
72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 1 of 13

IAC-21,A6,7,9,x63767

SENSIT: a software suite for observation scheduling and performance assessment of SST sensor networks

Giovanni Purpuraa*, Andrea De Vittoria, Riccardo Cipollonea, Pierluigi Di Liziaa, Mauro Massaria,

Camilla Colomboa, Alessandra Di Ceccob, Luca Salottib

a Politecnico di Milano, Via Giuseppe La Masa, 34, 20156 Milano, Italy, giovanni.purpura@polimi.it,

andrea.devittori@polimi.it, riccardo.cipollone@polimi.it, pierluigi.dilizia@polimi.it, mauro.massari@polimi.it,

camilla.colombo@polimi.it
b Italian Space Agency (ASI), via del Politecnico snc, 00133 Rome, Italy, alessandra.dicecco@asi.it, luca.salotti@asi.it

* Corresponding Author

Abstract

The ability to simulate the behavior of different sensor configurations is critical for the development of a sensor

network that provides data for Space Surveillance and Tracking (SST) services. Any software suite devoted to this

shall be able to assess the performance of existing networks in terms of effectiveness and robustness, as well as to

estimate the effects of structural changes, such as the addition or the upgrade of sensors. This paper is devoted to

describing how SΞNSIT tackles the above problem. SΞNSIT (Space Surveillance Sensor Network SImulation Tool)

is a software suite designed to perform an analysis of the observational and cataloging capabilities of a sensor network.

The software can model optical, radar and laser ranging sensors and simulate different operational scenarios. The user

shall define the sensors composing the network and a population of space objects. Typical sensor properties that can

be set include type, mode (survey/tracking), location, accuracy, pointing constraints, detectability limits and operating

hours. Inputs are processed to predict transits that can be observed by each sensor. This allows to assess the network

capabilities in terms of catalog coverage: the sensors are compared against each other to identify overlapping in the

sets of observable objects and estimate the level of complementarity or redundancy. Afterwards, the tool can simulate

the operations of the network. First, an observation schedule is compiled, using a genetic optimization algorithm based

on tunable criteria. This removes overlaps caused by objects passing simultaneously in the field of regard. Then, the

software simulates and processes the measurements gathered during passes, carrying out orbit determination, aiming

at assessing the network capability in terms of catalog build-up and maintenance. The results are illustrated in tables

and graphs with different levels of detail, starting from a general performance overview up to the list of the passes.

The user can also browse the object catalog of the network and analyze its evolution. Moreover, the tool allows to

export intermediate data, such as the observable passes, the optimized schedule, and the pointing requirements. The

modularity of the software grants easy modification of the properties of the network, to carry out a sensitivity analysis

to different parameters. This is expected to ease the setup process of sensor networks for SST, as well as the

identification of the most promising upgrades to be recommended. The paper presents in detail the software

architecture and its functionalities, and shows the results provided in typical use cases.

Keywords: Sensor networks; Space object cataloguing; Space Surveillance and Tracking; Space Situational

Awareness; Genetic algorithm

Acronyms/Abbreviations

Comma-Separated Values (CSV); European Space

Agency (ESA); Field Of Regard (FOR); Field Of View

(FOV); Graphical User Interface (GUI); Initial Orbit

Determination (IOD); JavaScript Object Notation

(JSON); Local Orbital Frame (QSW); Non-Linear Least

Squares (NLS); Orbit Determination (OD); Radar Cross

Section (RCS); Refined Orbit Determination (ROD);

Space Surveillance and Tracking (SST); Two-Line

Element set (TLE)

1. Introduction

The space environment has become a valuable asset

for communication, navigation and observation purposes

over the past years. Since 1957, more than 4900 space

launches have led to an orbital population of more than

23000 trackable objects with sizes larger than 10 cm [1].

About a thousand of these are operational satellites,

while the remaining 94% are space debris – objects that

no longer serve any useful purpose. About 64% of the

routinely tracked objects are fragments from some 250

breakups, mainly explosions and collisions of satellites

or rocket bodies. In addition, about 670000 objects larger

than 1 cm and 170 million objects larger than 1 mm are

mailto:giovanni.purpura@polimi.it
mailto:andrea.devittori@polimi.it
mailto:riccardo.cipollone@polimi.it
mailto:pierluigi.dilizia@polimi.it
mailto:mauro.massari@polimi.it
mailto:camilla.colombo@polimi.it
mailto:alessandra.dicecco@asi.it
mailto:luca.salotti@asi.it

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 2 of 13

expected to be in orbit. A schematic representation of the

entire space debris population is given in Fig. 1.

Fig. 1 Timeline of the number of space debris in orbit

(plot available on the ESA website [2]).

Due to the increasing number of satellites, potential

collisions with other objects and uncontrolled debris

reentry that may endanger populated areas are of major

concern. To mitigate these risks, surveying and tracking

such objects is becoming of primary importance, as well

as providing this information to a variety of stakeholders.

