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Abstract

The automotive industry is facing a rapid technological evolution and
the request of a very high level of customization of the products. This re-
quires production systems able to manage a high variety of products with
low volumes. To this aim, this paper focuses on multi-product assembly
lines consisting of a set of stations with a robot operating the transporta-
tion and handling of the parts. Due to the high variety of the parts to be
processed, perfect balancing is not possible, hence, proper control policies
are requested to operate the line. The paper proposes a predictive-reactive
scheduling approach to minimize the batch completion time by sequenc-
ing the tasks operated by shared resources in a context with uncertain
processing times. The viability of the approach is demonstrated through
the application to an industrial problem in the automotive industry.
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1 Introduction and motivation

More and more, the automotive industry has to cope with an increasing variety
of models as well as multiple and heterogeneous materials and assembly tech-
nologies. Although the total number of parts constituting the car body has been
significantly reduced, from about 500 in the late ’90s to about 250/300 in more
recent models [4], assembling the car body and its components (doors, fenders,
etc.) still represents a critical phase in the production of a car. These processes
are traditionally operated in assembly lines with a very high degree of automa-
tion, whose design has evolved in the past 30 years to match the evolution of
the requirements for the automotive industry and taking advantage of industrial
robots. Moreover, if we focus on the production of spare parts, the very low vol-
umes for a single model requires processing multiple parts on the same assembly
line to guarantee a reasonable utilization factor for the equipment. In addition,
the rapid evolution of car models drives the need of frequently changing the mix
of products to be processed and the associated volumes (at least on an annual
basis).

Flexible and/or reconfigurable lines are the main design paradigms to cope
with these requirements [? ] according to the co-evolution principle [? ], defined
as the need of modifying the configuration of a production system together with
the changes affecting the products or the processes. The technological advances
of modern industrial equipment and the high degree of flexible automation are
supporting the fulfilling of these needs but, from a design point of view, tradi-
tional line-balancing approaches are hardly effective. In fact, as the products
(and the processing times) changes, a design that is balanced for a subset of
products, is not likely to remain balanced for the whole product mix. The need
to cope with unbalanced assembly lines increases the relevance of control poli-
cies able to properly schedule the operations to be executed according to the
specific parts and processing times.

In this paper, we consider a class of assembly lines consisting of a set of
assembly stations, an input and an output station and a handling robot moving
on a track (see the example in Figure 1). The stations are positioned on both
the sides of the track of the robot and implement technologies (e.g., clinching or
hemming), while the handling robot moves the parts to be processed among the
stations. Each station operates a specific manufacturing technology, in a way
that the entire assembly process can be executed in the assembly line. In the
input and output stations, the components to be assembled are loaded and the
final part unloaded. Due to the high variety of products, loading and unloading
operations are executed by human workers. This class of assembly line usually
operates as a multi-product line, thus, the production is operated in batches of
the same product type, with set-up phases to move from the production of one
part to another.

Grounding on this, considering a single batch, the parts to be produced have
the same process and routing, as in a flow-shop system, but some operations
(e.g., transportation) need a resource (the handling robot) that is shared among
different operations. The consequence is the possible presence of simultaneous
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Figure 1: Exemplar assembly line with 4 technological stations.

requests for the same resource that require the sequencing of the operations
that share those resources. In addition to this, the duration of every operation
executed in the line is subject to uncertainty, e.g., due to the human execution
of input and output operations and possible breakdown or micro stops for the
automated stations.

The aim of this work is to investigate control policies for the described class
of assembly lines grounding on a predictive-reactive scheduling approach aiming
at minimizing the completion time to produce a batch of identical parts, and able
to face the process uncertainty. In particular, the proposed predictive-reactive
(PR) scheme firstly provides a baseline schedule taking into consideration the
uncertainty affecting the processing times to a certain extent, then, as soon as
the uncertainty discloses, a reactive scheduling step is operated to adapt the
baseline schedule to the actual duration of the operations.

Outline The paper is organized as follows: Section 2 provides an analysis of
the literature, while the complete problem statement is presented in Section 3
where the scheduling problem that is dealt with is formalized. In Section 4, the
solution approach is described in terms of the predictive step in Section 4.1 and
the reactive step in Section 4.2. The viability of the approach is demonstrated
through the application to an industrial problem in Section 5. Conclusions and
future development directions are provided in Section 6. Additional data and
tables are included in Appendix.

2 State of art

Flow-shop scheduling problems have been extensively investigated in the last
decades addressing many variants of the base shop problem.

The most important contributions in the area of control policies for flow
shops considering uncertainty are presented in [16, 17], addressing the mini-
mization of the expected value of the completion time by identifying an optimal
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sequence of jobs to be processed. In this paper, we consider the production of
a batch of identical jobs, thus, sequencing is not a decision to be taken. The
focus of this work is on sequencing operations involving a shared resource, i.e.,
a transported moving the parts from a station to another.

Under this perspective, the flexible assembly system scheduling problem have
been considered. An example is the approach presented in [? ] where authors
consider the scheduling of flexible manufacturing cell to determine the trans-
portation order of the jobs , together to the assignment of jobs to processing
resources.

