
CoAP vs. MQTT-SN: Comparison and Performance
Evaluation in Publish-Subscribe Environments

Fabio Palmese, Edoardo Longo, Alessandro E. C. Redondi, Matteo Cesana
DEIB, Politecnico di Milano

Milano, Italy
Email: {name.surname}@polimi.it

Abstract—The Publish/Subscribe communication pattern has
proved to be particularly tailored to the IoT world, with the
MQTT protocol being the nowadays standard de-facto for IoT
applications. Request/response protocols explicitly designed for
the IoT, such as CoAP, have been revised to support also
Publish/Subscribe. The purpose of this paper is to perform a
comparison between two protocols: MQTT-SN, the version of
MQTT thought specifically for sensor networks, and CoAP in its
Pub/Sub version, defined in a recent IETF draft. Both protocols
are Pub/Sub in nature and based on UDP at the transport layer,
allowing therefore a fair comparison of their functionalities. We
propose a open-source implementation of the CoAP Pub/Sub
version and we compare the two protocols: first from a theoretical
perspective and, then, in a simulated environment characterized
by varying number of clients and network conditions. Results
show that CoAP represents a valid alternative to MQTT-SN
for publish-subscribe environments; in particular, CoAP results
being the best choice for highly dynamic networks.

Index Terms—CoAP, MQTT-SN, Publish-Subscribe, applica-
tion protocols, Internet of Things

I. INTRODUCTION

According to the latest Cisco’s Annual Internet Report [1],
the number of IoT and Machine-to-Machine (M2M) connec-
tions will account for half of the global number connections
by 2023, with more than 14 billion IoT devices connected
and generating about 79.4 zettabytes (1021 ' 270 Bytes) of
applicationtraffic.

Managing such a massive amount of traffic requires to
develop specific communication protocols that can adequately
cope with the resource-constrained scenarios typical of the
IoT world, where the available network bandwidth, processing
power and energy are limited. Indeed, in the last few years,
many protocols spanning the whole network stack have been
proposed from both the industry and the academia, generating
a fragmented and sometimes confusing plethora of solutions
and standards. Leaving aside the specific communication tech-
nology adopted at the bottom layer and focusing only on
the application layer, the IoT is nowadays characterized by
a growing dichotomy between Representational State Transfer
(REST) and Publish/Subscribe. The former approach, based
on a Request-Response interaction, allows a one-to-one com-
munication between clients and servers. The most famous
example is undoubtedly the Constrained Application Protocol
(CoAP), directly derived from HTTP and standardized by
IETF. Conversely, the Publish/Subscribe pattern allows for

many-to-many communication through a central broker con-
necting client devices. The Message Queue Telemetry Trans-
port protocol (MQTT), is surely the most well-known example
of this kind: due to its extreme simplicity and renovated
popularity, MQTT is practically becoming the standard de-
facto for M2M and IoT applications.

Both MQTT and CoAP have been subject to a series of
improvement steps in the last few years with the objective of
making the two protocols even more tailored to IoT scenarios’
peculiarities. A lightweight and UDP-based version of MQTT
named MQTT-SN [12] has been proposed to target the limi-
tations typical of the world of Wireless Sensor Networks. At
the same time, the IETF has recently issued a draft describing
publish-subscribe functionalities for CoAP [9], implicitly ac-
knowledging the benefits of such a communication approach
in several IoT scenarios.

With this work, we aim to compare MQTT-SN with the
Pub/Sub version of CoAP. Our contribution is twofold: first,
we provide a working implementation of the Pub/Sub func-
tionalities for CoAP described in the IETF draft. Then, we
compare it with MQTT-SN from both a theoretical and a
practical perspective, focusing on the traffic characteristics.
Since both protocols are Pub/Sub in nature and supported by
UDP at the transport layer, we believe such a comparison is
fairer than other works in the literature setting side by side the
legacy versions of MQTT and CoAP (e.g., [2] [10] [14]).