The amount of catalogued objects in orbit scales with the

quality of the available space surveillance systems.

Hence, simulating a sensor network can have a

significant impact when dealing with catalogue build-up

and maintenance.

At European level, two examples of available sensor

network simulation tools are the BAS3E (Banc d'Analyse

et de Simulation d'un Systeme de Surveillance de

l'Espace - Simulation and Analysis Bench for Space

Surveillance System) and the S3TOC (Spanish Space

Surveillance and Tracking Operations Center).

BAS3E is a complete SST simulation framework

developed by CNES [3], with the goal to evolve the

existing SST network, both from a software and

hardware point of view, and to define major evolutions

of existing SST networks. It implements the capability to

simulate ground and space-based sensors via the

integration of the following functions:

• Detection, tracking and generation of

observations of space objects

• Object identification and tracking correlation

• Orbit determination

• Maintenance of a space debris catalogue

• Centralized / de-centralized tasking and

scheduling

The S3TOC is located in the Torrejón de Ardoz

Military Air Base [4], 30 km away from Madrid (Spain).

The center is devoted to the generation of SST end-user

products, for which a catalogue of objects is maintained,

and orbital information from SST observations obtained

by the S3TSN (Spanish Space Surveillance and Tracking

Sensor Network) is computed. The S3TOC consists of

the following elements:

• Data Processing and Cataloguing

• Service Processing

• Sensor Planning and Tasking

• Fragmentation messages

• Service Provision

The Italian SΞNSIT software provides functionality

similar to those of its European counterparts. SΞNSIT is

a tool for modeling sensor networks and evaluating their

performance in terms of coverage and capability of

building and maintaining a catalogue of space objects.

Moreover, it allows the user to perform sensitivity

analysis of the performance of the sensor network by

varying the network configuration.

2. SΞNSIT

Fig. 2 SΞNSIT logo.

The Space Surveillance Sensor Network Simulation

Tool (SΞNSIT) is a software tool conceived by

Politecnico di Milano in collaboration with the Italian

Space Agency and with contributions from the SpaceDyS

company. The first version of this software had already

been presented previously [5]; this work introduces the

most recent features and reviews the main characteristics

that were already present.

SΞNSIT is written in Python 3 and C++ and runs on

the major operating systems (Windows, MacOS, Linux).

It relies on the NASA/NAIF SPICE library [6] for

astronomical computations. It can be used either from the

command line or by means of a Graphical User Interface

(GUI) based on the Qt library.

The software makes use of YAML files for the

configuration and an SQLite database file for internal

data storage.

Given a list of space objects, a sensor network and a

time frame, SΞNSIT performs the following tasks:

• computation of the observable transits of space

objects over the selected ground stations

• creation of optimal schedules of observations,

according to user-defined criteria

• simulation of the observations and the

corresponding measurements

• orbit determination using the simulated

measurements and the provided sensor accuracies

• catalogue build-up and maintenance according to

the outcomes of the orbit determinations

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 3 of 13

Fig. 3 SΞNSIT architecture.

These tasks are performed by the five modules into

which SΞNSIT is subdivided (Fig. 3):

• Data initialization: gathers and pre-processes the

inputs provided by the user and updates the SPICE

kernels (files containing planetary ephemerides

and leap second information).

• Pass computation: evaluates the observable

passes of the objects belonging to the reference

population, accounting for various observability

constrains.

• Scheduling of observations: selects a subset of

the previously computed passes (or parts of them)

to produce optimal schedules of observations by

means of a genetic algorithm.

• Catalogue build-up: starting from a schedule,

simulates the measurements and carries out orbit

determination, in order to build-up and maintain

the network catalogue as the simulation proceeds.

• Performance analysis: allows to analyze the data

created by the previous modules, by means of

tables and charts, providing an overview of the

performance of the sensor network.

2.1. Data initialization

The data initialization module allows to manage the

configuration of the software, to define the sensor

network and to load the reference population of objects

to be observed.

2.1.1. Configuration

In the configuration tab of the GUI (Fig. 4) the user

can define the following properties:

• generic parameters to tune the processes,

• accuracy thresholds, that will be used to determine

if an object is considered catalogued according to

the covariance of its position,

• time windows for the simulation,

• Space-Track credentials for automatic download

of TLEs (optional).

The GUI saves these parameters in specific files in

YAML format. If desired, the user can directly edit these

files.

Fig. 4 SΞNSIT GUI: configuration tab.

2.1.2. Sensors

The user shall configure the sensor network either

through the GUI (Fig. 5) or by means of a YAML file

formatted according to the instructions reported in the

software manual.

Fig. 5 SΞNSIT GUI: sensors tab – general.

The parameters to be entered for each sensor are:

• Name

• Type (optical, radar mono/bistatic)

• Mode (tracking, survey)

• Working hours (optional)

• Measurement sample interval

• Measurement accuracies

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 4 of 13

Fig. 6 SΞNSIT GUI: sensors tab – receiver.

