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Abstract 

The ability to simulate the behavior of different sensor configurations is critical for the development of a sensor 

network that provides data for Space Surveillance and Tracking (SST) services. Any software suite devoted to this 

shall be able to assess the performance of existing networks in terms of effectiveness and robustness, as well as to 

estimate the effects of structural changes, such as the addition or the upgrade of sensors. This paper is devoted to 

describing how SΞNSIT tackles the above problem. SΞNSIT (Space Surveillance Sensor Network SImulation Tool) 

is a software suite designed to perform an analysis of the observational and cataloging capabilities of a sensor network. 

The software can model optical, radar and laser ranging sensors and simulate different operational scenarios. The user 

shall define the sensors composing the network and a population of space objects. Typical sensor properties that can 

be set include type, mode (survey/tracking), location, accuracy, pointing constraints, detectability limits and operating 

hours. Inputs are processed to predict transits that can be observed by each sensor. This allows to assess the network 

capabilities in terms of catalog coverage: the sensors are compared against each other to identify overlapping in the 

sets of observable objects and estimate the level of complementarity or redundancy. Afterwards, the tool can simulate 

the operations of the network. First, an observation schedule is compiled, using a genetic optimization algorithm based 

on tunable criteria. This removes overlaps caused by objects passing simultaneously in the field of regard. Then, the 

software simulates and processes the measurements gathered during passes, carrying out orbit determination, aiming 

at assessing the network capability in terms of catalog build-up and maintenance. The results are illustrated in tables 

and graphs with different levels of detail, starting from a general performance overview up to the list of the passes. 

The user can also browse the object catalog of the network and analyze its evolution. Moreover, the tool allows to 

export intermediate data, such as the observable passes, the optimized schedule, and the pointing requirements. The 

modularity of the software grants easy modification of the properties of the network, to carry out a sensitivity analysis 

to different parameters. This is expected to ease the setup process of sensor networks for SST, as well as the 

identification of the most promising upgrades to be recommended. The paper presents in detail the software 

architecture and its functionalities, and shows the results provided in typical use cases. 

 

Keywords: Sensor networks; Space object cataloguing; Space Surveillance and Tracking; Space Situational 

Awareness; Genetic algorithm 
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1. Introduction 

 

The space environment has become a valuable asset 

for communication, navigation and observation purposes 

over the past years. Since 1957, more than 4900 space 

launches have led to an orbital population of more than 

23000 trackable objects with sizes larger than 10 cm [1]. 

About a thousand of these are operational satellites, 

while the remaining 94% are space debris – objects that 

no longer serve any useful purpose. About 64% of the 

routinely tracked objects are fragments from some 250 

breakups, mainly explosions and collisions of satellites 

or rocket bodies. In addition, about 670000 objects larger 

than 1 cm and 170 million objects larger than 1 mm are 
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expected to be in orbit. A schematic representation of the 

entire space debris population is given in Fig. 1. 

  
Fig. 1 Timeline of the number of space debris in orbit 

(plot available on the ESA website [2]). 

 

Due to the increasing number of satellites, potential 

collisions with other objects and uncontrolled debris 

reentry that may endanger populated areas are of major 

concern. To mitigate these risks, surveying and tracking 

such objects is becoming of primary importance, as well 

as providing this information to a variety of stakeholders. 

The amount of catalogued objects in orbit scales with the 

quality of the available space surveillance systems. 

Hence, simulating a sensor network can have a 

significant impact when dealing with catalogue build-up 

and maintenance. 

At European level, two examples of available sensor 

network simulation tools are the BAS3E (Banc d'Analyse 

et de Simulation d'un Systeme de Surveillance de 

l'Espace - Simulation and Analysis Bench for Space 

Surveillance System) and the S3TOC (Spanish Space 

Surveillance and Tracking Operations Center). 

BAS3E is a complete SST simulation framework 

developed by CNES [3], with the goal to evolve the 

existing SST network, both from a software and 

hardware point of view, and to define major evolutions 

of existing SST networks. It implements the capability to 

simulate ground and space-based sensors via the 

integration of the following functions: 

• Detection, tracking and generation of 

observations of space objects 

• Object identification and tracking correlation 

• Orbit determination 

• Maintenance of a space debris catalogue 

• Centralized / de-centralized tasking and 

scheduling 

The S3TOC is located in the Torrejón de Ardoz 

Military Air Base [4], 30 km away from Madrid (Spain). 

