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Abstract—The increasing demand for data-intensive comput-
ing applications, such as artificial intelligence (AI) and more
specifically machine learning (ML), raises the need for novel
computing hardware architectures capable of massive paral-
lelism in performing core algebraic operations. Among the new
paradigms, in-memory computing (IMC) with analogue devices
is attracting significant interest for its large-scale integration
potential, together with unrivaled speed and energy performance.
Here, we present a fully-analogue, universal primitive capable of
executing linear algebra operations such as regression, general-
ized least-square minimization and linear system solution with
and without preconditioning. We study the impact of the main
circuit parameters on accuracy and bandwidth with analytical
closed-form expressions and SPICE simulations. Finally, the
scaling challenges due to parasitic resistance/capacitance and the
possible solutions to overcome these effects are discussed.

Index Terms—In-memory computing, resistive memory, hard-
ware accelerator, linear regression, linear systems

I. INTRODUCTION

AN ever-increasing number of computing tasks make use
of linear regression and matrix inversion in their core

primitives. Both these operations are costly in terms of energy
and time, partly because conventional computing systems are
still based on von Neumann architecture, where data must be
continuously shuttled between the memory and the processing
unit [1]. While optimized digital hardware, such as the tensor
processing unit (TPU) [2], has been developed to handle
massive matrix computation, novel computing paradigms are
needed to radically overcome the limits of the von Neumann
architecture. Among these new concepts, in-memory com-
puting (IMC) has gained momentum by directly performing
computation in situ within the memory [3]. IMC is particularly
suited for combination with emerging memory devices or
memristors, such as the resistive-switching random access
memory (RRAM), which can be integrated in high-density
crossbar arrays [4]. IMC can theoretically achieve unrivaled
speed, energy [3] and information capacitance [5] when com-
pared with digital systems. Several demonstrations of IMC
have been reported, including matrix-vector multiplication
(MVM) in neural networks [6], [7], image processing [8],
optimization problems [9], [10]. In particular, the iterative
solution of linear systems [11], [12] has attracted interest for
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the improved speed and energy efficiency, however the need
for a digital overhead may compensate the advantages IMC
parallelism.

On the other hand, analogue computing as a concept dates
back to the Greek civilization [13], and has been studied
by many throughout history including Kirchhoff and Thom-
son [14]. After an interest decline in the first half of the 20th
century due to the rise of digital computing, the works of
Carver Mead [15] revitalized the field by identifying analogue
computing as a suitable candidate for post-Moore’s Law
computing. In recent years, fully-analogue circuits for one-step
computation of linear systems [16], [17] have been both the-
oretically and experimentally demonstrated, attracting interest
for their inherent speed and reduced computational complexity.
However, a detailed analysis of stability and bandwidth is
necessary to fully assess their feasibility and currently lacking.

Here, we present a detailed study of a novel circuit for
linear regression [18] to assess its accuracy and bandwidth.
Various versions of the same circuit are shown for generalized
least-square minimization and linear-system solution. We show
that the linear-system circuit has an improved stability with
respect to previous schemes [16], as well as being amenable
to preconditioning to arbitrarily control the bandwidth. These
circuits may be regarded as a universal primitive for IMC-
based linear algebra operations. Finally, scaling challenges
are discussed in terms of inherent parasitic resistance and
capacitance.

In the following, we adopt the Householder notation [19],
where bold capital letters A,B denote matrices. AT is the
transpose of A, ‖·‖p is the vector p-norm and |||·|||p the induced
operator p-norm. A Hermitian positive (negative) semidefinite
matrix satisfies A � 0 (A � 0) and its singular values are
σ1(A) ≥ . . . ≥ σn(A).

II. CIRCUIT STRUCTURE AND STEADY-STATE OPERATION

F IGURE 1a shows the proposed circuit schematic for the
least-square linear regression solver, where the regressors

X ∈ Rn×m are mapped in crosspoint arrays using a reference
conductance G0, i.e. GX,ij = G0Xij . The dependent variable
y is mapped onto the input current array iy in a similar fashion,
iy,i = i0yi where i0 is a reference current. Finally, the output
of amplifiers A1 is locally fed back to the input by identical
Gf = G0f conductances. The state equations of the circuit
can be written as:{

vε = −G−1f (G0Xvβ + iy) (1)