For the receiving station (Fig. 6) it is necessary to enter:

• Geographical coordinates

• Pointing and Field of View (for survey sensors)

• Slew speed (for tracking sensors)

• Geometrical constraints (e.g., Field of Regard)

• Optical and radar signal limits

If the sensor is a bistatic radar, the user shall also

provide the information about the transmitting station. In

this case, the fields are the same as those for the receiver,

except for the optical and radar signal limits that are not

present.

2.1.3. Reference population

Fig. 7 SΞNSIT GUI: population tab.

The reference population of space objects can be

loaded through the GUI (Fig. 7) or with a command line

script, using the following formats:

• Two-Line Elements in a text file,

• Cartesian states in CSV format,

• List of Satellite Catalog Numbers (NORAD IDs),

for which TLEs will be automatically downloaded

from Space-Track.org,

• ESA MASTER population file (*.pop),

• SGP4 elements (in CSV or JSON format).

The inputs are automatically converted to SGP4

elements when necessary and are saved in the internal

SQLite database.

The user can also associate an initial state covariance

for the objects expressed in one of the typically used

reference frames [7].

Furthermore, it is possible to load the Radar Cross

Section and the intrinsic brightness of the objects: these

are used to compute the radar signal loss and the optical

magnitude, respectively.

The signal loss is computed according to Eq. 1.

𝐿𝑑𝐵 = 20 log10(𝜌𝑅𝑋 ⋅ 𝜌𝑇𝑋) − 10 log10 𝜎
+ 30 log10(4𝜋) − log10 𝑐 (1)

where 𝜌𝑅𝑋 and 𝜌𝑇𝑋 are, respectively, the distance of

the target from the receiver and the transmitter in meters,

𝜎 the RCS in squared meters and 𝑐 the speed of light in

meters per second. Considering the link budget equation,

the value of signal loss limit to use can be determined

from the characteristics of the sensor, as in Eq. 2.

𝑚𝑎𝑥. 𝐿𝑑𝐵 = 10 log10(𝑚𝑖𝑛. 𝑃𝑅𝑋)
− 10 log10 𝑃𝑇𝑋

+ 10 log10 𝐺𝑅𝑋

+ 10 log10 𝐺𝑇𝑋 − 10 log10 𝑓

(2)

with 𝑚𝑖𝑛. 𝑃𝑅𝑋 minimum detectable received power

in watt, 𝑃𝑇𝑋 transmitted power in watt, 𝐺𝑅𝑋 and 𝐺𝑇𝑋

receiver and transmitter gains, 𝑓 carrier frequency in

hertz.

Optical magnitude is computed according to Eq. 3.

𝑚 = 𝑏 − 2.5 log10((π − ϕ) cos (ϕ)
+ sin (ϕ)) + 5 log10 ρ
− 15 − 𝑒

(3)

with 𝑏 intrinsic brightness, ϕ phase angle in radians,

ρ distance from the target in km and 𝑒 atmospheric

extinction, computed with Eq. 4 [8].

𝑒 =
0.1451e−ℎ/7.996 + 0.120e−ℎ/1.5 + 0.016

sin(𝑒𝑙) + 0.025e−11 sin(𝑒𝑙)
 (4)

with ℎ altitude of the ground station in km and 𝑒𝑙
elevation angle in radians.

2.2. Pass computation

This process computes the observable passes of the

objects belonging to the reference population,

considering the observability conditions set by the user.

The computed passes are shown in the GUI (Fig. 8).

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 5 of 13

Fig. 8 SΞNSIT GUI: passes tab.

The computation is based on a bisection algorithm

and takes advantage from several optimizations:

• The states of the stations and of the objects are

cached when possible

• The core of the algorithm is written in C++

• The code runs in parallel on separate processes

The algorithm, schematized in Fig. 9, starts from the

time window chosen by the user and splits it into

segments. At each splitting point, it evaluates the

observability condition, giving a preliminary estimation

of the passes. At the end, it applies bisection to find the

precise start and stop epochs of the passes.

Fig. 9 SΞNSIT algorithm for passes computation.

2.3. Scheduling of observations

Several objects may be observable by each sensor at

the same time. For this reason, it is necessary to schedule

the observations for the sensors that are in tracking mode.

The section of SΞNSIT that addresses this problem is

shown in Fig. 10.

Fig. 10 SΞNSIT GUI: schedules tab.

2.3.1. Scheduling rules

The scheduling rules that have been implemented in

SΞNSIT are:

• For survey sensors, all observable passes can be

observed.

• For tracking sensors, a pass can be observed when:

o the sensor is not currently busy in the

observation of another object,

o the sensor has the time to perform the slew

maneuver from a pass to the next,

o a given time has passed since the last

observation of this object.