The center is devoted to the generation of SST end-user 

products, for which a catalogue of objects is maintained, 

and orbital information from SST observations obtained 

by the S3TSN (Spanish Space Surveillance and Tracking 

Sensor Network) is computed. The S3TOC consists of 

the following elements: 

• Data Processing and Cataloguing 

• Service Processing 

• Sensor Planning and Tasking  

• Fragmentation messages 

• Service Provision 

The Italian SΞNSIT software provides functionality 

similar to those of its European counterparts. SΞNSIT is 

a tool for modeling sensor networks and evaluating their 

performance in terms of coverage and capability of 

building and maintaining a catalogue of space objects. 

Moreover, it allows the user to perform sensitivity 

analysis of the performance of the sensor network by 

varying the network configuration. 

 

2. SΞNSIT 

 
 

Fig. 2 SΞNSIT logo. 

 

The Space Surveillance Sensor Network Simulation 

Tool (SΞNSIT) is a software tool conceived by 

Politecnico di Milano in collaboration with the Italian 

Space Agency and with contributions from the SpaceDyS 

company. The first version of this software had already 

been presented previously [5]; this work introduces the 

most recent features and reviews the main characteristics 

that were already present. 

SΞNSIT is written in Python 3 and C++ and runs on 

the major operating systems (Windows, MacOS, Linux). 

It relies on the NASA/NAIF SPICE library [6] for 

astronomical computations. It can be used either from the 

command line or by means of a Graphical User Interface 

(GUI) based on the Qt library. 

The software makes use of YAML files for the 

configuration and an SQLite database file for internal 

data storage. 

Given a list of space objects, a sensor network and a 

time frame, SΞNSIT performs the following tasks: 

• computation of the observable transits of space 

objects over the selected ground stations 

• creation of optimal schedules of observations, 

according to user-defined criteria 

• simulation of the observations and the 

corresponding measurements 

• orbit determination using the simulated 

measurements and the provided sensor accuracies 

• catalogue build-up and maintenance according to 

the outcomes of the orbit determinations 
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Fig. 3 SΞNSIT architecture. 

 

These tasks are performed by the five modules into 

which SΞNSIT is subdivided (Fig. 3): 

• Data initialization: gathers and pre-processes the 

inputs provided by the user and updates the SPICE 

kernels (files containing planetary ephemerides 

and leap second information). 

• Pass computation: evaluates the observable 

passes of the objects belonging to the reference 

population, accounting for various observability 

constrains. 

• Scheduling of observations: selects a subset of 

the previously computed passes (or parts of them) 

to produce optimal schedules of observations by 

means of a genetic algorithm. 

• Catalogue build-up: starting from a schedule, 

simulates the measurements and carries out orbit 

determination, in order to build-up and maintain 

the network catalogue as the simulation proceeds. 

• Performance analysis: allows to analyze the data 

created by the previous modules, by means of 

tables and charts, providing an overview of the 

performance of the sensor network. 

 

2.1. Data initialization 

 

The data initialization module allows to manage the 

configuration of the software, to define the sensor 

network and to load the reference population of objects 

to be observed. 

 

2.1.1. Configuration 

 

In the configuration tab of the GUI (Fig. 4) the user 

can define the following properties: 

• generic parameters to tune the processes, 

• accuracy thresholds, that will be used to determine 

if an object is considered catalogued according to 

the covariance of its position, 

• time windows for the simulation, 

• Space-Track credentials for automatic download 

of TLEs (optional). 

 

The GUI saves these parameters in specific files in 

YAML format. If desired, the user can directly edit these 

files. 

 

 
Fig. 4 SΞNSIT GUI: configuration tab. 

 

2.1.2. Sensors 

 

The user shall configure the sensor network either 

through the GUI (Fig. 5) or by means of a YAML file 

formatted according to the instructions reported in the 

software manual. 

 

 
Fig. 5 SΞNSIT GUI: sensors tab – general. 

 

The parameters to be entered for each sensor are: 

• Name 

• Type (optical, radar mono/bistatic) 

• Mode (tracking, survey) 

• Working hours (optional) 

• Measurement sample interval 

• Measurement accuracies 
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Fig. 6 SΞNSIT GUI: sensors tab – receiver. 

 

For the receiving station (Fig. 6) it is necessary to enter: 

• Geographical coordinates 

• Pointing and Field of View (for survey sensors) 

• Slew speed (for tracking sensors) 

• Geometrical constraints (e.g., Field of Regard) 

• Optical and radar signal limits 

 

If the sensor is a bistatic radar, the user shall also 

provide the information about the transmitting station. In 

this case, the fields are the same as those for the receiver, 

except for the optical and radar signal limits that are not 

present. 

 

2.1.3. Reference population 

 

 
Fig. 7 SΞNSIT GUI: population tab. 