This paper’s remainder is organized as follows: the main
related works are described in Section II. Section III provides
a brief background on MQTT-SN and CoAP Pub/Sub. Section
IV provides a general comparison of CoAP Pub/Sub and
MQTT-SN characteristics, whose performance are analyzed
through the experiments in Section V. Finally Section VI
contains concluding remarks and future research directions.

II. RELATED WORK

In September 2015, the IETF released RFC 7641 [4],
introducing the observe mode. Observing resources in CoAP
allows the protocol to work in a publish-subscribe fashion
in which both publisher/subscriber are CoAP clients, and the
server takes the role of a central broker allowing a many-
to-many communication. The RFC introduces a new option
(Observe) to transform a simple GET request into a Sub-
scribe/Unsubscribe request. Since the release of the extension,



several works focused on the Pub/Sub capabilities of the
protocol, sometimes proposing innovative features.

In [6], the authors propose an improvement of the publish-
subscribe model for CoAP by introducing new Options and
new response codes for faster communication. In particular,
the work focuses on aggregating functionalities (e.g., creating
a topic, subscribing or publishing to it) with a single request
to minimize traffic. The work describes the results obtained
theoretically, and leaves as future work its implementation for
practical results.

The work in [7] describes a distributed CoAP Pub/Sub
protocol, where multiple connected brokers substitute the
central broker. The authors accurately discuss all the details
of the distributed scenario, ranging from joining procedures
for the brokers to load-balancing techniques to distribute
topics among the different brokers. Results have been obtained
through an implementation relying on Java Californium and
highlighting a higher time needed for the subscription phase
but a lower end-to-end delay than MQTT and centralized
CoAP implementations. Several new features are introduced
for the CoAP protocol in many of its aspects in [8] in which
CoAP 2.0 is presented. Among the improvements, authors
introduce new features for the publish-subscribe model by
adding new rules to subscriptions. A Rule option is added
in the subscribe request so as to receive from the server only
those notifications matching that rule (e.g., values greater or
lower than a particular threshold).

For completeness, we also briefly discuss the main re-
lated works focusing on comparing CoAP (in both its Re-
quest/Response or Pub/Sub versions) to MQTT or MQTT-SN.
In [5] the authors make use of a publish-subscribe version
of CoAP (implemented by using the observe extension but
without respecting the requirements specified in the IETF draft
[9]) for Fog Computing applications, comparing its perfor-
mance with MQTT for the transfer of XML files. The authors
of [14] used CoAP with the observe extension to compare
the behaviour of CoAP in a publish-subscribe model with
MQTT, using one publisher and one subscriber. In particular,
the work compares the behaviour in terms of traffic generated
and average delay of the two implementations, using libcoap
for CoAP and Mosquitto for MQTT, changing the network
packet loss rate through a network emulator (WANEM).

In [2], a comparison between CoAP and MQTT-SN is
performed in the use of robotic applications. CoAP is used
in its simple request-response model by sending a POST
request and waiting for the response. MQTT-SN is analyzed by
performing a publish request and waiting for the publish ack,
starting from a disconnected client and calculating the needed
time to publish completion. The authors highlight that the
delay introduced in the connecting and the registering phases
makes MQTT-SN slower than CoAP for the first message
transmission. However, they obtain better results in the average
transmission thanks to the smaller packet size.
Finally, the work in [10] compares MQTT-SN and CoAP
in its request-response paradigm, focusing mainly on energy
consumption. Results obtained with a simulator reveal that the

two protocols act almost in the same way in terms of consumed
energy, with slightly better performance for MQTT-SN.
To the best of our knowledge, a comparison of CoAP and
MQTT-SN in Publish-Subscribe environments has not been
previously explored in depth. Hence, the scope of this work is
to compare the traffic behaviour of the two protocols in such
cases in order to highlight the advantages of using one with
respect to the other.