When two passes cannot be present in a schedule at

the same time without violating the scheduling rules, they

are in conflict. Given an ordered list of n observable

passes 𝒑, the conflicts may be summarized as a (n, n)

Boolean matrix 𝐌: if the ith pass conflicts with the jth, the

matrix will contain true both in cell (i, j) and in cell (j, i).

Conversely for passes that are not in conflict the

corresponding cells will be set to false. The conflict

matrix has the following properties:

• It is symmetric by definition,

• Its diagonal values are all false, since a pass never

conflicts with itself,

• It is in general sparse (i.e., most of its values are

false) and can therefore be stored in memory-

efficient representations.

Even the schedule can be represented using a Boolean

vector 𝒔 associated to the ordered list of passes. If the ith

pass is to be observed, the ith item of the vector will be

true, otherwise it will be false.

Fig. 11 shows an example of passes that overlap: if

we consider for simplicity only the constraint that a

sensor can observe only one object at a time, pass #1

conflicts with pass #0 and pass #2, while pass #3 has no

conflicts. This will be encoded in the matrix 𝐌 reported

in Fig. 12, where true is reported in the positions (0, 1)

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 6 of 13

and (1, 0). A possible schedule 𝐬 without conflicts can be

composed of pass #0, #1 and #3, as in Fig. 12.

Fig. 11 Example of a timeline of passes with overlaps.

M =

 0 1 2 3

s =

0 F T F F T

1 T F T F F

2 F T F F T

3 F F F F T

Fig. 12 Boolean representation of a conflict matrix (M)

and a schedule (s).

This representation allows to easily compute the

number of conflicts 𝑐 present in a schedule using Eq. 5,

where Boolean values true and false are implicitly

converted to the integers 1 and 0.

𝑐 =
𝐬𝐓𝐌 𝐬

2
 (5)

This is possible because the product 𝐌 𝐬 returns a

vector where the ith value is the number of other chosen

passes in conflict with this pass. The next pre-

multiplication by 𝐬𝐓 will sum only the values

corresponding to chosen passes. The division by 2 is

necessary to count each conflict only once.

In the situation depicted in Fig. 12, Eq. 5 returns 0 as

expected. If instead all the passes had been scheduled, the

formula would have returned 2, because of the two

conflicts caused by pass #0 with pass #1 and #2.

2.3.2. Fitness value

The set of all possible schedules is composed of 2𝑛

elements, of which only the ones that fulfil the condition

𝑐 = 0 are feasible. In order to programmatically prefer

one schedule over the others, it is necessary to assign a

fitness value to each of them.

First, a score 𝑓𝑖 is computed for each observable pass

(Eq. 6), then the overall fitness 𝐹 of the schedule is

computed by summation of the scores of the scheduled

passes (Eq. 7).

𝑓𝑖 = 𝑣𝑑
𝑘𝑑 ∑ 𝑤𝑛𝑣𝑛

𝑛
, with n ∈ (𝑑, 𝑒, 𝜌, 𝐿, 𝑚) (6)

𝐹 = 𝒔 ⋅ 𝒇 (7)

The exponent 𝑘𝑑 and the weights 𝑤𝑛 are set by the

user, according to the importance that shall be given to

the parameters 𝑣𝑛, that represent:

• 𝑣𝑑 : Pass duration

• 𝑣𝑒 : Max. elevation as seen by the receiver

• 𝑣𝜌 : Reciprocal of the min. distance from the

receiving station

• 𝑣𝐿 : Reciprocal of the min. radar signal loss

• 𝑣𝑚 : Reciprocal of the min. optical magnitude

2.3.3. Genetic algorithm

The schedule can be obtained as a solution of an

optimization problem (maximize 𝒔 ⋅ 𝒇) subject to a

constraint (𝐬𝐓𝐌 𝐬 = 0).

The Boolean representation that has been introduced

is particularly suitable for binary genetic algorithms.

SΞNSIT features a genetic strategy based upon the

DEAP library [9]. Specifically, it starts by creating

popsize schedules, instantiated as follows:

1. Start from an empty schedule.

2. Add all the passes that do not have conflicts (e.g.,

passes on survey sensors).

3. Add other passes one at a time, while checking

that no conflicts occur.

4. Stop when no other pass can be added without

introducing conflicts in the schedule.

Afterwards, for a given number of times (called

generations), the following steps are executed:

1. Selection: select the best schedule among 3

randomly chosen schedules, popsize times (to

keep the size of the population unaltered).

2. Cross-over: randomly choose two schedules and

swap a segment of them, leading to the addition

and removal of passes; the other conflicting

passes are removed.

3. Mutation: randomly add or remove passes to

observe in the schedules; when a pass is added,

any conflicting passes are removed.

4. Refill: randomly add non-conflicting passes to a

schedule, until possible (similarly to steps 3 and 4

of the procedure that creates the original

schedules).