Other relevant contributions have been presented in [? ? ? ? ? ] considering
the material handling cost as one of the main driver for the optimization of a
flexible system. Both these approaches can be adapted to match the assembly
line under study in this article, but they are limited to deterministic parameters
and are not designed to be used as control mechanisms during the execution of
the schedules.

Other relevant contributions are those focusing on the scheduling of robotic
cells and the cyclic robot scheduling problem [? ]. The first group of works [? ?
? ] study the robotic flow shop systems in which one or more stages are served
by one or more robots, very similar to the one under analysis in this paper.
These studies focus on the identification of the bottleneck of the process and
use it as the decision point for scheduling the operations. These approaches are
not suitable with the problem under study because they consider the physical
modification of the system. While the second one study the systems in which a
manufacturing system is served by a handling robot working as a transportation
device [? ? ? ]. In these works, the main aim is to regulate the handling robot
missions in order to minimize the completion time of a single job. Also in these
cases, the duration of every operation is considered deterministic without the
possibility to regulate the on-line management of the system.

Grounding on this analysis, more general scheduling approaches related
to the Resource-Constrained Project Scheduling Problem (RCPSP) have been
taken into consideration [19]. Due to the need to cope with uncertainty, two
sub-problems have been addressed: the stochastic RCPSP and the rescheduling
of manufacturing systems.

The research related to the stochastic RCPSP aims at minimizing a schedul-
ing objective function, e.g., the completion time, by developing policies rather
than schedules. A policy is a set of rules that support scheduling decisions, i.e.,
if a certain event occurs, then a specific action has to be taken. A first class of
approaches formalizes the scheduling decisions as a multi-stage decision problem
[5, 7, 6]. Specifically, the scheduling problem is decomposed in multiple decision
stages and, for each of them, a schedule of the activities is provided, taking into
consideration the availability of resources, precedence constraints as well as the
available information related to uncertain variables at that stage.

A second class of approaches includes preselective and early-start policies.
Early-start policies (ES ) are first introduced in [10, 11] and further investigated
in [18]. These policies are based on the definition of minimal forbidden sets, i.e.,
sets of activities with minimal cardinality whose concurrent execution surely
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violates the resource constraints. In an ES policy, for each minimal forbidden
set F there exists a pair (i, j), i, j ∈ F , i 6= j that for each sample of activity
durations, j cannot start before i has finished. This kind of policies can be
implemented by adding a precedence relation (i, j) to the original scheduling
problem. On the other hand, preselective policies are introduced in [11], also
exploiting the notion of minimal forbidden sets, and also in [14] where a variation
of Dijkstra’s shortest path algorithm is used. A policy is defined preselective if
for each minimal forbidden set F there exist an activity j ∈ F (the preselected
one) that, for each sample d of activity durations, j cannot start before the end
of one of the other activities.

Due to the difficulty to identify optimal policies in the stochastic version
of the problem, dominance rules have been proposed in [19] and [18]. In [19],
branch-and-bound algorithms are developed to provide upper and lower bounds
for a given policy. The author also addresses bounds and dominance rules
between ES, preselective and job-priority policies. Heuristic approaches for the
stochastic RCPSP have also been proposed in [15], combining genetic algorithms
and simulation. In [8], an alternative stochastic formulation of the problem is
described and solved through a heuristic approach as well. In addition, in [20]
and [21] a tabu search algorithm is presented.

More recently, [1] proposed an optimal approach for this class of problems
limited to the case of exponential and phase type distributed processing times.
All the cited works address the optimization of the expected value of an objective
function, e.g., the minimization of the expected completion time. Nevertheless,
this does not protect against rare but very extreme scenarios, as discussed in [?
] and in [? ] for a generic production plan, in [? ] for the single machine case,
and in [? ] and [? ] with regards to Make-to-Order processes.

To overcome these limitations, a second class of approaches has been ad-
dressed, considering rescheduling actions as the process of updating an existing
production schedule in response to disruptions or other changes. Grounding on
the framework presented in [? ], we focused our analysis on stochastic and static
rescheduling environments. This class of problems considers to have a finite set
of jobs or operations to be scheduled, whose durations are uncertain [17? ? ].

We investigated two different classes of methods that are able to solve this
problem, dynamic scheduling and predictive-reactive (or proactive-reactive, al-
ternatively). Methods belonging to the first class do not define a baseline sched-
ule, but dispatch jobs and operations as they are ready to start, using only
available information [? ? ]. These methods are closely related to real-time
control approaches, not considering the uncertainty in advance before the ex-
ecution of the process. In the problem under study, we assume that a model
of the uncertainty associated to process times is available, and thus, the objec-
tive is being able to exploit this information. Methods belonging to the second
class start with the definition of a baseline schedule, i.e., an initial schedule that
takes uncertainty into consideration to a certain extent. Afterwards, triggered
by possible deviations with respect to the baseline schedule, a rescheduling step
is operated, with the aim of revising the baseline one, thus reacting to what
occurred.
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Within this class of approaches, it is relevant to mention [13] who demon-
strates that the scheduling problem with a single conflict and precedence con-
straints is already strongly NP-hard even for a single machine. Moreover, [9]
propose exact methods to build robust baseline schedules. Further relevant ap-
proaches from this class are proposed in [12] and [2]. The first one presents a
chance-constrained approach, while the second one first develops a set of pos-
sible scheduling solutions and later on decides how and when to switch among
them during the execution of the process.