 

The reference population of space objects can be 

loaded through the GUI (Fig. 7) or with a command line 

script, using the following formats: 

• Two-Line Elements in a text file, 

• Cartesian states in CSV format, 

• List of Satellite Catalog Numbers (NORAD IDs), 

for which TLEs will be automatically downloaded 

from Space-Track.org, 

• ESA MASTER population file (*.pop), 

• SGP4 elements (in CSV or JSON format). 

The inputs are automatically converted to SGP4 

elements when necessary and are saved in the internal 

SQLite database. 

The user can also associate an initial state covariance 

for the objects expressed in one of the typically used 

reference frames [7]. 

Furthermore, it is possible to load the Radar Cross 

Section and the intrinsic brightness of the objects: these 

are used to compute the radar signal loss and the optical 

magnitude, respectively. 

The signal loss is computed according to Eq. 1. 

 

𝐿𝑑𝐵 = 20 log10(𝜌𝑅𝑋 ⋅ 𝜌𝑇𝑋)  − 10 log10 𝜎
+  30 log10(4𝜋) − log10 𝑐 (1) 

where 𝜌𝑅𝑋 and 𝜌𝑇𝑋 are, respectively, the distance of 

the target from the receiver and the transmitter in meters, 

𝜎 the RCS in squared meters and 𝑐 the speed of light in 

meters per second. Considering the link budget equation, 

the value of signal loss limit to use can be determined 

from the characteristics of the sensor, as in Eq. 2. 

 

𝑚𝑎𝑥.  𝐿𝑑𝐵 =  10 log10(𝑚𝑖𝑛. 𝑃𝑅𝑋)
− 10 log10 𝑃𝑇𝑋

+  10 log10 𝐺𝑅𝑋

+ 10 log10 𝐺𝑇𝑋 − 10 log10 𝑓 

(2) 

with 𝑚𝑖𝑛. 𝑃𝑅𝑋  minimum detectable received power 

in watt, 𝑃𝑇𝑋 transmitted power in watt, 𝐺𝑅𝑋  and 𝐺𝑇𝑋 

receiver and transmitter gains, 𝑓  carrier frequency in 

hertz. 

Optical magnitude is computed according to Eq. 3. 

 

𝑚 = 𝑏 −  2.5 log10((π − ϕ) cos (ϕ)  
+  sin (ϕ)) + 5 log10 ρ
− 15 − 𝑒 

(3) 

with 𝑏 intrinsic brightness, ϕ phase angle in radians, 

ρ  distance from the target in km and 𝑒  atmospheric 

extinction, computed with Eq. 4 [8]. 

 

𝑒 =
0.1451e−ℎ/7.996 + 0.120e−ℎ/1.5 + 0.016

sin(𝑒𝑙) + 0.025e−11 sin(𝑒𝑙)
 (4) 

with ℎ  altitude of the ground station in km and 𝑒𝑙 
elevation angle in radians. 

 

2.2. Pass computation 

This process computes the observable passes of the 

objects belonging to the reference population, 

considering the observability conditions set by the user. 

The computed passes are shown in the GUI (Fig. 8). 
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Fig. 8 SΞNSIT GUI: passes tab. 

 

The computation is based on a bisection algorithm 

and takes advantage from several optimizations: 

• The states of the stations and of the objects are 

cached when possible 

• The core of the algorithm is written in C++ 

• The code runs in parallel on separate processes 

The algorithm, schematized in Fig. 9, starts from the 

time window chosen by the user and splits it into 

segments. At each splitting point, it evaluates the 

observability condition, giving a preliminary estimation 

of the passes. At the end, it applies bisection to find the 

precise start and stop epochs of the passes. 

  

 
Fig. 9 SΞNSIT algorithm for passes computation. 

 

2.3. Scheduling of observations 

 

Several objects may be observable by each sensor at 

the same time. For this reason, it is necessary to schedule 

the observations for the sensors that are in tracking mode. 

The section of SΞNSIT that addresses this problem is 

shown in Fig. 10.  

 

 
Fig. 10 SΞNSIT GUI: schedules tab. 

 

2.3.1. Scheduling rules 

 

The scheduling rules that have been implemented in 

SΞNSIT are: 

• For survey sensors, all observable passes can be 

observed. 

• For tracking sensors, a pass can be observed when: 

o the sensor is not currently busy in the 

observation of another object, 

o the sensor has the time to perform the slew 

maneuver from a pass to the next, 

o a given time has passed since the last 

observation of this object. 

When two passes cannot be present in a schedule at 

the same time without violating the scheduling rules, they 

are in conflict. Given an ordered list of n observable 

passes 𝒑, the conflicts may be summarized as a (n, n) 

Boolean matrix 𝐌: if the ith pass conflicts with the jth, the 

matrix will contain true both in cell (i, j) and in cell (j, i). 