Since all the steps are guaranteed to generate conflict-

free schedules, it is not necessary to introduce other

means of enforcing the constraint 𝐬𝐓𝐌 𝐬 = 0 (such as

penalties in the fitness).

The software allows to tune several parameters of the

optimization through the GUI (Fig. 13), such as:

• The weights associated to the fitness values.

• The size of the population.

0

1

2

3

Time

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 7 of 13

• The number of generations.

• The probabilities of the random processes (cross-

over, mutation, refill).

• The initial seed for the random number generator

(in order to achieve repeatable results).

The genetic scheduler tab shows the progress of the

algorithm in real-time: it reports statistics and plots about

the scores of the schedules that are being produced.

Fig. 13 SΞNSIT GUI: genetic scheduler tab.

Throughout the process, a list of the best 10 schedules,

the hall of fame, is kept in memory. The user may explore

the schedules, either as a list of passes (Fig. 14) or as a

timeline (Fig. 15). The latter shows the chosen parts of

passes (in red) and the not-chosen ones (in white). The

overall timeline of scheduled passes for each sensor is

represented in blue at the top of the graph.

It is also possible to export the obtained schedule in

CSV format, ready to be executed by sensors.

Fig. 14 SΞNSIT GUI: list of scheduled passes.

Fig. 15 SΞNSIT GUI: timeline showing scheduled

portions of passes (in red).

2.4. Catalogue build-up

The third module processes the scheduled passes in

order to build-up and maintain the network catalogue

(Fig. 16).

Fig. 16 SΞNSIT GUI: cataloguing tab.

It is necessary to select one of the schedules produced

previously, that will be used for the cataloguing

simulation. The user can decide to consider a subset of

sensors: in this way, it is possible to conveniently execute

different simulations and compare the results.

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 8 of 13

Fig. 17 Schematic representation of the catalogue build-

up and update process.

The catalogue build-up process (Fig. 17) features a

basic scheduler that checks again the rules already

enforced by the genetic scheduler. It is therefore possible

to execute this process not only from a conflict-free

schedule, but also from the overall list of observable

passes. This can be used to simulate a network that

instead of scheduling the observations in advance,

decides what pass to observe one by one.

This basic scheduler checks an additional rule:

sensors in tracking mode can observe only the passes of

objects already in the catalogue and with a covariance

compatible with the user defined thresholds. This is

enforced to simulate the fact that, in order to correctly

point towards the object, it must be previously known

with a certain accuracy.

Fig. 18 Schematic representation of the IOD and ROD

processes, blue line = mean state, red line = uncertainty.

At the beginning of the simulation, the network

catalogue contains only the objects for which the user

provided an initial state covariance.

When a non-catalogued object is observable by a

sensor in survey mode, Initial Orbit Determination (IOD)

is performed (Fig. 18). Provided that the diagonal

components of the state covariance in the QSW reference

frame are below a user-defined threshold, the object will

join the network catalogue.

The condition on the covariance is checked

throughout the simulation since position and velocity

uncertainties enlarge over time.

When a catalogued object is observable, the basic

scheduler decides whether the pass is actually observed.

If this is the case, Refined Orbit Determination is

executed, that updates the covariance matrix of the object.

In order to simplify the process, the mean state of the

object obtained by the orbit determination process is not

recorded: instead, it is always evaluated by SGP4

propagation of the elements provided by the user, adding

noise when necessary.

Concerning the OD sub-module two different

pipelines have been proposed: the Estimated covariance

OD and the Non-Linear Least Squares OD. The former

ensures a reduced computational cost by estimating only

the expected outcome of an OD process in terms of

covariance. The latter instead performs the whole orbit

determination process using the Non-Linear Least

Squares optimization algorithm.

2.4.1. Catalogue build-up and maintenance process

Before moving on, it is worthwhile to explain how the

covariance is assessed to be valid or not.

Firstly, the rotation matrix 𝐑𝐄𝟐𝐐 from the Earth-

Centered Inertial (ECI) reference frame to the QSW

frame [7] is computed. The QSW frame is composed of

the unit vectors defined as:

• 𝑞⃗ : collinear to the geocentric satellite position

(from the planet center to the spacecraft)

• 𝑤⃗⃗⃗ : collinear to the orbital kinetic momentum

(normal to the orbital plane)

• 𝑠 : equal to 𝑤⃗⃗⃗ ∧ 𝑞⃗

The covariance matrix 𝐂𝐐 in QSW frame is obtained

from the one in ECI frame 𝐂𝐄 as in Eq. 8.

𝐂𝐐 = 𝐑𝐄𝟐𝐐 𝐂𝐄 𝐑𝐄𝟐𝐐 𝐓 (8)

The object enters or remains in the network catalogue

if the first three diagonal components of 𝐂𝐐 are lower

than a specified threshold, that must be defined by the

user and may be different according to the altitude of the

object.