III. PUB/SUB PROTOCOLS FOR IOT

A. MQTT and MQTT-SN

MQTT is a publish/subscribe communication protocol
where all the communications between nodes are made avail-
able via a broker. The broker accepts messages published
by devices on specific topics and forwards the messages to
the clients subscribed to those topics, ultimately controlling
all aspects of communication between devices. In MQTT,
publishers and subscribers are connected to the broker via TCP,
a transport protocol known to be resource-eager and therefore
generally avoided in resource-constrained applications. To
overcome this issue, MQTT-SN adapts the functionalities of
the MQTT protocol to resource limited application scenarios
such as Sensor Networks [12]. In particular, MQTT-SN oper-
ates over UDP and is based on an MQTT-SN Gateway which
interconnects MQTT-SN clients to a legacy MQTT broker.
Also, MQTT-SN introduces several features like the possibility
of registering a topic through a 2-bytes topic identifier to
decrease the size of published packets drastically. MQTT-
SN maintains the same Quality-of-Service available in legacy
MQTT, with the addition of a quick publish (QoS = -1) which
does not require any connection to the broker or gateway.

B. CoAP and CoAP Pub/Sub

In contrast to MQTT, CoAP is a Request/Response applica-
tion protocol developed by the IETF for constrained networks.
The protocol is standardized in RFC 7252 by IETF [11].
CoAP functionalities are directly derived from HTTP, allowing
a request-response communication in which two nodes can
exchange messages in a client-server interaction. The protocol
maintains the same structure for requests and responses but,
unlike HTTP, it runs over UDP. Four request methods (GET,
POST, PUT, DELETE) and HTTP-like response codes are
defined to allow flexible M2M interactions. Quality of Service
is managed at the application layer by using two types of
CoAP messages: Confirmable and Non-Confirmable.

The release of the Observe extension made the protocol
adaptable for Publish/Subscribe environments. By sending a
GET request with Observe = 0, a client can express interest in
a resource to receive a notification every time such a resource
changes its value; to cancel the subscription a client can send
a GET request with Observe = 1. In [9], the IETF draft
standardizes both the CoAP broker and publishers/subscribers’
behaviour to achieve correct communications in a publish-
subscribe fashion. In a nutshell, a CoAP client may SUB-
SCRIBE (UNSUBSCRIBE) on a topic by issuing a CoAP
GET request with Observe = 0 (1). The topic, in this case,



TABLE I: CoAP/MQTT-SN KEY DIFFERENCES

CoAP Pub/Sub MQTT-SN
Connection management Connection-less Connection-Oriented

Topic structure Resource (Uri-Path) Topic (Topic-Id)
Quality of Service CON/NON type 4 QoS levels

Fragmentation Block-Wise Transfer Not supported

is identified by a resource object with a specific Uri-Path.
Similarly, a CoAP client may PUBLISH on a topic by issuing
a CoAP PUT or POST request. The draft also specifies other
request methods: a client can discover what topics are available
on a broker through the DISCOVERY request, and topics can
be created/deleted using the CREATE/REMOVE requests.

In order to analyze the capabilities of such version of
CoAP and compare them with MQTT-SN, we implemented
a working version which is strictly compliant to the IETF
draft specifications, providing a set of API for easily gen-
erating CoAP Pub/Sub traffic for the DISCOVERY, READ,
PUBLISH, SUBSCRIBE, UNSUBSCRIBE, CREATE, and
REMOVE requests. We based our implementation on the
CoAPthon library [13], written in Python, which already
implements the main features of CoAP. The source code
of our implementation is publicly available for reproducible
research1.