Conversely for passes that are not in conflict the 

corresponding cells will be set to false. The conflict 

matrix has the following properties: 

• It is symmetric by definition, 

• Its diagonal values are all false, since a pass never 

conflicts with itself, 

• It is in general sparse (i.e., most of its values are 

false) and can therefore be stored in memory-

efficient representations. 

Even the schedule can be represented using a Boolean 

vector 𝒔 associated to the ordered list of passes. If the ith 

pass is to be observed, the ith item of the vector will be 

true, otherwise it will be false. 

Fig. 11 shows an example of passes that overlap: if 

we consider for simplicity only the constraint that a 

sensor can observe only one object at a time, pass #1 

conflicts with pass #0 and pass #2, while pass #3 has no 

conflicts. This will be encoded in the matrix 𝐌 reported 

in Fig. 12, where true is reported in the positions (0, 1) 
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and (1, 0). A possible schedule 𝐬 without conflicts can be 

composed of pass #0, #1 and #3, as in Fig. 12. 

 

 
Fig. 11 Example of a timeline of passes with overlaps. 

 

M = 

 0 1 2 3 

s = 

 

0 F T F F T 

1 T F T F F 

2 F T F F T 

3 F F F F T 

 

Fig. 12 Boolean representation of a conflict matrix (M) 

and a schedule (s). 

 

This representation allows to easily compute the 

number of conflicts 𝑐 present in a schedule using Eq. 5, 

where Boolean values true and false are implicitly 

converted to the integers 1 and 0. 

𝑐 =
𝐬𝐓𝐌 𝐬

2
 (5) 

This is possible because the product 𝐌 𝐬  returns a 

vector where the ith value is the number of other chosen 

passes in conflict with this pass. The next pre-

multiplication by 𝐬𝐓  will sum only the values 

corresponding to chosen passes. The division by 2 is 

necessary to count each conflict only once. 

In the situation depicted in Fig. 12, Eq. 5 returns 0 as 

expected. If instead all the passes had been scheduled, the 

formula would have returned 2, because of the two 

conflicts caused by pass #0 with pass #1 and #2. 

 

2.3.2. Fitness value 

 

The set of all possible schedules is composed of 2𝑛 

elements, of which only the ones that fulfil the condition 

𝑐 = 0 are feasible. In order to programmatically prefer 

one schedule over the others, it is necessary to assign a 

fitness value to each of them. 

First, a score 𝑓𝑖  is computed for each observable pass 

(Eq. 6), then the overall fitness 𝐹  of the schedule is 

computed by summation of the scores of the scheduled 

passes (Eq. 7). 

 

𝑓𝑖 = 𝑣𝑑
𝑘𝑑 ∑ 𝑤𝑛𝑣𝑛

𝑛
, with n ∈ (𝑑, 𝑒, 𝜌, 𝐿, 𝑚) (6) 

𝐹 = 𝒔 ⋅ 𝒇 (7) 

 

The exponent 𝑘𝑑  and the weights 𝑤𝑛  are set by the 

user, according to the importance that shall be given to 

the parameters 𝑣𝑛, that represent: 

• 𝑣𝑑 : Pass duration  

• 𝑣𝑒 : Max. elevation as seen by the receiver 

• 𝑣𝜌 : Reciprocal of the min. distance from the 

receiving station 

• 𝑣𝐿 : Reciprocal of the min. radar signal loss 

• 𝑣𝑚 : Reciprocal of the min. optical magnitude 

 

2.3.3. Genetic algorithm 

 

The schedule can be obtained as a solution of an 

optimization problem (maximize 𝒔 ⋅ 𝒇 ) subject to a 

constraint (𝐬𝐓𝐌 𝐬 = 0). 

The Boolean representation that has been introduced 

is particularly suitable for binary genetic algorithms. 

SΞNSIT features a genetic strategy based upon the 

DEAP library [9]. Specifically, it starts by creating 

popsize schedules, instantiated as follows: 

1. Start from an empty schedule. 

2. Add all the passes that do not have conflicts (e.g., 

passes on survey sensors). 

3. Add other passes one at a time, while checking 

that no conflicts occur. 

4. Stop when no other pass can be added without 

introducing conflicts in the schedule. 

Afterwards, for a given number of times (called 

generations), the following steps are executed: 

1. Selection: select the best schedule among 3 

randomly chosen schedules, popsize times (to 

keep the size of the population unaltered). 

2. Cross-over: randomly choose two schedules and 

swap a segment of them, leading to the addition 

and removal of passes; the other conflicting 

passes are removed. 

3. Mutation: randomly add or remove passes to 

observe in the schedules; when a pass is added, 

any conflicting passes are removed. 