Next, if the object has already a valid covariance

𝐂𝐄,𝐭𝐢−𝟏
 at the previous 𝒕𝒊−𝟏 ROD or IOD instant, it is

propagated up to the initial observation epoch and 𝐂𝐄,𝐭𝐢
 is

obtained, as shown in Eq. 9.

𝐂𝐄,𝐭𝐢
= 𝐉𝐤𝐞𝐩 𝐂𝐄,𝐭𝐢−𝟏

 𝐉𝐤𝐞𝐩
𝐓 (9)

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 9 of 13

𝐉𝐤𝐞𝐩 is the Jacobian matrix referred to the Keplerian

propagation from 𝒕𝒊−𝟏 to 𝒕𝒊 . If 𝐂𝐄,𝐭𝐢
 is still within the

thresholds, ROD will be performed.

For this stage, as stated in Sec. 2.4, two approaches

have been implemented.

The first one is the Estimated Covariance OD, that

requires:

• 𝐂𝐄,𝐭𝐢
: the known state covariance matrix,

• 𝐂𝐦: the covariance matrix of the measurements

(sensor dependent),

• 𝐉𝐦/𝐬 : the Jacobian matrix of the measurements

with respect to the propagated states of the object,

• 𝐉𝐬/𝐬𝟎
: the Jacobian matrix of the propagated states

with respect to the initial state, approximated as

the state transition matrix of a Keplerian

propagation.

 The updated covariance 𝐂𝐄,𝐭𝐢,𝐧𝐞𝐰
 is computed as reported

in Eq. 10.

𝐂𝐄,𝐭𝐢,𝐧𝐞𝐰
= (𝐉𝐦/𝐬𝟎

𝐓 𝐂𝐦
−𝟏 𝐉𝐦/𝐬𝟎

+ 𝐂𝐄,𝐭𝐢

−𝟏)
−𝟏

 (10)

The Jacobian matrix of the measurements with

respect to the initial state 𝐉𝐦/𝐬𝟎
 is computed as in Eq. 11.

𝐉𝐦/𝐬𝟎
= 𝐉𝐦/𝐬 𝐉𝐬/𝐬𝟎

 (11)

The other OD formulation relies on a Non-Linear

Least Squares optimization [10]; the algorithm has been

designed as follows:

• Synthetic measures 𝐦𝐫𝐞𝐟 are generated with a

fixed time step within the observation window,

and Gaussian noise is added according to the

sensor accuracy.

• The initial state guess 𝐬𝟎 is computed by SPG4

propagation of the elements of the object and by

the addition of Gaussian noise, according to the

state covariance 𝐂𝐄,𝐭𝐢
.

• An iterative procedure propagates the initial state

𝐬𝟎 with Keplerian dynamics up to the time

instants of the measurements, and projects it to the

measurement space 𝐦𝐋𝐒 . A design matrix 𝐃 is

built using the Jacobian matrix of the

measurements with respect to the initial state

𝐉𝐦/𝐬𝟎
 and weights 𝐖 (defined from the sensor

accuracy) (Eq. 12). The initial state with its

covariance is considered as a priori information.

𝐃 = 𝐖 𝐉𝐦/𝐬𝟎
 (12)

The cost function is the measures residual 𝐫 (Eq. 13).

𝐫 = 𝐦𝐫𝐞𝐟 − 𝐦𝐋𝐒 (13)

The vector 𝐫 and the matrix 𝐃 are intended to solve

the normal equation, that outputs 𝐂𝐄,𝐭𝐢,𝐧𝐞𝐰
 and the 𝐬𝟎

correction factor.

 The routines stops if a maximum number of

iterations or convergence is reached.

If the object is out of catalogue and passes over a

survey ground station, IOD will be conducted in similar

manner as illustrated for ROD.

The differences are:

• For the Estimated Covariance OD, the updated

covariance is determined as in Eq. 14.

𝐂𝐄,𝐭𝐢,𝐧𝐞𝐰
= (𝐉𝐦/𝐬𝟎

𝐓 𝐂𝐦
−𝟏 𝐉𝐦/𝐬𝟎

)
−𝟏

 (14)

• For the Non-Linear Least Squares algorithm, no a

priori information is considered.

After ROD or IOD, the updated covariances and the

corresponding epochs are saved in the program database.

3. Results

The results from the previous steps are stored in the

application database file. These are employed to illustrate

data as different interactive graphs, designed to maximize

the user awareness of the network performance. Since it

is encoded in the well-documented SQLite format, the

user is free to analyze its content using other software.

3.1. Sensor network performance analysis

The representations are both sensor-oriented and

population-oriented, to have an organic view of the

results of the simulation. The available visualizations are

described hereafter.

3.1.1. Pass list

The first view that is shown to the user is a list of the

observed passes, with the ID of the object, the epoch, the

sensor name, the orbit determination type and the

resulting covariance. This allows to analyze in detail the

observations performed by each sensor.