Differently from these approaches, the one proposed in this paper grounds
on a two-stage scheme i) able to identify a set of constraints to be enforced
among the operations and addressing rare and extreme scenarios that can affect
the completion time, ii) by taking advantage of the specific characteristics of the
scheduling problem, e.g., the repetition of the jobs. Moreover, the reactive step
is intended to be operated on-line during the processing of the assembly process,
triggered by possible deviations between the actual and estimated durations of
the operations.

3 Problem statement

We consider the process of assembling a batch of identical parts in a manufac-
turing system organized as a flow shop, with no buffer between the stations. The
operations to be executed are represented through an Activity-on-Node (AoN )
network of activities where V = {0, 1, ...,m} is the set of nodes representing
operations and E = (x, j), x, j ∈ V the set of arcs modelling precedence con-
straints. An example is shown in Figure 2 with an input (Ii) and output (Oi)
operations at the beginning and at the end of the process, two assembly opera-
tions (A1i and A2i) and three transport operations, one between the input and
the assembly station (T1i), a second one between the two assembly stations (T2i)
and a third one between the second assembly station and the output (T3i). This
process is repeated for each part i in a batch of n identical parts, with i ∈ [1, n].
Being a permutation flow shop, all the parts are processed according to the same
sequence in all the stations. Hence, the first assembly operation on the job 1
will be executed before the same operation on job 2, thus, A11 ≺ A12 (where ≺
represents a precedence constraint).

Transport operations T1i, T2i and T3i require the handling robot. Due to the
absence of buffers between subsequent stations, while a part is waiting for the
robot, it blocks the station where it has been processed. For this reason, to define
the sequencing of all the operations in the system, additional constraints must
be added between transport operations, e.g. T21 ≺ T12 [? ]. Hence, scheduling
the missions of the robot is the main decision impacting the performance of
the system. As an example, let us consider operations T11, T12, T31 and T32,
where Tij is the transport operation i for job j. While the precedence relation
T11 ≺ T32 is a consequence of the structure of the process (T11 ≺ A11 ≺ T21 ≺
A21 ≺ T31 ≺ T32), the sequencing of T31 and T12 is not a-priori defined. We
model the described scheduling problem through the introduction of disjunctive
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Figure 2: AoN network of activities for a n-product batch.

constraints defined as a set of two alternative precedence constraints whereof
only one has to be added to E. The selection of these constraints is operated with
the aim at minimizing the completion time of a batch of jobs. The constraints
of this type are represented with the set EDC , additional to E.

Random variables are used to model processing times to take into consider-
ation manual activities or the occurrence of micro-failures (e.g., tool changes).
Processing times are represented through a vector p̃ = p̃0, . . . , p̃m, where pi is
a sample from the distribution associated to p̃i and p = p0, . . . , pm a sample of
the entire set of random processing times p̃, ∀i ∈ [1,m].

The approach grounds on a formal description of the problem reported in
Table 1.

4 Solution approach

The predictive-reactive scheduling approach consists of two steps. The first one
provides a baseline schedule grounding on a given duration of the operations
affected by uncertainty (e.g., a quantile of the associated distribution), thus,
addressing a deterministic problem. The second step is applied during the exe-
cution of the process, considering the actual duration of the operations. Every
time a delay from the baseline schedule is identified, a reaction is evaluated to
check whether the constraints selected in the previous step are still optimal. If
not, a new set of constraints is selected.
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Sets
V set of nodes representing operations
E set of arcs representing precedence constraints
p̃ vector of random processing times
pq vector of processing times, using a quantile q
A(t) set of on-going operations at time t
Ω state space
O set of operations in execution
F set of completed operations
S set of starting times
dO(o, t) set of durations of operations in execution, ∀o ∈ O, at time t
prec(k) set of operations preceding operation k

Variables
EDC set of arcs added with the predictive step
Sj starting time of operation j,∀j ∈ V

Parameters
q quantile ∈ (0, 1)
pqj processing time of operation j using quantile q

rj equal to 1 if operation j needs handling robot, 0 otherwise

Qpq

k eligible time of operation k
t time index
n number of parts in the batch
m number of operations considered
τ schedule time horizon

∆pq

j,x difference between eligible times of operations j and x

∆T
j,x threshold of the difference between eligible times of operations j and x

ω(p, t) state of the system at time t and processing times p
CT probability threshold
∆p

k,x(t) actual difference between the eligible times of operations x and k at time t

Table 1: Notation for set, parameters and variables.