G0X
T vε = 0 (2)
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Fig. 1. Circuit schematic for performing (a) least squares (linear) regression and (b) generalized least squares regression. When an input is applied by the iy
generators, the output vβ provides the regression coefficients, whereas the residuals are provided by vε. Both circuits can also be employed as linear system
solvers when X is square, with (b) allowing to map a preconditioning matrix in the F array.
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Fig. 2. Comparison of computed solution and analytical formula for 1000 SPICE simulations of (a) linear regression circuit on a 20 × 10 data matrix, (b)
generalized least squares on a 20× 10 data matrix and (c) linear system solution on a 10× 10 matrix. Red dots represent the output voltages vβ of the A2

set, which map the solution β, whereas blue dots represent the error output voltages vε of the A1 set, which map the residual ε.
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Fig. 3. Cumulative distribution functions of the absolute error for simulations of Fig. 2. (a) CDF of the absolute error on vβ , namely ‖vβ − vβ,id‖2 (red)
and on vε, namely ‖vε− vε,id‖2, for the linear regression simulations in Fig. 2a. (b) CDF of the absolute error on vβ (red) and vε (blue) for the generalized
linear regression simulations in Fig. 2b. (c) CDF of the absolute error on vβ (red) and vε (blue) for the linear system solution simulations in Fig. 2c. While the
absolute error on vε is mostly independent of the given circuit configuration, the error on vβ shows a wider spread in the linear system solver configuration
owing to the worse conditioning of the chosen linear system matrices.

where Eqs. 1 and 2 are the current balances at the input of A1

and A2 respectively. By substituting Eq. 1 in Eq. 2, we get
the stationary transfer for ideal feedback conditions given by:

vβ,id = −G−10 (XT f−1X)−1XT f−1iy

= −G−10 (XTX)−1XT iy = −G−10 X+iy (3)

where X+ is the Moore-Penrose pseudoinverse of X. By
substituting Eq. 3 into Eq. 1, we obtain:

vε,id = −G−10 f−1(I−P)iy = −G−10 f−1Miy (4)

where P = X(XTX)−1XT is the projection matrix and M =
I − P is the residual maker matrix. The output vector vβ,id
can be viewed as the least-square regression of the equation
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Xβ = y, while vε,id is the residual vector ε which satisfies
Xβ + ε = y. Fig. 2a shows the correlation plot of vβ and vε
obtained from a SPICE circuit simulation as a function of the
results of Eqs. 3 and 4 for a random regression problem of size
20× 10, demonstrating the accuracy of our analytical model.
Correspondingly, Fig. 3a shows the cumulative distribution
function (CDF) of the absolute error for vβ , ‖vβ−vβ,id‖2, and
vε, ‖vε− vε,id, where the operational amplifiers’ gain was set
to 100 dB. The circuit of Fig. 1a can be generalized as shown
in Fig. 1b, where the scalar conductance Gf is replaced by
the conductance array GF = G0F, by following the scheme
of the IMC-based linear-system solver [16], [17]. The output
voltage now reads:

vβ,id = −G−10 (XTF−1X)−1XTF−1iy (5)

while the residual is given by:

vε,id = −G−10 F−1(X−X(XTF−1X)−1XTF−1)iy

= −G−10 F−1(I− P̃)iy = −G−10 F−1M̃iy (6)

which solves the generalized least-square regression of the
input current iy and the regressors GX, where matrices P̃
and M̃ = I − P̃ are the projection matrix and the residual
maker matrix for the generalized least-square problem. The
matrix GF can be used to map the conditional variance of
the error, i.e. the covariance matrix Cov[ε|X] = F. From a
statistical standpoint, the introduction of the covariance matrix
in the estimator adds information about correlation among the
dataset samplings, rather than treating them as uncorrelated,
resulting in an improved regression estimate. Fig. 2b shows
the correlation plot of vβ and vε from a SPICE circuit
simulation as a function of the results of Eqs. 5 and 6 for
a random generalized least-square regression problem of size
20× 10, demonstrating the accuracy of our analytical model.
Correspondingly, Fig. 3b shows the cumulative distribution
function (CDF) of the absolute error for vβ , ‖vβ − vβ,id‖2,
and vε, ‖vε−vε,id, where the operational amplifiers’ gain was
set to 100 dB.

For square matrices, i.e. X ∈ Rn×n, both circuits in Fig. 2
solve the linear system Xβ = y, resulting in the state equation:

vβ,id = −G−10 X−1iy

with vε = 0. In addition, the circuit in Fig. 2b allows matrix
preconditioning by properly mapping the F array. Fig. 2c
shows the correlation plot of vβ and vε from a SPICE circuit
simulation as a function of the analytical solution for a random
10×10 matrix, demonstrating their accuracy. Correspondingly,
Fig. 3c shows the cumulative distribution function (CDF) of
the absolute error for vβ , ‖vβ − vβ,id‖2, and vε, ‖vε − vε,id,
where the operational amplifiers’ gain was set to 100 dB.