IV. COAP PUB/SUB VS MQTT-SN

In this Section, we dissect and analyze the two protocols to
explain their main analogies and differences, which are also
summarized in Table I. On the one hand, we recall that both
protocols are Pub/Sub in nature and based on UDP at the
transport layer. On the other hand, several differences can be
observed:

a) Connection management: One of the main differences
between the two protocols is the connection management.
Apart from the case when QoS = -1, which corresponds to a
publish-only fire and forget mode, an MQTT-SN client needs
to maintain an active connection with the broker (through the
CONNECT/CONNACK message exchange) in order to pub-
lish, subscribe or register a topic. Conversely, a CoAP client
can perform any action on the broker without establishing a
connection. A CoAP client can hence access to all broker
functionalities in a faster way than MQTT-SN.

b) Resource-based vs Topic-based Environments: A key
difference between CoAP and MQTT-SN is the representation
of resources and topics. CoAP uses a resource-oriented model:
a broker contains resource objects (identified by URIs), and a
client may subscribe or publish to a specific resource present
in the broker. Resources are created or deleted by clients using
CREATE or REMOVE requests. A client is able to discover
the available resources of a broker through a DISCOVERY
request. MQTT-SN uses instead a topic-oriented environment:
the broker stores only the interests of clients to particular
topics, and, whenever a new message is published, the broker
forwards it to all the interested clients. This approach allows

1https://github.com/fpalmese/CoAP-Pub-Sub

an MQTT-SN client to subscribe to a topic not yet referenced
(created) by other clients, while this is not possible in CoAP.
In addition, MQTT-SN offers the retain option to store a
published message on the broker for clients interested in a
topic but not yet subscribed.

The use of topics also impacts the publish message’s size:
in MQTT-SN, a topic can be registered and encoded with a
2-byte topic identifier used instead of the original topic name.
This allows reducing the message size significantly, at the cost
of a registration step to be performed a priori. CoAP does not
allow such an option.

c) Notifications: Regardless of the specific protocol, at
the reception of the publish message, the broker needs to
notify all the interested subscribers of the newly published
value for that topic/resource. An MQTT-SN broker notifies the
subscribers simply forwarding the received publish message,
possibly modifying only header fields such as the message-
id and the QoS. In CoAP, instead, the broker notifies the
subscribers by sending a notification that represents a re-
sponse to a previous subscribe request. Such notification is
characterized by a response code which needs to have the
same token as the subscribe request. Moreover, a CoAP broker
can sort notifications in order of arrival through the Observe
option, allowing the subscribers to understand which one is
the freshest, a feature not achievable in MQTT-SN.

d) QoS management: Since both protocols run over UDP,
quality of service must be implemented at the application
layer. CoAP specifies two types of messages: Confirmable
(i.e., requiring an acknowledgement) and Non-Confirmable.
Note that both Requests and Responses can be of Confirmable
type, thus requiring an acknowledgement independent of the
actual Request/Response exchange. MQTT-SN instead speci-
fies four levels of QoS, which can be independently chosen by
publishers and subscribers. The first two QoS levels (-1 and 0)
do not require any acknowledgement, with QoS = -1 being a
publish-only fire and forget mode not requiring a connection.
These two QoS levels have the same effect of using a CoAP
Non-Confirmable request message with the No-Response Op-
tion set to force the endpoint not to reply. QoS level 1 refers
to “at least once” delivery, where an acknowledgement is
requested from the broker or the subscriber receiving the
message. Compared to CoAP Confirmable message, this QoS
mode produce effectively the same number of messages to
perform a publish operation. There is a difference among the
two models caused by the different method used to handle
duplicate messages: CoAP Confirmable ensures an “exactly
once” delivery while MQTT-SN with QoS 1 ensures an “at
least once” delivery, not removing the presence of duplicate
notifications. To ensure an “exactly once” delivery in MQTT-
SN, a publisher should use QoS = 2, which is based on a
four-way handshake and therefore involves higher traffic and
delay.

The last difference regards the subscribers QoS: while
in MQTT-SN each subscriber can choose the QoS for the
notifications to receive from the broker, CoAP does not allow
that and leaves the decision to the broker.