4.1 Predictive step

The predictive step assigns all the operations a duration derived from a quantile
q ∈ (0, 1) of the stochastic distributions modelling the processing times, thus,
obtaining a vector pq = pq0, . . . , p

q
m. The selection of the quantile depends on the

risk aversion to be adopted in this step. The higher the quantile, the smaller the
probability to experience a delay with respect to the baseline schedule during
the reactive step and, consequently, the more cautious the baseline schedule.
Although, it is possible to use different quantiles for each operation, but in the
proposed approach, a single value is used.

Under these hypotheses, the predictive step is operated through a deter-
ministic scheduling approach with the aim at minimizing the batch completion
time. In doing this, we adopt a classical formulation of a RCPSP [? ] defined
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by Equations (1)-(4).

minimize Sm + pqm (1)

subject to

Sx + pqx ≤ Sj ∀(x, j) ∈ E (2)∑
j∈A(t)

rj ≤ 1 ∀t ∈ [0, τ] (3)

Sj ≥ 0 ∀j ∈ V (4)

The objective function minimizes the batch completion time (Equation (1)),
in terms of the completion time Sm + pqm of operation m (the last one in the
batch), where Sj represents the starting time of operation j,∀j ∈ V . Precedence
and resource constraints, defined by Equations (2) and (3) have to be respected.

Resource requirements are
are modelled through a parameter rj equal to 1 if operation j needs the

handling robot and 0 otherwise. For every set of on-going operations A(t) ={
j ∈ V | t ∈ [Sj , Sj + pqj ]

}
, defined at time t ∈ τ, where τ is the schedule time

horizon, at most one operation is allowed to be executed by the handling robot.
This scheduling problem can be solved using the approach described in [3], able
to select the constraints to be activated among the disjunctive sets and include
them in the set EDC additional to E.

Starting from the baseline schedule, a sensitivity analysis is performed on
the duration of the operations. For each constraint (z, x) ∈ EDC , the sensitive
analysis is used to identify a threshold value for the duration of the operations
such that, if exceeded, constraint (z, x) is no longer optimal and the alternative
constraint (x, z) should be considered.

To provide an example, let us consider the schedule depicted in Figures 3a
- 3d. We consider three jobs 1, 2 and 3 to be processed in an assembly line
consisting of three stations and two transport operations among the stations,
similar to the example in Figure 2. Hence, job 1 has to undergo five operations:
the input I1, the first transportation T11, the assembly operation A1, the second
transportation T21 and the output O1.

Jobs 2 and 3 follow the same process in terms of the set of operations I2,
T12, A2, T22, O2, and I3, T13, A3, T23, O3, respectively. Operations T1i and T2i,
with i ∈ {1, 2, 3} are executed by the handling robot and represented in orange
in Figures 3a - 3d.

Focusing on transport operations T12 and T21, competing for the use of the
handling robot, two alternative precedence constraints exist, i.e., (T12, T21) and
(T21, T12) in Figure 3a. (T21, T12) results optimal due to the shorter completion
time compared to the alternative constraint (25 and 26 time units, respectively).

We define Qpq

k as the eligible staring time of an operation k, given the
processing times pq and considering the precedence constraints in E, hence,
without taking into considerations those in the set EDC . The eligible starting
time for operation T21 is 7 (just after the completion of A1), while for T12 is
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6 (after the completion of T11). The difference between these eligible times is

Qpq

T21
−Qpq

T12
= 7− 6 = 1.

Hence, we take into consideration the variability of the process times in order
to evaluate the viability of the precedence constraint (T21, T12). If the duration
of operation A1 is longer than 1 time unit, value considered for the identification
of the optimal schedule in Figure 3a, a delay of operation T21 occurs together
with an increased completion time of the whole schedule.

We consider the cases where the duration of operation A1 is 1, 2 or 3 time
units longer than the one considered before (Figures 3b - 3d) and suppose to in-
vert the constraint (T21, T12) to (T12, T21) as soon as we realize the delay respect
to the baseline schedule, e.g., when, after 1 time unit, operation A1 is not com-
pleted yet. In particular, with a delay of 1 time unit (Figure 3b), the completion
time enforced by constraint (T21, T12) remains optimal but, with a delay of 2
time units (Figure 3c) the two constraints provide the same completion time.
On the contrary, with a delay of 3 time units, the completion time enforced by
(T12, T21) is shorter than the one with (T21, T12). Hence, the reversed constraint
(T12, T21) is beneficial for the minimization of the completion time if and only
if the delay of operation T21 is larger than 2 time units.

To formalize this reasoning, we define ∆pq

T21,T12
= Qpq

T21
−Qpq

T12
as the differ-

ence between the eligible times of the two operations linked by the constraint

(T21, T12). Given S
(T21,T12)
m + pqm and S

(T12,T21)
m + pqm as the completion times

of the schedules obtained with precedence constraints (T21, T12) and (T12, T21),
respectively. An inversion is effective only if the difference between the eligible
times of operations T21 and T12 is greater than a threshold whose value is the
difference between i) the difference of the eligible times and ii) the difference be-
tween the completion times, both calculated in the baseline situation. More for-

mally, the threshold is defined as ∆T
T21,T12

= ∆pq

T21,T12
−
(
S
(T21,T12)
m − S(T12,T21)

m

)
.