4. Refill: randomly add non-conflicting passes to a 

schedule, until possible (similarly to steps 3 and 4 

of the procedure that creates the original 

schedules). 

Since all the steps are guaranteed to generate conflict-

free schedules, it is not necessary to introduce other 

means of enforcing the constraint 𝐬𝐓𝐌 𝐬 = 0  (such as 

penalties in the fitness). 

The software allows to tune several parameters of the 

optimization through the GUI (Fig. 13), such as: 

• The weights associated to the fitness values. 

• The size of the population. 

0 

1 

2 

3 

Time 
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• The number of generations. 

• The probabilities of the random processes (cross-

over, mutation, refill). 

• The initial seed for the random number generator 

(in order to achieve repeatable results). 

The genetic scheduler tab shows the progress of the 

algorithm in real-time: it reports statistics and plots about 

the scores of the schedules that are being produced. 

 

 
Fig. 13 SΞNSIT GUI: genetic scheduler tab. 

 

Throughout the process, a list of the best 10 schedules, 

the hall of fame, is kept in memory. The user may explore 

the schedules, either as a list of passes (Fig. 14) or as a 

timeline (Fig. 15). The latter shows the chosen parts of 

passes (in red) and the not-chosen ones (in white). The 

overall timeline of scheduled passes for each sensor is 

represented in blue at the top of the graph. 

It is also possible to export the obtained schedule in 

CSV format, ready to be executed by sensors. 

 

 
Fig. 14 SΞNSIT GUI: list of scheduled passes. 

 

 
Fig. 15 SΞNSIT GUI: timeline showing scheduled 

portions of passes (in red). 

 

2.4. Catalogue build-up 

 

The third module processes the scheduled passes in 

order to build-up and maintain the network catalogue 

(Fig. 16). 

 

 
Fig. 16 SΞNSIT GUI: cataloguing tab. 

 

It is necessary to select one of the schedules produced 

previously, that will be used for the cataloguing 

simulation. The user can decide to consider a subset of 

sensors: in this way, it is possible to conveniently execute 

different simulations and compare the results. 
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Fig. 17 Schematic representation of the catalogue build-

up and update process. 

 

The catalogue build-up process (Fig. 17) features a 

basic scheduler that checks again the rules already 

enforced by the genetic scheduler. It is therefore possible 

to execute this process not only from a conflict-free 

schedule, but also from the overall list of observable 

passes. This can be used to simulate a network that 

instead of scheduling the observations in advance, 

decides what pass to observe one by one. 

This basic scheduler checks an additional rule: 

sensors in tracking mode can observe only the passes of 

objects already in the catalogue and with a covariance 

compatible with the user defined thresholds. This is 

enforced to simulate the fact that, in order to correctly 

point towards the object, it must be previously known 

with a certain accuracy.  

 

 
Fig. 18 Schematic representation of the IOD and ROD 

processes, blue line = mean state, red line = uncertainty. 

 

At the beginning of the simulation, the network 

catalogue contains only the objects for which the user 

provided an initial state covariance. 

When a non-catalogued object is observable by a 

sensor in survey mode, Initial Orbit Determination (IOD) 

is performed (Fig. 18). Provided that the diagonal 

components of the state covariance in the QSW reference 

frame are below a user-defined threshold, the object will 

join the network catalogue. 

The condition on the covariance is checked 

throughout the simulation since position and velocity 

uncertainties enlarge over time. 

When a catalogued object is observable, the basic 

scheduler decides whether the pass is actually observed. 

If this is the case, Refined Orbit Determination is 

executed, that updates the covariance matrix of the object. 

In order to simplify the process, the mean state of the 

object obtained by the orbit determination process is not 

recorded: instead, it is always evaluated by SGP4 

propagation of the elements provided by the user, adding 

noise when necessary. 

Concerning the OD sub-module two different 

pipelines have been proposed: the Estimated covariance 

OD and the Non-Linear Least Squares OD. The former 

ensures a reduced computational cost by estimating only 

the expected outcome of an OD process in terms of 

covariance. The latter instead performs the whole orbit 

determination process using the Non-Linear Least 

Squares optimization algorithm. 

 

2.4.1. Catalogue build-up and maintenance process  

 

Before moving on, it is worthwhile to explain how the 

covariance is assessed to be valid or not. 