Fig. 1: Sketch of the testing architectures.

e) Fragmentation: Although the size of IoT messages
is generally small, some applications (e.g., IoT surveillance
cameras) may produce payloads whose size exceed the max-
imum allowed by the network, requiring to fragment the
original payload in multiple parts. CoAP provides message
fragmentation at the application layer with the Block option
(RFC 7959 [3]), which allows to request acknowledgements
for each fragment separately. Conversely, MQTT-SN does
not allow message fragmentation; therefore, the maximum
message length is limited by the underlying network.

V. EXPERIMENTS

A. Testing setup

To compare the two protocols from a practical perspective,
we set up a testing environment on a single machine based on
an Intel i7-8750 with 6 CPUs @ 2.2GHz, 16 GB of RAM,
running Ubuntu 18.04.4 and Python 3.6.9 Version. For what
concerns CoAP Pub/Sub we use our proposed implementation
for both the broker and the clients (publishers and subscribers).
As for MQTT-SN, we use a standard MQTT broker based on
EMQX2 and executed within a docker. The MQTT broker is
connected to an MQTT-SN gateway derived from the Paho-
Eclipse projects3. Finally, MQTT-SN clients are based on
Really Small Message Broker (RSMB) project4. In both cases,
publishers and subscribers are connected to the broker on the
loopback interface via a lossy network, which is emulated
through the use of the Linux traffic control (tc)
tool5.
A sketch of the architecture used for the two protocols is
reported in Figure 1.

For each scenario the tests are executed as follows. First,
the broker is started, then:
1) A specific number of subscribers is started, each one

subscribing to the same topic on the broker. We vary the

2https://www.emqx.io/
3https://github.com/eclipse/paho.mqtt-sn.embedded-c
4https://github.com/eclipse/mosquitto.rsmb
5https://man7.org/linux/man-pages/man8/tc.8.html

number of subscribers in the range {1, 10, 100}. For both
the protocols, the topic used by clients is ps/topic/,
equal to 9 bytes of overhead in the request header. Only
for MQTT-SN, we assume the topic is already registered
in the broker and linked to a 2-bytes short topic id. In both
scenarios, the broker notifies the subscribers at the lowest
QoS available (with NON messages in CoAP, and with
QoS 0 in MQTT-SN).

2) A specific number of publishers is started, publishing mes-
sages on the same topics mentioned above every 0.25s (4
msg/s). We vary the number of publishers in the range {1,
10, 50}. In order to increase the number of notifications to
the subscribers leaving unchanged the number of requests,
we kept the total volume of traffic published on the broker
constant and equal to 50 messages (which is respectively
50, 5, 1 messages for each 1, 10, 50 publishers).
A fixed payload of 18 bytes composes each published
message. Table II reports the size of all messages used
in the simulation.

3) Finally, to analyze the two protocols’ behaviour at different
QoS levels, we perform different tests comparing CoAP
non-confirmable publish messages (with No-Response op-
tion) with MQTT-SN publish at QoS -1 and 0, as well
as CoAP confirmable publish messages with MQTT-SN
publish at QoS 1. All tests are repeated varying the packet
loss rate of the loopback interface, through the tc tool. In
particular, the following values are used for the packet loss
rate: 0% (reliable network), 5%, 10%, 20% and 30%.

TABLE II: CoAP and MQTT-SN messages size (bytes)

CoAP MQTT-SN
Subscribe Request 60 Subscribe Request 58

Subscribe Response 55 Subscribe Ack 52
Publish Request 77 Publish Request 68

Publish Response 58 Publish Ack 51
Notification 71 Connect Request 54

Connect Ack 47
Register Request 59

Register Ack 51



Fig. 2: Average time needed to perform a subscribe request.

Each test is repeated 10 times in order to analyze average
behaviors and the corresponding deviations.