Following the example in Figures 3a - 3d, ∆pq

T21,T12
= Qpq

T21
−Qpq

T12
= 1 and,

thus, the value of the threshold is ∆T
T21,T12

= ∆pq

T21,T12
−
(
S
(T21,T12)
m − S(T12,T21)

m

)
=

1− (25− 26) = 2. Indeed, during the execution of the assembly process, if the
starting time of operation T21 experiences a delay bigger than the threshold,
then the opposite constraint (T12, T21) guarantees a shorter completion time
than the opposite one.

The ∆T
T21,T12

provides a threshold value to identify if a delay of the start
time of an operation causes the baseline schedule to be no longer optimal and,
hence, it should be modified. This consideration will be used in the reactive step
to provide an alarm and trigger possible modifications of the schedule during
the execution of the process.

4.2 Reactive step

The reactive step is applied at the execution phase, taking into consideration
the actual duration of the operations under the hypothesis that this information
becomes known (available) only when an operation is completed. Before this
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(a) Three-job schedule in the baseline situation.

(b) Three-job schedule with 1 time unit delay on T21.

(c) Three-job schedule with 2 time units delay on T21.

(d) Three-job schedule with 3 time units delay on T21.

Figure 3: The delay effect on a three-job flow shop. The operations already
finished and for which the actual duration is undisclosed are shaded.
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event, it is assumed that durations will be the one hypothesized in the predictive
step. We also assume to be able to identify a delay of an operation as soon as
its completion time become larger than the one in the baseline schedule.

Every time a delay of an operation is identified, the reactive policy evaluates
if the constraints associated to that operation included in the set EDC are still
optimal. This step grounds on the definition of the state space Ω, i.e., a sequence
of states ω(p, t) varying over time t, defined as ω(p, t) = (O,F, S, dO) ∈ Ω. Each
state is fully described by:

• O, set of operations in execution at time t;

• F , set of completed operations at time t;

• S, set of starting times of the operations. For the operations in O or F ,
the starting times are already defined, while for operations neither in O
nor in F , the starting times are not yet decided;

• dO(o, t), set of durations of operations in execution (o ∈ O) at time t.

The reactive step requires the definition of a probability threshold CT repre-
senting the limit probability to trigger a modification of the baseline schedule.
It could be defined as the inclination to modify the baseline schedule during the
reaction step. The smaller the CT , the higher the probability to change. The
reactive procedure is described in Algorithm 1.

Reactive-Procedure

1 ω(p, 0) == (0, ∅, 0, 0)
2 While F <> V
3 t = t+ 1
4 If dO(x, t)− S(x) = px, ∀x ∈ O
5 F = F + x
6 Else
7 dO(x, t) = dO(x, t) + 1
8 If x 6∈ O ∧ x 6∈ F ∧ z ∈ F, ∀z ∈ (z, x) ∈ E
9 If (k, x) ∈ EDC ∧ P

[
∆p

k,x(t) > ∆T
k,x

]
> CT

10 EDC = EDC − (k, x) + (x, k)
11 O = O + x
12 S(x) = t
13 Update ∆T

14 Else
15 O = O + x
16 S(x) = t
17 End

Algorithm 1: Reactive step procedure.
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The algorithm models the execution of the operations starting from t = 0
with initial state ω(p, 0) = (0, ∅, 0, 0) and finishes when all the operations are
completed, i.e., F = V (steps 1-2). It increases the time t together with the
durations of operations in execution; every time an operation is completed, the
set F is updated (steps 3-7). If there is an operation x that can start because
all its predecessors are completed (step 8), it is put into execution and added to
the set of ongoing operations O (steps 15-16). On the contrary, if its execution
is constrained by the completion of another operation k due to a precedence
included in EDC (step 9), then the algorithm checks whether the constraint
(k, x) remains optimal for the values in p. In other words, the algorithm checks
whether operation x has to wait the completion of operation k respecting the
constraint (k, x) ∈ EDC , or not.

This evaluation is done through the estimation of the probability that the
actual difference between the eligible times ∆p

k,x(t), estimated at time t and
considering values in p, exceeds the threshold identified in the predictive step:

P
[
∆p

k,x(t) > ∆T
k,x

]
. If this probability exceeds the threshold CT , the reaction

is applied by inverting the constraint (k, x) and operation x is put in execution
(steps 10-12). If the reaction is applied, the set containing all the thresholds ∆T

is updated because the sensitivity analysis done during the predictive step could
be not valid anymore. The new threshold is estimated as depicted in Figures 3a
- 3d in Section 4.1, with the difference that the precedence constraint between
job 1 and the previous one has been reversed.

The P
[
∆p

k,x(t) > ∆T
k,x

]
is estimated considering the duration of the each op-

eration in O preceding k and their distributions p̃, ∀u ∈ prec(k), where prec(k)
is the set of operations preceding k (Equation (5)).