Thanks to the negative feedback, all the presented operations
are efficiently executed in one computational step.

III. TRANSIENT ANALYSIS

THE circuit of Fig. 1 was modeled by the block diagram of
Fig. 4. Here, the amplifier sets A1 and A2 are described

by scalar matrices A1 ∈ Rn×n and A2 ∈ Rm×m, where
each diagonal element contains the transfer function of the

U-11
iy
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vε

X

vβ

A1

A2

XT

U-12

Fig. 4. Block diagram of the circuit of Fig. 1b. Blocks F, X and XT are
conductance arrays. Blocks A1 and A2 are sets of operational amplifiers
and blocks U1

−1 and U2
−1 are summing nodes. The input current iy is

applied to the summing node of A1, while the output voltages of A1 and A2

correspond to vε and vβ respectively.

corresponding amplifier in the Laplace domain, namely α1(s)
and α2(s) respectively. Summation nodes are described by
diagonal matrices U1 ∈ Rn×n, U2 ∈ Rm×m whereas X ∈
Rn×m, XT ∈ Rm×n, F ∈ Rn×n describe the transfer of A2

output to A1 input, A1 output to A2 input and A1 to itself,
respectively. Referring to the circuit of Fig. 1b, the summation
matrices can be written as [16]:

U1,ii =

n∑
j=1

Xij +

n∑
j=1

Fij

U2,ii =

m∑
j=1

XT
ij =

m∑
j=1

Xji.

From Fig. 4, vβ can be written as a function of vε and vice
versa, namely:{

vβ = A2U2
−1XT vε

vε = A1U1
−1(G−10 iy + Xvβ + Fvε)

yielding the following expressions for vβ and vε:

vε = (U1A1
−1 −XA2U2

−1XT + F)−1G−10 iy (7)

vβ = − (−A1
−1A2

−1XTU1(XT )+U2

+ A2
−1XTF(XT )+U2 + XTX)−1XTG−10 iy

(8)

which provide the input-output transfer functions of the circuit.

A. Static error

Given the single-pole transfer functions of the operational
amplifiers α1(s) = − α1

1+sτ1
and α2(s) = + α2

1+sτ2
with

α1, α2 > 0, we can define matrix E as:

E =
1

α1α2
XTU1(XT )+U2 +

1

α2
XTF(XT )+U2
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Fig. 5. Relative error of the calculated vβ as a function of the condition
number κX for a 10 × 10 linear system with no preconditioning (F = I).
Each point is the result for a linear system with random input and matrix.
The theoretical limits of Eqs. (9) and (10)-(11) are also shown.

so that Eq. (8) can be rewritten at steady state (s = 0) as:

vβ =− (E + XTX)−1XTG−10 iy =

− (I + (XTX)−1E)−1(XTX)−1XTG−10 iy

From Eq. (3), we can evaluate the ideal output for α1 = α2 =
∞, hence E = 0, which yields vβ,id = −G−10 (XTX)−1XT iy .
The relative static error εs due to the finite amplifier gain thus
obeys:

εs =
‖vβ − vβ,id‖2
‖vβ,id‖2

≤
∣∣∣∣∣∣(I + (XTX)−1E)−1 − I

∣∣∣∣∣∣
2

(9)

=
∣∣∣∣∣∣(I + (XTX)−1E)−1(XTX)−1E

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣(XTX)−1E

∣∣∣∣∣∣
2

1− |||(XTX)−1E|||2
(10)

where:

0 ≤
∣∣∣∣∣∣(XTX)−1E

∣∣∣∣∣∣
2
≤ κ2X

n

α1α2

(
1 +

α1 +
√
n√

n
|||F|||2

)
(11)

with κX the `2-norm condition number of X, and we used
|||U2|||2 = |||X|||1, |||U1|||2 ≤ |||X|||∞ + |||F|||∞. Fig. 5 shows
the calculated εs for random 10 × 10 linear systems with
variable condition number κX. The maximum limit given by
Eqs. (10)-(11) is extremely conservative when tested against
uniformly-random dense matrices, and shows a quadratic de-
pendence on the condition number κX and a linear dependence
on σ1(F). For sufficiently large α1, the impact of this gain on
the relative error is negligible, thus allowing to relax the gain-
bandwidth trade-off on the A1 set during the design phase.