B. Experimental Results

1) Subscribe time: First, we analyze the behaviour of the
two protocols for what concerns the time elapsing between
a subscribe request from a client and the reception of the
corresponding response from the broker (i.e., a SUBACK
message for MQTT-SN or a standard response in case of CoAP
Pub/Sub). Results are shown in Figure 2, for the case with 100
subscribers6. As one can see the two protocols have a similar
behaviour with a slightly better result for CoAP, showing a
lower processing time than MQTT-SN for the subscription
phase.

2) End-to-End delay: We also analyze the end-to-end de-
lay, that is the average time elapsed from the generation
of the publish request to the arrival of the notification at
the subscriber side. Therefore, such delay includes (i) the
publisher’s transmission time to the broker (including any
retransmission due to lost packets), (ii) the broker’s processing
time, and (iii) the broker-to-subscriber notification time. To
perform a fair comparison, we set the retransmission timeout
of MQTT-SN to the one suggested in the CoAP standard.
Figure 3 and 4 show the results obtained for the two cases
with 1 publisher and 1 subscriber and 50 publishers and 100
subscribers, respectively. As one can see, here, the comparison
is in favour of MQTT-SN. The main reason behind this lies in
the way MQTT-SN handles notifications compared to CoAP.
As explained in Section IV (Paragraph c) in MQTT-SN, the
broker just forwards the received publish message to the list
of subscribers, while in CoAP the broker needs to create and
transmit a new specific response for each subscriber. Overall,
for low packet loss rates (e.g., less than 10%) the two protocols
behave very similarly. In both cases, the effect of increasing
the number of subscribers from 1 to 100 is a very moderate
increase in the average end-to-end delay.

3) Traffic volume: The total volume of traffic exchanged
during the simulation directly impacts on the network and the
energy resources. Figure 5 shows the percentage variations

6no significant changes were observed with a lower number of subscribers

Fig. 3: Average end-to-end delay with 1 Subscriber.

Fig. 4: Average end-to-end delay with 100 Subscribers.

of the different scenarios compared to the traffic volume
produced by CoAP in non-confirmable mode for a different
number of subscribers (we recall the number of messages
published to the broker is constant). Only in this case, we
performed the test in a lossless network to avoid the effect
of retransmissions. As one can see, for multipoint-to-point
communications (e.g., when only one subscriber is involved),
MQTT-SN produces around 5% less traffic than CoAP for both
the acknowledged and non acknowledged cases, thanks to the
smaller packet size (especially regarding the publish requests),
balancing the additional traffic introduced by the connection
and topic registration. Instead, for multipoint-to-multipoint
scenarios (e.g., when the number of subscribers is greater
than one), CoAP always produces less traffic than MQTT-SN.
This is due to the increased number of connection/registration
phases present in MQTT-SN, which is no more leveraged by
the smaller packet size of publish requests (since the number
of publish requests is left unchanged).

4) Number of notifications: Finally, Figure 6 highlights
the difference of the number of notifications transmitted by
the broker to the subscribers when using the acknowledged
versions of the protocols (CoAP confirmable and MQTT-SN
with Qos = 1) with different packet loss rates. As one can
see, the number of notifications produced by the MQTT-



Fig. 5: Percentage of traffic compared to CoAP NON

SN is much higher. This is due to the loss of publication
acknowledgements that trigger publishers to retransmit their
messages, which are forwarded by the broker as duplicated
notifications.

C. Discussion

From the analyses of the experimental results, it is clear
that CoAP Pub/Sub and MQTT-SN behave similarly. At the
same time, the small differences between the two protocols
can have a non-negligible impact in specific scenarios.
For applications in which clients are not subject to duty cycle
(i.e., stay always connected with the broker) and transmit
periodic messages (e.g., environmental monitoring), MQTT-
SN is to be preferred over CoAP due to its smaller packet
size that balances out the connection and topic registration
overhead. Conversely, if clients connect sporadically or with
high dynamicity (e.g., asynchronous events), CoAP Pub/Sub
would be the best choice thanks to its connection-less com-
munication model.
Applications characterized by large payload and running over
high loss networks should always use CoAP over MQTT-SN,
due to the inherent support to application layer fragmentation
and thus avoiding the messages to be dropped for the exceed-
ing number of retransmissions.