Firstly, the rotation matrix 𝐑𝐄𝟐𝐐 from the Earth-

Centered Inertial (ECI) reference frame to the QSW 

frame [7] is computed. The QSW frame is composed of 

the unit vectors defined as: 

• 𝑞⃗ : collinear to the geocentric satellite position 

(from the planet center to the spacecraft) 

• 𝑤⃗⃗⃗ : collinear to the orbital kinetic momentum 

(normal to the orbital plane) 

• 𝑠 : equal to 𝑤⃗⃗⃗ ∧ 𝑞⃗ 

 

The covariance matrix 𝐂𝐐 in QSW frame is obtained 

from the one in ECI frame 𝐂𝐄 as in Eq. 8. 

 

𝐂𝐐  =  𝐑𝐄𝟐𝐐 𝐂𝐄 𝐑𝐄𝟐𝐐 𝐓 (8) 

 

The object enters or remains in the network catalogue 

if the first three diagonal components of 𝐂𝐐  are lower 

than a specified threshold, that must be defined by the 

user and may be different according to the altitude of the 

object. 

Next, if the object has already a valid covariance 

𝐂𝐄,𝐭𝐢−𝟏
 at the previous 𝒕𝒊−𝟏  ROD or IOD instant, it is 

propagated up to the initial observation epoch and 𝐂𝐄,𝐭𝐢
 is 

obtained, as shown in Eq. 9. 

 

𝐂𝐄,𝐭𝐢
= 𝐉𝐤𝐞𝐩 𝐂𝐄,𝐭𝐢−𝟏

 𝐉𝐤𝐞𝐩
𝐓 (9) 
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𝐉𝐤𝐞𝐩 is the Jacobian matrix referred to the Keplerian 

propagation from 𝒕𝒊−𝟏  to 𝒕𝒊 . If 𝐂𝐄,𝐭𝐢
 is still within the 

thresholds, ROD will be performed. 

For this stage, as stated in Sec. 2.4, two approaches 

have been implemented. 

The first one is the Estimated Covariance OD, that 

requires: 

• 𝐂𝐄,𝐭𝐢
: the known state covariance matrix, 

• 𝐂𝐦: the covariance matrix of the measurements 

(sensor dependent), 

• 𝐉𝐦/𝐬 : the Jacobian matrix of the measurements 

with respect to the propagated states of the object, 

• 𝐉𝐬/𝐬𝟎
: the Jacobian matrix of the propagated states 

with respect to the initial state, approximated as 

the state transition matrix of a Keplerian 

propagation.  

 The updated covariance 𝐂𝐄,𝐭𝐢,𝐧𝐞𝐰
 is computed as reported 

in Eq. 10. 

 

𝐂𝐄,𝐭𝐢,𝐧𝐞𝐰
= (𝐉𝐦/𝐬𝟎

𝐓 𝐂𝐦
−𝟏 𝐉𝐦/𝐬𝟎

+ 𝐂𝐄,𝐭𝐢

−𝟏)
−𝟏

 (10) 

 

The Jacobian matrix of the measurements with 

respect to the initial state 𝐉𝐦/𝐬𝟎
 is computed as in Eq. 11. 

 

𝐉𝐦/𝐬𝟎
= 𝐉𝐦/𝐬 𝐉𝐬/𝐬𝟎

 (11) 

 

The other OD formulation relies on a Non-Linear 

Least Squares optimization [10]; the algorithm has been 

designed as follows: 

• Synthetic measures 𝐦𝐫𝐞𝐟  are generated with a 

fixed time step within the observation window, 

and Gaussian noise is added according to the 

sensor accuracy. 

• The initial state guess 𝐬𝟎 is computed by SPG4 

propagation of the elements of the object and by 

the addition of Gaussian noise, according to the 

state covariance 𝐂𝐄,𝐭𝐢
. 

• An iterative procedure propagates the initial state 

𝐬𝟎  with Keplerian dynamics up to the time 

instants of the measurements, and projects it to the 

measurement space 𝐦𝐋𝐒 . A design matrix 𝐃  is 

built using the Jacobian matrix of the 

measurements with respect to the initial state 

𝐉𝐦/𝐬𝟎
 and weights 𝐖  (defined from the sensor 

accuracy) (Eq. 12). The initial state with its 

covariance is considered as a priori information. 

 

𝐃 = 𝐖 𝐉𝐦/𝐬𝟎
 (12) 

 

The cost function is the measures residual 𝐫 (Eq. 13). 

 

𝐫 = 𝐦𝐫𝐞𝐟 − 𝐦𝐋𝐒 (13) 

 

The vector 𝐫 and the matrix 𝐃 are intended to solve 

the normal equation, that outputs 𝐂𝐄,𝐭𝐢,𝐧𝐞𝐰
 and the 𝐬𝟎 

correction factor. 

   The routines stops if a maximum number of 

iterations or convergence is reached. 

If the object is out of catalogue and passes over a 

survey ground station, IOD will be conducted in similar 

manner as illustrated for ROD. 