B. Stability

To assess the stability of the circuits in Fig. 1, the system
poles must be computed from the transfer functions of Eqs. (7)

and (8). Eq. (8) can be rewritten as:

vβ = −U2
−1XT (−A1

−1A2
−1XTU1 + A2

−1XTF

+ XTXU2
−1XT )−1XTG−10 iy

= −U2
−1XT (−A1

−1A2
−1U1 + A2

−1F

+ XU2
−1XT )−1G−10 iy

= −U2
−1XT (−A1

−1A2
−1 + A2

−1U1
−1F

+ U1
−1XU2

−1XT )−1U1
−1G−10 iy

which allows to obtain the characteristic equation for the
circuit poles, namely [17], [18]:

(−A1
−1A2

−1 + A2
−1U1

−1F + U1
−1XU2

−1XT )w = 0

For the sake of simplicity, the amplifiers may be considered
identical apart from their respective signs, such that A1 =
−α(s)In, A2 = α(s)Im, α(s) 6= 0, and thus:(

1

α(s)2
In +

1

α(s)
U1
−1F + U1

−1XU2
−1XT

)
w = 0

This can be rewritten as an Hermitian Quadratic Eigenvalue
Problem (QEP) [20], namely:

(λ2In + λU1
− 1

2FU1
− 1

2 + U1
− 1

2XU2
−1XTU1

− 1
2 )w = 0

(12)
where we assumed 1/λ = α(s). Considering a model single-
pole amplifier, i.e α(s) = α0

1+sτ0
with α0 > 0, then the poles

of the circuit are given by:

pi =
1

τ0
(α0λi − 1) (13)

where λi are the nonzero solutions of the QEP. Notice that
for X ∈ Rn×m, Eq. (12) returns 2n solutions of which n+m
nonzero values represent the effective poles of the system. In
the case of a linear system solver, where the two matrices are
square, the QEP correctly returns 2n solutions.

For stability, all pi should have negative real parts, namely
<(p) ≤ 0, which is always true if <(λ) ≤ 0. Sufficient
conditions are [20] (1) In � 0, which is always satisfied,
(2) U1

− 1
2FU1

− 1
2 � 0 and (3) U1

− 1
2XU2

−1XTU1
− 1

2 �
0, which is always true since U1

− 1
2XU2

−1XTU1
− 1

2 =
(U1

− 1
2XU2

− 1
2 )(U1

− 1
2XU2

− 1
2 )T is a Gram matrix, hence

always positive semi-definite. Condition (2) requires F � 0,
which can be regarded as the only condition for stability. In
the case of generalized least squares F is a covariance matrix
which is always positive semidefinite. When performing linear
system solution instead, the preconditioner F can be chosen
to be positive semi-definite. As a result, the circuit in Fig. 1b
is always stable for all practical cases, irrespective of the
regressor matrix X. Under these conditions, the roots λ of
Eq. (12) are given by:

λ =
−q2(x)±

√
q2(x)2 − 4q1(x)q3(x)

2q1(x)
(14)

where q1(x) = xT Ix = 1, q2(x) = xTU1
− 1

2FU1
− 1

2x and
q3(x) = xTU1

− 1
2XU2

−1XTU1
− 1

2x, with ‖x‖2 = 1 [20].
In the scalar case, F = fI. In the limit f → 0, q2(x) →

f q̃2(x) where q̃2(x) 6= 0, thus λ ' −1
2f q̃2(x) ± j

√
q3(x).

For small values of f , each pole pair is a complex conjugate
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(a)

Fig. 6. Calculated time evolution of vε and vβ for a 10× 10 linear system with κX = 27 and different values of f for controlling the damping, namely (a)
underdamped regime (f = 0.025), (b) optimally damped (f = 0.25) and (c) overdamped (f = 15.8). The dashed line highlights the solution time, defined as
the inverse of the real part of the dominant pole, tsol = 1/<(pmin). Damping causes an increase of the solution time and a reduction of the ringing effect.
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Fig. 7. Root locus of the circuit poles for the linear system matrix of Fig. 6, κX = 27, for increasing values of the parameter f , on (a) semilogarithmic
scale and (b) linear scale. Each pole pair starts as a complex-conjugate pair for low values of f (A), moving towards the real axis as f increases. The optimal
value of f from a solution time standpoint is that for which the dominant pole pair reaches the real axis (B). Further increasing f leads to pairs splitting into
high- and low-frequency components (C).

pair, whose real part increases linearly with f , whereas the
imaginary part is mostly independent of the same parameter.
On the other hand, for f → +∞, U1 ' fI and thus q2(x)→
1, q3(x) → q̃3(x)/f → 0 where q̃3(x) 6= 0. By Taylor’s
expansion, two roots are then found as λ+ = −q̃3(x)/f and
λ− = −1+ q̃3(x)/f . By increasing the parameter f , therefore,
the poles get closer to the real axis, eventually splitting into
an high- and low-frequency components.