P
[
∆p

k,x(t) > ∆T
k,x

]
=

= P
[
Qp

k −Q
p
x > ∆T

k,x | t, dO(u, t), p̃u
]

(5)

= P
[
maxu∈prec(k)(S

p
u + pu)−Qp

x > ∆T
k,x | t, dO(u, t), p̃u

]
(6)

= P
[
maxu∈prec(k)(S

p
u + pu − dO(u, t)) > ∆T

k,x +Qp
x − t | t, p̃u

]
(7)

The probability that ∆p
k,x(t) is bigger than ∆T

k,x is equal to the probability
that the difference between the completion time of the last preceding opera-
tion of k and the eligible time of x is bigger than ∆T

k,x (Equation (6)). In this
case, maxu∈prec(k)(S

p
u + pu) represents the completion time of the last preced-

ing operation of k, with pu as the actual duration of operation u, and Qp
x as

the eligible time of x. Obviously, since operation k is not yet eligible at time
instant t, Sp

u + pu is unknown for at least one operation u preceding k, thus, its
distribution p̃u and its on-going duration dO(u, t) affect the estimation.

In other words, we estimate the probability (Equation (7)) that the residual
duration of the operations preceding k at time t (Sp

u +pu−dO(u, t)), representing
the time units to be waited until operation k becomes eligible, is bigger than
the time units until the threshold is reached (∆T

k,x + Qp
x − t). This estimation

is executed at time t, where dO(u, t) and Qp
x are deterministic values, since
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the first one is the on-going duration of operation u and the second one is the
eligible time of operation x. In the cases where not all the predecessors of k are
on-going, thus, dO(u, t) is unknown for at least one u∗ ∈ prec(k), its starting
time Sp

u∗ has to be estimated considering its set of predecessors (e.g., the set
v ∈ prec(u∗)) following the same logic as described for the set prec(k).

5 Application

5.1 Use-case presentation

The proposed approach has been validated on an industrial case considering
the assembly process of the door of a car. The process takes as input the
structure of the door and applies additional components using different assembly
technologies.

This process has been implemented by the OEM company providing the
industrial case adopting an assembly line following the layout in Figure 1, com-
posed of a set of stations (4 in the example) that operate a specific assem-
bly technology and a handling robot to transport the door and its component
through the line, moving on its track. A control unit (CU) as well as input and
output stations are also present.

This system operates an assembly process as described in Figure 2. The
assembly operations to be executed are reported in Figures 4a - 4d and entails
one or more of the following operations:

1. the assembly of two hinges for the opening mechanism through a nut
pressing operation (Figure 4a);

2. the assembly of a reinforcement bar through a spot welding operation
(Figure 4b);

3. the joining of the resulting inner part (in Figure 4c) and outer part of the
door (Figure 4d) through a roll hemming operation.

Between any pair of operations, the handling robot transports the inner part of
the door from a station to the following one.

5.2 Testing phase

In order to test the presented approach we consider three different assembly
processes, with 1, 2 or 3 of assembly operations and, thus, 5, 7 or 9 operations
respectively, including the input and output operations, and the transport ones
between assembly operations.

For the cases with 7 and 9 operations, we assume the absence of buffers,
while for the case with 5 operations we assume the presence of a one-position
buffer after the assembly station. In addition, the duration of every operation
is subject to uncertainty (human execution for the input and output operations

13



(a) The assembly of hinges through a nut
pressing operation.

(b) The assembly of the reinforcement bar
through spot welding operations.

(c) The assembled inner part of the door. (d) The outer and inner parts of the door
are joined through a roll hemming opera-
tion.

Figure 4: Assembly steps for assembly a door of a car.

and micro stops for the others). Thus, we assume stochastic processing times
modelled through uniform or triangular distributions.

In the following testing phase, the parameters of the distributions are ran-
domly generated by choosing the average value (µ for the uniform distributions
and the mode value pv for the triangular ones) in the range [2, 50], and the
lower and upper limits (ll and ul) using a parameter λ ∈ (0, 1). For the uniform
distribution, the µ value is exactly the average value between the lower and the
upper limit, thus ll = µ(1−λ) and ul = µ(1+λ). For the triangular distributed
variables, the mode value pv is closer to the lower limit than to the upper one in
order to provide a reasonable model, thus, ll = pv(1− λ/2) and ul = pv(1 + λ).

In a first experimental phase, we use this model for the investigation of
the average behaviour of the approach by generating a series of instances using
different values of λ, and a number of jobs equal to 5 or 10. For each combination
of the values of λ and number of jobs, 5 different instances have been generated
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and analyzed by applying Algorithm 1 considering 10, 000 samples from the set
p and different quantiles q as well as Change Threshold CT . The parameters
used are summarized in Table 2. This test is used to evaluate the impact of the

Parameter Range

λ 0.3 0.5 0.9 0.95
q 0.1 0.3 0.5 0.7 0.9
CT 0.1 0.3 0.5 0.7 0.9

Table 2: Set of parameters used in the experimental phase.

risk aversion used in the predictive step (q) and the tendency to change used
during the reaction step (CT ).