3.1.2. Redundancy matrix

The redundancy matrix (Fig. 19) is a table that shows

the ratio of objects visible from a given sensor (the one

on the row) that can also be seen by another (the one on

the column). This can help in determining the

redundancy of the sensors.

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 10 of 13

Fig. 19 Redundancy matrix.

3.1.3. Catalogue population plot

An example of population-focused plot is displayed

in Fig. 20. It shows a Cartesian plane, having two orbital

parameters as axes. X and Y can be modified by the user

and the distribution changes accordingly, allowing to

understand the orbital regime they belong to. The color

of each point varies according to the number of times it

was observable by the sensors.

It is possible to select only a subset of sensors, and the

color intensity of the points changes accordingly: this lets

the user understand the importance of each sensor in the

observations.

Fig. 20 Catalogue population plot.

3.1.4. Catalogue evolution

A further point of view about the interaction between

the simulated population and the network is the catalogue

evolution representation (Fig. 21), in terms of percentage

of objects belonging to the reference population.

The entries are determined by a successful initial orbit

determination, while the exits by the covariance

exceeding the thresholds.

The plot portrays two different population trends: the

blue one refers to the total amount of objects belonging

to the catalogue, while the orange one depicts the

evolution of a subset of objects located in a specific

orbital regime selected by the user.

Fig. 21 Evolution of catalogued population over time.

3.1.5. Covariance evolution

Knowing the covariance evolution in time of a

specific target is crucial to understand if it is inside or

outside the sensor network catalogue within a simulation.

In Fig. 22 a Cartesian plot describes the trend of a

catalogued object covariance over time, using the square

root of its trace as metric. The orange dots represent the

IODs, while the green ones the RODs.

The user can also choose to see separately the first

three diagonal components of the covariance matrix in

the QSW reference frame.

Fig. 22 Covariance trend over time.

3.1.6. Coverage pie chart

A clear view of the contributions of a subset of

sensors to the entire network performance can be pictured

as a pie chart (Fig. 23): each slice represents the

percentage of simulated objects seen only by the

corresponding sensor or combination of sensors (without

any intersection among them, due to the rule used to

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 11 of 13

determine the contributions). The user can select up to

three sensors at the same time.

Fig. 23 Pie chart plot.

3.1.7. FOV projection

In order to have an organic view of the network

coverage over areas of interest, the plot in Fig. 24

provides a geographical projection of the FOV of survey

sensors at different altitudes. The representation depends

on the sensor position, the FOV size and shape

(rectangular or elliptical), the sensor pointing and the

intersection altitude. Coverage areas are colored

according to their type (optical or radar) and their size

changes according to the intersection altitude, that can be

modified by the user in real-time. This plot can also be

useful to understand overlaps between the FOVs of

survey sensors.

Fig. 24 Coverage areas.

3.1.8. Maximum re-observation time

It is important to have a sense of what is the maximum

re-observation time (i.e., the time elapsing between two

consecutive observable passes) for all the objects passing

over a ground station. This is instrumental to figure out

how a sensor can contribute to the catalogue maintenance,

since the lower the re-observation times the more the

network can keep up to date the covariance estimates in

the catalogue.

The graph in Fig. 25 illustrates the cumulative

distribution of the maximum re-observation times of all

the objects transiting over a user defined sensor or over

the entire sensor network.

On top of that, a vertical line set at 24 hours splits the

distribution in two parts, to highlight the percentage of

objects which can always be seen within one day or less.

Fig. 25 Maximum re-observation times.

3.1.9. Coverage histogram

The coverage histogram (Fig. 26) permits to evaluate

the coverage of specific sensors with respect to different

orbital parameters. The user can choose an orbital

parameter (for the horizontal axis) and up to three sensors

to compare their coverage. Each sensor is described as a

bar distribution, whose height represent the percentage of

observable objects within that range of the selected

orbital parameter.

Fig. 26 Coverage histogram.

3.2. Computational time

The goal of SΞNSIT is not merely to provide an

accurate sensor network modeling, but also to output the

expected results in a reasonable time frame.

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 12 of 13

The analysis of the computational time has been

conducted on a PC featuring a 3700x AMD processor,

with 8 physical and 16 logical cores, and 16 GB of RAM.

Several sensor network simulations have been

performed by setting the following parameters:

• Number of input objects: 10, 100, 1000.

• Number of involved sensors: 1, 5, 10

• Simulation time frame: 3 days

Table 1 and Fig. 27 outline the time required for the

computation of observable passes (Sec. 2.2).

Time clearly scales up when increasing the number of

objects, while it is less affected by the amount of sensors

thanks to the implemented optimizations (mainly, the

cache of object states).

Table 1 Time required by pass computation, in seconds.

 1 sensor 5 sensors 10 sensors

10 obj. 3 4 4

100 obj. 21 23 25

1000 obj. 204 223 244

Fig. 27 Time required by computation of observable

passes.