C. Dependences on circuit parameters

From our theory, F (or its scalar counterpart f ) and κX
play a major role in the accuracy-bandwidth trade-off of the
proposed circuit. For the sake of simplicity, we shall refer
to the scalar case F = fI (namely, linear regression or
linear system solver without preconditioning), but the same
discussion holds as long as σ1(F) and σn(F) are appropriately
considered in place of f .

Fig. 6 shows the calculated transient of evolution of vβ
and vε for various f , namely f = 0.025 (a), f = 0.25 (b)
and f = 15.8 (c). As f is increased the circuit dynamics

moves from a second-order regime (Fig. 6a) with damped os-
cillations, to an overdamped first-order regime (Fig. 6c), with
an intermediate optimally damped case (Fig. 6b) achieving
minimum solution time, in accordance with the position of
poles predicted by Eq. (14). Fig. 7 shows the positions of
the poles for increasing f , marking the three conditions in
Fig. 6 as A, B, and C respectively. Fig. 8a shows the real
part of the poles as a function of f : in both regimes, the
real part of the poles depends linearly on f as predicted by
Eq. 14. The optimal damping is obtained when the dominant
pole pair reaches the real axis, i.e. for q2(x) = 2

√
q3(x). Fig.

6c shows the real part of the pole as a function of κX, which
controls the q3(x) term. In the complex conjugate regime, i.e.
for q3(x) > q2(x)2/4, q3(x) controls the imaginary part, hence
the ringing component, with no impact on the solution time.
In the real regime, q3(x) controls the spread of singularities
between the amplifiers’ gain-bandwidth product (GBWP) and
the dominant pole (ω0 = 1/τ0) thus dictating the position of
the dominant pair (Fig. 8b). A perfectly conditioned problem,
κX = 1,X = I, corresponds to a circuit configuration with
n decoupled, unity-gain loops, which therefore achieves the
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(b)(a)

Fig. 8. Dependence of dominant pole on f and κX. (a) Real part of the dominant pole as a function of f , for different values of κX. The real part initially
increases with f due to complex-conjugate pairs moving along their respective trajectories towards higher real parts, and then decreases as a consequence of
pole splitting when the dominating pair becomes real. The critical f value depends on the condition number of the matrix κX. (b) Real part of the dominant
pole as a function of κX, for different values of f . Blue-filled points represent complex-conjugate pairs, whereas red-filled points denote a real pole. The real
part decreases linearly with κX after a critical point which varies with f . For high values of κX, the dominant pole saturates to the OA’s internal pole.

Fig. 9. Final performance of the circuit in operation as linear system solver without preconditioning. (a) Relative error with respect to exact solution as a
function of the parameter f , showing an O(fκ2X) dependence. (b) Impact of f on the solution time, showing a O(1/f) dependence up to the critical f ,
which varies with κX, and a O(fκ2X) dependence above. For small values of f , the circuit bandwidth is independent of the problem’s condition number.

maximum possible bandwidth (α0ω0). On the other hand, as
κX increases, q3(x) approaches singularity and one of the pole
pairs quadratically approaches the dominant pole as one of its
roots λ approaches 0.

From the accuracy standpoint, Eq. 11 provides the depen-
dence on f and κX. The quadratic dependence on κX can
be intuitively explained by the presence of two crosspoint
matrices X along a single loop, whereas the dependence on
f can be explained by considering the nodal equation at
the A1 inputs, where the nonzero current drawn from the
f conductance perturbs the otherwise exact solution of the

regression operation.
Fig. 9 summarizes the impact of f and κX on the solution

time and error for the cases of linear regression and linear
system solver without preconditioning. For low f , in the
complex/underdamped regime, the solution time is almost
independent of κX, and decreases with f only. On the other
hand, εs increases with f and κX.