For each instance, the proposed approach has been applied and compared
with i) the completion time obtained through the application of the predictive
step only (P-only), ii) a conventional dispatching algorithm and iii) the best pos-
sible scheduling solution identified by the algorithm in [3], under the hypothesis
that processing times are given. In particular, the conventional dispatching
algorithm applies the First Come First Served rule combined with the Fewest
Remaining Operations rule [? ] (FCFS/FRO). In this way, the FCFS is applied
but, if two or more transport activities ask for the handling robot at the same
time instant, the one with fewest reaming operations is one served first, thus
applying the FRO rule.

On the other hand, the algorithm used for the third comparison is able to
identify the best solution of the deterministic problem in 100% of the cases (no
limit for the computational time is enforced). The performance of the presented
approach has been measured in terms of the Average Quadratic Distance (AQD)
of the estimated cumulative density function (cdf ) of the completion time from
the best solution completion time cdf and then compared to the same measure
for the P-only and theFCFS/FRO cases.

The AQD between two cdf s represents the measure of the area between
them, that is the difference between their integrals. If the distribution functions
have different shapes, it could happen that the two cdf s have an intersection,
thus there is no dominance in terms of quantiles (Figure 5b). In this case, the
AQD only gives a partial understanding. When one of the two cdf s dominates
the other one, as depicted in Figure 5a, the AQD represents the absolute dif-
ference between the two distributions and, thus, it is a valuable measure of the
performance.

Moreover, to provide a more detailed comparison of the cdf s associated to
the application of the predictive-reactive, the P-only and the FCFS/FRO, we
compare their quantiles (see Figures 5a-5b). The results are reported in Tables
7-12 (in Appendix) where for each combination of the values of CT and q,
and for different quantiles, we show the difference between the value of the
P-only ’s cdf and the predictive-reactive one. Aggregated results are reported
in Table 3. It is possible to see that, for the three quantiles analyzed (10th,
50th and 90th) this difference is always positive or equal to 0, showing that
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(a) Comparison between distribution func-
tions with the same shape.

(b) Comparison between distribution
functions with different shapes.

Figure 5: AQD as the measure of the area between distribution functions and
the representation of different quantiles.

the predictive-reactive’s cdf lies below the P-only cdf. Similar results have been
obtained for the FCFS/FRO cdf. As a consequence, the AQD represents a
valuable performance measure in comparison with the P-only approach.

5 Jobs

Q10 Q50 Q90

5-uniform 1.6 1.7 0.1
5-triangular 1.4 1.5 0.1
7-uniform 1.5 1.6 0.1

7-triangular 1.3 1.4 0.1
9-uniform 1.6 1.7 0.1

9-triangular 1.3 1.5 0.2

10 Jobs

Q10 Q50 Q90

5-uniform 1.2 1.0 0.1
5-triangular 1.0 0.9 0.1
7-uniform 1.4 1.3 0.1

7-triangular 1.0 0.9 0.2
9-uniform 1.8 1.6 0.1

9-triangular 1.1 1.0 0.3

Table 3: Average difference between the 10th, 50th and 90th quantilesP-only ’s
cdf and the predictive-reactive cdf.

The results of the tests in terms of the AQD are reported in Tables 13-18
(in Appendix), each one referring to a different set of instances where both the
number of operations to be executed (5, 7 or 9) and the distributions associated
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to the processing times (uniform or triangular) vary. Each table reports the
value of the AQD between the solution obtained with the predictive-reactive
approach (PR), the P-only one, or the FCFS/FRO approach against the optimal
solution obtained under complete information.

The results show that the PR always performs better than the P-only and
the FCFS/FRO, i.e., the value of the distance between the cdf obtained with the
PR approach and the one associated to the optimal solution is always smaller
or equal to the one obtained with alternative approaches. In the cases where
the performance of PR and P-only are equal, it always means that no reaction
has been operated in the reactive step and, thus, the schedule obtained through
the predictive step was robust enough (or even overcautious). This happens in
experiments with the highest value of q, where longer processing times are used
in the baseline schedule and, consequently, the probability of the operations to
last longer at the execution phase is low. On the other side, whenever the value
of the AQD for PR is lower than the P-only one, then the reactive step improves
the schedule by reacting to the occurred changes.

It is possible to claim that the PR approach performs better when the di-
mension of the problem under study is smaller in terms of both the number of
operations and jobs. Taking as an example the experiments with 5, 7 and 9 op-
erations with uniform-distributed processing times (Tables 13-15 in Appendix),
it is possible to verify that, with the increasing of the number of operations
i) the AQD increases and ii) the difference between PR and P-only decreases.
Consider the results with λ = 0.3 for the instances with 5 and 7 operations
summarized in Figures 6a - 6b for the uniform case. The performance of the PR
approach is much better than the P-only one in the 5-operation case (Figure
6a), and slightly better than the P-only one in the 7-operation case (Figure 6b).
This behaviour can be explained with the fact that, as the number of operations

(a) In the 5-operation case, the AQD of
the PR is always lower than the P-only
one.