The differences are: 

• For the Estimated Covariance OD, the updated 

covariance is determined as in Eq. 14. 

𝐂𝐄,𝐭𝐢,𝐧𝐞𝐰
= (𝐉𝐦/𝐬𝟎

𝐓 𝐂𝐦
−𝟏 𝐉𝐦/𝐬𝟎

)
−𝟏

 (14) 

• For the Non-Linear Least Squares algorithm, no a 

priori information is considered. 

After ROD or IOD, the updated covariances and the 

corresponding epochs are saved in the program database. 

 

3. Results 

 

The results from the previous steps are stored in the 

application database file. These are employed to illustrate 

data as different interactive graphs, designed to maximize 

the user awareness of the network performance. Since it 

is encoded in the well-documented SQLite format, the 

user is free to analyze its content using other software. 

 

3.1. Sensor network performance analysis 

 

The representations are both sensor-oriented and 

population-oriented, to have an organic view of the 

results of the simulation. The available visualizations are 

described hereafter. 

 

3.1.1. Pass list 

 

The first view that is shown to the user is a list of the 

observed passes, with the ID of the object, the epoch, the 

sensor name, the orbit determination type and the 

resulting covariance. This allows to analyze in detail the 

observations performed by each sensor. 

 

3.1.2. Redundancy matrix  

 

The redundancy matrix (Fig. 19) is a table that shows 

the ratio of objects visible from a given sensor (the one 

on the row) that can also be seen by another (the one on 

the column). This can help in determining the 

redundancy of the sensors. 
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Fig. 19 Redundancy matrix. 

 

3.1.3. Catalogue population plot 

 

An example of population-focused plot is displayed 

in Fig. 20. It shows a Cartesian plane, having two orbital 

parameters as axes. X and Y can be modified by the user 

and the distribution changes accordingly, allowing to 

understand the orbital regime they belong to. The color 

of each point varies according to the number of times it 

was observable by the sensors. 

It is possible to select only a subset of sensors, and the 

color intensity of the points changes accordingly: this lets 

the user understand the importance of each sensor in the 

observations. 

 

 
Fig. 20 Catalogue population plot. 

 

3.1.4. Catalogue evolution 

 

A further point of view about the interaction between 

the simulated population and the network is the catalogue 

evolution representation (Fig. 21), in terms of percentage 

of objects belonging to the reference population. 

The entries are determined by a successful initial orbit 

determination, while the exits by the covariance 

exceeding the thresholds. 

The plot portrays two different population trends: the 

blue one refers to the total amount of objects belonging 

to the catalogue, while the orange one depicts the 

evolution of a subset of objects located in a specific 

orbital regime selected by the user. 

 

 
Fig. 21 Evolution of catalogued population over time.  

 

3.1.5. Covariance evolution 

 

Knowing the covariance evolution in time of a 

specific target is crucial to understand if it is inside or 

outside the sensor network catalogue within a simulation. 

In Fig. 22 a Cartesian plot describes the trend of a 

catalogued object covariance over time, using the square 

root of its trace as metric. The orange dots represent the 

IODs, while the green ones the RODs. 

The user can also choose to see separately the first 

three diagonal components of the covariance matrix in 

the QSW reference frame. 

 

 
Fig. 22 Covariance trend over time. 

 

3.1.6. Coverage pie chart  

 

A clear view of the contributions of a subset of 

sensors to the entire network performance can be pictured 

as a pie chart (Fig. 23): each slice represents the 

percentage of simulated objects seen only by the 

corresponding sensor or combination of sensors (without 

any intersection among them, due to the rule used to 
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determine the contributions). The user can select up to 

three sensors at the same time. 

 

 
Fig. 23 Pie chart plot. 

 

3.1.7. FOV projection 

 

In order to have an organic view of the network 

coverage over areas of interest, the plot in Fig. 24 

provides a geographical projection of the FOV of survey 

sensors at different altitudes. The representation depends 

on the sensor position, the FOV size and shape 

(rectangular or elliptical), the sensor pointing and the 

intersection altitude. Coverage areas are colored 

according to their type (optical or radar) and their size 

changes according to the intersection altitude, that can be 

modified by the user in real-time. This plot can also be 

useful to understand overlaps between the FOVs of 

survey sensors. 

 

 
Fig. 24 Coverage areas. 

 

3.1.8. Maximum re-observation time  

 

It is important to have a sense of what is the maximum 

re-observation time (i.e., the time elapsing between two 

consecutive observable passes) for all the objects passing 

over a ground station. This is instrumental to figure out 

how a sensor can contribute to the catalogue maintenance, 

since the lower the re-observation times the more the 

network can keep up to date the covariance estimates in 

the catalogue. 