Table 2 and Fig. 28 report the time needed to perform

catalog build-up and maintenance using Estimated

Covariance OD, starting from the whole list of passes

(not from a conflict-free schedule). These times are

influenced by both objects and sensors.

Table 2 Time required by catalogue build-up using

estimated OD, in seconds.

 1 sensor 5 sensors 10 sensors

10 obj. 1 1 1

100 obj. 3 3 3

1000 obj. 19 30 83

Fig. 28 Time required by catalogue build-up using

Estimated OD.

Table 3 and Fig. 29, instead, report the time needed

to perform catalog build-up and maintenance if Non-

Linear Least Squares OD is used, starting from the whole

list of passes also in this case.

The reported times are approximately double with

respect to the ones required by Estimated Covariance OD.

Table 3 Time required by catalogue build-up using NLS

OD, in seconds.

 1 sensor 5 sensors 10 sensors

10 obj. 1 1 1

100 obj. 4 6 12

1000 obj. 40 63 191

Fig. 29 Time required by catalogue build-up using NLS

OD.

The genetic scheduler has proven to produce good

schedules in few minutes, yet the precise execution time

is not reported here since it is affected by many

parameters (e.g., number of passes, population size,

mutation and cross-over probabilities).

In the considered conditions, the overall time required

by SΞNSIT to compute passes, generate a schedule and

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright 2021 by Mr. Giovanni Purpura. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-21,A6,7,9,x63767 Page 13 of 13

simulate cataloguing is in the order of minutes, therefore

it appears suitable for fast simulations.

4. Conclusions and future work

SΞNSIT, the program developed in this work,

answers the need of having a software tool that allows to

model SST sensor networks and evaluate their

performance, in terms of coverage and capability of

building and maintaining a catalogue of space objects. It

also features an optimal scheduler, that may be used to

schedule the observations of existing sensors.

Moreover, SΞNSIT allows to perform these tasks in a

user-friendly way, thanks to its Graphical User Interface,

the capability of running through different operative

systems and the speed of execution.

Yet, several improvements can still be implemented

in SΞNSIT. The recent introduction of the genetic

optimization algorithm requires for further research, in

order to determine the most suitable parameters (e.g.,

weights, genetic strategy). Afterwards, the developers are

considering introducing a batch process for the automatic

generation of new sensors according to given criteria

(e.g., different locations for a sensor within a given area,

or different type of sensors in a fixed position).

An improved simulation of observations is also being

studied, with the ability to consider customizable radar

beam patterns, tracking errors due to the inaccuracy of

the ephemerides, random events that could prevent

observability (e.g., adverse weather conditions,

maintenance downtime).

Acknowledgements

The results of this project have been supported by the

agreement of the Italian Space Agency and the National

Institute for Astrophysics on Space Debris (Detriti

Spaziali – Supporto alle attività IADC e SST 2019-2021,

n. 2020-6-HH.0).

References

[1] "Space debris - evolution in pictures," [Online].

Available:

https://www.esa.int/About_Us/ESOC/Space_debri

s_-_evolution_in_pictures.

[2] ESA, "Debris object evolution," [Online].

Available:

https://www.esa.int/ESA_Multimedia/Images/201

7/04/Debris_object_evolution.

[3] V. Morand, C. Yanez and J. C. Dolado Perez,

"BAS3E: A framework to Conceive, Design, and

Validate Present and Future SST Architectures," in

First International Orbital Debris Conference,

2019.

[4] N. O. Gómez, I. A. Gómez and S. A. Vildarraz,

"Architectural description of the Spanish Space

Surveillance and Tracking System," 2017.

[5] G. Purpura, A. De Vittori, R. Cipollone, M.

Massari, C. Colombo, P. Di Lizia, S. Cicalò, F.

Guerra, A. Bertolucci, A. Di Cecco and L. Salotti,

"Development of a Software Suite for Performance

Assessment of SST Sensor Networks," in 8th

European Conference on Space Debris, 2021.

[6] C. Acton, "Ancillary Data Services of NASA's

Navigation and Ancillary Information Facility,"

Planetary and Space Science, vol. 44, no. 1, pp. 65-

70, 1996.

[7] CCSDS Secretariat, National Aeronautics and

Space Administration, Navigation Data -

Definitions and Conventions, Washington, DC,

2019.

[8] D. W. E. Green, "Magnitude corrections for

athmospheric extinction," July 1992. [Online].

Available:

http://www.icq.eps.harvard.edu/ICQExtinct.html.

[9] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner,

M. Parizeau and C. Gagné, "DEAP: Evolutionary

Algorithms Made Easy," Journal of Machine

Learning Research, vol. 13, pp. 2171-2175, jul

2012.

[10] A. Milani and G. F. Gronchi, Theory of Orbit

Determination, Cambridge University Press, 2010.

