cl and the coarser one is used due to the limited computational
resources available. The results has to be intended as the proof that the new framework
is able to improve the aero-coe�cient of a more complex geometry.
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Figure 18: Onera M6 With Winglet Mesh Convergence

The design process is divided in two. At the start, two FFD boxes are selected, the first
containing the planar part of the wing using 144 DVs free to translate only in z-direction
and the second including only the winglet with 70 DVs that can shift in y,x direction. The
sensitivity of the wing DVs is much higher, therefore in this phase the nodes of the planar
part are shifted, the winglet is almost untouched. When the drag reduction becomes
negligible, the optimization restarts from the last output grid but using only one FFD
around the winglet. The DVs are increased to 160, in this phase the winglet is proper
morphed and the final shape can be seen in Fig.19.

Figure 19: Onera M6 Original and Deformed Winglet

The history of the optimization is reported in Fig.20. A reduction of the drag from
185.34 counts to 163.43 is achieved, therefore the Cd is decreased of 11.82%. The lift and
volume constraints are perfectly respected. It must be signaled that the y-momentum,
which is not part of the optimization problem but only monitored, strongly increases
from �0.112 to �0.148. Figs.21 shows how the Cp distribution and the shape section is
modified for four locations, two concerning the winglet and two to the planar part.
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Figure 20: Onera M6 Winglet Cd Optimization

Figure 21: Onera Winglet: Cp Optimization

The optimization was possible only with RBF since it better preserves the quality of
the mesh. It is tempted also with ELA where the sti↵ness is set with an inverse volume
criteria. Two other criteria are, constant sti↵ness and wall distance are also tested, in
these cases the lost of quality is more progressive and the design process is jeopardise only
after some loops. In the next table it is only reported the orthogonality of the mesh after
the first update of the grid.
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Method Nc Nv Min Orthogonality

RBF C0 1100 392619 6.32
ELA inv volume 12676 645590 -43.92
ELA constant 12676 645590 6.21

ELA wall distance 12676 645590 6.28

Table 4: Mesh Orthogonality

5 CONCLUSIONS

The aim of this thesis was to increase the robustness and the possibility of the gradient
based aerodynamic optimization chain implemented inside the open-source SU2. As opti-
mization in this context it is intended the research of the body shape that provides a lower
value of the objective function selected. Strictly concerning SU2 the optimizations using
RBF with respects to ELA show a strong reduction of the virtual memory consumption,
of the time needed and a better preserved orthogonality of the mesh. The reason is that
the version of RBF implemented in SU2 includes two data reduction schemes: a multilevel
greedy algorithms and a volume reduction system. Selecting the maximum number of the
control points permitted, the levels and the base function it is possible to regulate the
computational time and the virtual memory usage. This is extremely useful in case of
scarce computational resource available.
The di↵erent value of the adjoint variables computed could drive the gradient based
SLSQP to a complete di↵erent local minimum. RBF showed the possibility to obtain the
same or even improve the drag reduction. The viscous optimization in transonic regime of
a non planar wing, specifically an Onera M6 with a winglet attached, it is achieved only
thanks to the combination of discrete adjoint and RBF, making a step forward respect
to the work done in NERONE [25] where the optimization was done only solving Euler
equations and regenerating the mesh from zero at each design loop.
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