The graph in Fig. 25 illustrates the cumulative 

distribution of the maximum re-observation times of all 

the objects transiting over a user defined sensor or over 

the entire sensor network. 

On top of that, a vertical line set at 24 hours splits the 

distribution in two parts, to highlight the percentage of 

objects which can always be seen within one day or less. 

 

 
Fig. 25 Maximum re-observation times. 

 

3.1.9. Coverage histogram 

 

The coverage histogram (Fig. 26) permits to evaluate 

the coverage of specific sensors with respect to different 

orbital parameters. The user can choose an orbital 

parameter (for the horizontal axis) and up to three sensors 

to compare their coverage. Each sensor is described as a 

bar distribution, whose height represent the percentage of 

observable objects within that range of the selected 

orbital parameter. 

 

 
Fig. 26 Coverage histogram. 

 

3.2. Computational time 

 

The goal of SΞNSIT is not merely to provide an 

accurate sensor network modeling, but also to output the 

expected results in a reasonable time frame. 
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The analysis of the computational time has been 

conducted on a PC featuring a 3700x AMD processor, 

with 8 physical and 16 logical cores, and 16 GB of RAM. 

Several sensor network simulations have been 

performed by setting the following parameters: 

• Number of input objects: 10, 100, 1000. 

• Number of involved sensors: 1, 5, 10  

• Simulation time frame: 3 days 

Table 1 and Fig. 27 outline the time required for the 

computation of observable passes (Sec. 2.2). 

Time clearly scales up when increasing the number of 

objects, while it is less affected by the amount of sensors 

thanks to the implemented optimizations (mainly, the 

cache of object states). 

 

Table 1 Time required by pass computation, in seconds. 

 1 sensor 5 sensors 10 sensors 

10 obj. 3 4 4 

100 obj. 21 23 25 

1000 obj. 204 223 244 

 

 
Fig. 27 Time required by computation of observable 

passes. 

 

Table 2 and Fig. 28 report the time needed to perform 

catalog build-up and maintenance using Estimated 

Covariance OD, starting from the whole list of passes 

(not from a conflict-free schedule). These times are 

influenced by both objects and sensors. 

 

Table 2 Time required by catalogue build-up using 

estimated OD, in seconds. 

 1 sensor 5 sensors 10 sensors 

10 obj. 1 1 1 

100 obj. 3 3 3 

1000 obj. 19 30 83 

 
Fig. 28 Time required by catalogue build-up using 

Estimated OD. 

 

Table 3 and Fig. 29, instead, report the time needed 

to perform catalog build-up and maintenance if Non-

Linear Least Squares OD is used, starting from the whole 

list of passes also in this case. 

The reported times are approximately double with 

respect to the ones required by Estimated Covariance OD. 

 

Table 3 Time required by catalogue build-up using NLS 

OD, in seconds. 

 1 sensor 5 sensors 10 sensors 

10 obj. 1 1 1 

100 obj. 4 6 12 

1000 obj. 40 63 191 

 

 
Fig. 29 Time required by catalogue build-up using NLS 

OD. 

 

The genetic scheduler has proven to produce good 

schedules in few minutes, yet the precise execution time 

is not reported here since it is affected by many 

parameters (e.g., number of passes, population size, 

mutation and cross-over probabilities). 

In the considered conditions, the overall time required 

by SΞNSIT to compute passes, generate a schedule and 
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simulate cataloguing is in the order of minutes, therefore 

it appears suitable for fast simulations. 

 

4. Conclusions and future work 

 

SΞNSIT, the program developed in this work, 

answers the need of having a software tool that allows to 

model SST sensor networks and evaluate their 

performance, in terms of coverage and capability of 

building and maintaining a catalogue of space objects. It 

also features an optimal scheduler, that may be used to 

schedule the observations of existing sensors. 

Moreover, SΞNSIT allows to perform these tasks in a 

user-friendly way, thanks to its Graphical User Interface, 

the capability of running through different operative 

systems and the speed of execution. 

Yet, several improvements can still be implemented 

in SΞNSIT. The recent introduction of the genetic 

optimization algorithm requires for further research, in 

order to determine the most suitable parameters (e.g., 

weights, genetic strategy). Afterwards, the developers are 

considering introducing a batch process for the automatic 

generation of new sensors according to given criteria 

(e.g., different locations for a sensor within a given area, 

or different type of sensors in a fixed position). 

An improved simulation of observations is also being 

studied, with the ability to consider customizable radar 

beam patterns, tracking errors due to the inaccuracy of 

the ephemerides, random events that could prevent 

observability (e.g., adverse weather conditions, 

maintenance downtime). 
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