IV. IMPACT OF PARASITIC ELEMENTS

FROM the error standpoint, the parasitic interconnect re-
sistance leads to voltage, also known as IR, drops along
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Fig. 10. Impact of IR drop on (a) solution time and (b) static error of the circuit. While the solution time is mostly unaffected by parasitic resistances,
deviating from the ideal behaviour only for relatively large and untypical resistance values, the static error is more sensitive, showing an O(r) dependence
for values falling inside the typical interconnect resistance range.

Ccell

CWL

Fig. 11. (a) Impact of parasitic cell capacitances on the solution time. Each line is a median of 1000 simulations with parasitic capacitances extracted from
a Gaussian distribution centered around C0 = τRCG0 with σ = C0. As the equivalent cell time constant approaches the closed-loop OA time constant,
τOA, the solution time increases as the poles progressively move towards the origin (blue, solid lines). Further increasing C0 leads to the dominant pole
becoming unstable (grey, dashed lines). (b) Impact of parasitic line capacitances on the solution time. Each line is a median of 1000 simulations with parasitic
capacitances extracted from a Gaussian distribution with the same parameters in (a). (c) Critical C0 for cell (red) and line (blue) capacitance, defined as
the mean capacitance around which the circuit becomes unstable. Dashed lines show typical values of Ccell = 0.1 fF (red) and CWL = 10 fF (blue),
highlighting the stronger constraint on κX given by CWL.

the top and bottom electrode lines, which increases εs. Fig. 10
shows the impact of the average parasitic resistance r between
two adjacent cells on the solution time and static error of
the solution computed by the circuit for a problem of size
n = 10, with G0 = 100 µS. Particularly, the solution time is
mostly unaffected, deviating from the ideal behaviour only as
r enters the kΩ range, which is typically not the case in most
technologies [21]. On the other hand, the relative error shows a
linear dependence for values of r greater than a characteristic
value, which generally scales with n [22], comparable with
the typical interconnect value of 1 Ω. Nonetheless, dedicated
compensation techniques [23] and parasitic-aware program-
ming schemes may help alleviating this issue.

The error due to conductance non-linearity may be reduced
by adopting relatively low resistance values [8], at the cost of

increased energy consumption and IR drop. Finally, additional
non-idealities in the operational amplifiers such as offset
voltages may cause output errors increasing as κ2X, or even
circuit saturation for large κX, due to the large swing of the
outputs even in presence of small inputs. Dedicated offset-
canceling circuits may mitigate the saturation issues at the
cost of an O(n) area overhead.

From the speed standpoint, the parasitic cell and word-line
capacitance may slow down the circuit for increasing n. On the
other hand, as long as the circuit remains stable, no additional
contribution to the static error is expected from parasitic
capacitances. Figs. 11a-b show the impact of Ccell and CWL

on the circuit solution time. As long as the time constant
of the parasitic capacitances τRC = C0/G0 is much faster
than those of the singularities attributable to the OA’s finite
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bandwidth, the solution time is unaffected by the presence of
parasitics. On the other hand, as the capacitance increases, a
coupling between the OA poles and the parasitic poles ensues,
reducing the circuit’s bandwidth as τRC becomes comparable
with the closed-loop OA time constant, τOA = 1/GBWP .
Eventually, poles move across the origin into the Right Half-
Plane, rendering the circuit unstable. The stability boundary
shows a linear dependence on the parameter κX, as shown
in Fig. 11c. With typical values of Ccell = 0.1 fF [22],
CWL = 1 ∼ 10 fF/µm [21], the major threat to bandwidth
and stability comes from the word-line parasitic capacitances,
including both metal line and OA input capacitance.

Finally, the non-zero output resistance of the operational
amplifiers may reduce the useful bandwidth of the circuit due
to the reduced strength of the local feedback caused by the
additional voltage drop on rout. For instance, the bandwidth
is reduced by a factor 2 when the overall column conductance
becomes comparable to the output resistance of the amplifier,
leading to n ≤ 100 for rout = 50 Ω. Specialized topologies
[24], [25] can be employed to reduce the output impedance
and its impact on speed.

V. CONCLUSION

WE present a novel circuit capable of performing various
types of linear regression over a given dataset. We

derive closed-form equations for the static error and the singu-
larities, and assess the circuit performance in terms of solution
bandwidth and error. We discuss the impact of additional
nonidealities such as interconnect parasitic resistance and
capacitance, operational amplifier offset voltage and output
resistance. The circuit provides a universal primitive for linear
algebra operations, paving the way for large-scale integration
in a dedicated computing architecture exploiting the IMC
paradigm.
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