VI. CONCLUSIONS

This work focuses on the publish-subscribe model for CoAP,
comparing its behaviour with the already popular MQTT-
SN protocol. First, we proposed a publicly available Python
implementation of the CoAP Pub-Sub model described in a
recent IETF draft. Then, we compared CoAP and MQTT-SN
from both a theoretical and practical perspective, putting in
evidence the advantages and disadvantages of using one with
respect to the other. As future research directions, we plan to
enhance CoAP Pub/Sub introducing in our implementation the
features theoretically described in [6] and [8] as well as inte-

Fig. 6: Total notifications in the simulation with 100 Subs

grating the MQTT protocol in the implementation built in this
work to obtain a broker able to process both MQTT/MQTT-
SN and CoAP Publish-Subscribe requests.

REFERENCES

[1] Cisco Annual Internet Report (2018–2023), March 2020.
[2] Muhammad Harith Amaran, Nazmin Arif Mohd Noh, Mohd Saufy

Rohmad, and Habibah Hashim. A Comparison of Lightweight Commu-
nication Protocols in Robotic Applications. Procedia Computer Science,
76:400 – 405, 2015.

[3] C. Bormann and Z. Shelby. Block-Wise Transfers in the Constrained
Application Protocol (CoAP). RFC 7959, IETF, August 2016.

[4] K. Hartke. Observing Resources in the Constrained Application Protocol
(CoAP). RFC 7641, IETF, September 2015.

[5] J. Huang, P. Tsai, and I. Liao. Implementing publish/subscribe pattern
for CoAP in fog computing environment. In 2017 8th IEEE Annual
Information Technology, Electronics and Mobile Communication Con-
ference (IEMCON), pages 175–180, 2017.

[6] M. Iglesias-Urkia, D. Casado-Mansilla, S. Mayer, and A. Urbieta. En-
hanced Publish/Subscribe in CoAP: Describing Advanced Subscription
Mechanisms for the Observe Extension. In Proceedings of the 8th
International Conference on the Internet of Things, IOT ’18, New York,
NY, USA, 2018. Association for Computing Machinery.

[7] J. Jung, D. Choi, and S. Koh. Distributed pub/sub model in CoAP-
based Internet-of-Things networks. In 2018 International Conference
on Information Networking (ICOIN), pages 657–662, 2018.

[8] M. L. Kome, F. Cuppens, N. Cuppens-Boulahia, and V. Frey. CoAP
Enhancement for a Better IoT Centric Protocol: CoAP 2.0. In 2018 Fifth
International Conference on Internet of Things: Systems, Management
and Security, pages 139–146, 2018.

[9] M. Koster, A. Keranen, and J. Jimenez. Publish-Subscribe Broker for
the Constrained Application Protocol (CoAP). I-D 9, IETF, September
2019.

[10] Marti, Garcia-Rubio, and Campo. Performance Evaluation of CoAP and
MQTT-SN in an IoT Environment. Proceedings, 31:49, 11 2019.

[11] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application
Protocol (CoAP). RFC 7252, IETF, June 2014.

[12] A. Stanford-Clark and H. L. Truong. MQTT-SN Version 1.2. Protocol
Specification, Oasis, November 2013.

[13] G. Tanganelli, C. Vallati, and E. Mingozzi. CoAPthon: Easy develop-
ment of CoAP-based IoT applications with Python. In 2015 IEEE 2nd
World Forum on Internet of Things (WF-IoT), pages 63–68, 2015.

[14] D. Thangavel, X. Ma, A. Valera, H. Tan, and C. K. Tan. Performance
evaluation of MQTT and CoAP via a common middleware. In 2014
IEEE Ninth International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), pages 1–6, 2014.