(b) In the 7-operation case, the AQD of
the PR is slightly lower than the P-only
one.

Figure 6: Comparison between the PR and P-only approaches in the 5- and
7-operations cases with uniformly distributed processing times.

are small, every single decision has a higher impact on the objective function
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and, hence, being able to react at the right time as an important impact. On the
contrary, with a larger number of operations, the possibility to absorb possible
deviations within a schedule without the need of modifying it is more likely to
occur.

On the other side, the parameter λ (influencing the generation of the pro-
cessing times distribution) seems not to have any impact on the results (namely
on the performance of the PR approach). In fact, in some cases, a smaller
value for λ entails better performance than with a larger value (e.g., for the
5-operation instances in Table 13, in Appendix); in other cases, this behaviour
is not present (e.g., for the 7-operation instances in Table 14, in Appendix). In
Table 4, a comparison is provided considering the maximum a and the minimum
value of the AQD in respect to the values of λ for both the 5 and 7 operations
cases with uniform-distributed processing times. It is possible to see that for
the 5-operation case both the minimum and maximum values increase with the
increasing of λ; this behaviour is not true for the 7-operation case.

λ
5 operations 7 operations

max AQD min AQD max AQD min AQD

0.3 3.589 2.713 104.043 102.595
0.5 4.909 3.095 66.419 61.229
0.9 14.901 11.829 97.585 90.206
0.95 17.910 13.902 107.323 101.653

Table 4: Comparison of the impact of λ on the PR performances for the 5- and
7-operation cases with uniformly distributed processing times.

Moreover, also the distribution of the processing times has an impact on
the performance. Indeed, all the considered approaches perform better in the
instances with uniformly distributed processing times, in comparison with tri-
angularly distributed ones. This is an expected result for robust approaches. In
fact, as the difference between extreme scenarios and expected values increases,
it is more difficult to protect the schedule. With regards to the shape of the
two distributions, given a quantile, i.e., q = 0.9, the range of possible values in
the remaining 0.1-tail is larger with triangular distributions than with uniform
ones, and consequently the impact on the schedule can be higher.

Beyond these considerations, it was not possible to identify a quantitative
model explaining the behaviour of the two approaches respect to a variation
of the considered parameters, nevertheless, few additional remarks can be pro-
vided.

In some cases, the PR improves the P-only schedule for all the combinations
of q and CT , e.g., in the 5-operation case in Table 13, in Appendix (for which
the case with λ = 0.9 and q = 0.9 is reported in Figure 7a); in other cases, the
PR is beneficial in a subset of these combinations of parameters only, e.g., in
the 9-operation case in Table 15, in Appendix (for which the case with λ = 0.95
and q = 0.9 is reported in Figure 7b).
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(a) In the 5-operation case with uniform
distributions and λ = 0.9 and q = 0.9, the
PR approach performs better in terms of
the AQD for any value of CT .

(b) In the 9-operation case with uniform
distributions and λ = 0.95 and q = 0.9,
the PR approach performs better in terms
of the AQD only for CT = 0.1.

Figure 7: Comparison between the PR and P-only approaches in the 5- and
9-operations cases with uniformly distributed processing times.

This entails a difficulty in tuning the parameters of the approach to obtain
the best performance in terms of robustness. In fact, in the first case, it is
possible to match the aversion to risk and the agility to react, by tuning the
parameter q and CT respectively. For example, in the case of a very fast han-
dling robot, the user can select a low CT or, in the case the uses prefers to have
a more stable schedule (minimize the number of modifications operated in the
reaction step), an higher q can be selected. In the second case, the only viable
approach to tune the parameters of the approach is through a testing phase
during or before the operating phase of the assembly line, to provide the best
benefit.

A second set of experiments has been carried out to test the behaviour of the
approach in case of extreme and rare cases where the duration of the operations
can be longer. We generated 7-operation instances whose processing times are
modelled through triangular distributions with longer right tails (λ ∈ {1.5, 1.8}).
From an industrial point of view, these distributions model cases where the
operations, e.g., the loading of part or a component, have a small variability
but, in case a problem arises then their duration is much longer, although these
events have a small occurrence probability. Moreover, we limited the sampling
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phase for the testing to values pi in the rightmost 0.1 tail, i.e., P [p̃i = pi] ≥ 0.9,
with i = [0, . . . ,m]. The results of these experiments are reported in Table 5.

L
a
m
b
d
a

1.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 2.818 2.871 2.731 2.772 2.818 3.265 3.986
0.3 2.146 2.249 2.302 2.340 2.492 2.730 2.904
0.5 2.180 1.756 1.762 1.860 1.905 2.140 2.336
0.7 2.308 2.309 2.431 2.319 2.408 2.792 2.988
0.9 2.145 2.157 2.213 2.290 2.434 2.213 4.960

1.8

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 3.210 3.265 3.265 3.219 3.215 3.380 4.653
0.3 3.300 3.290 3.239 3.239 3.239 3.424 4.578
0.5 3.508 3.495 3.437 3.437 3.437 3.613 3.989
0.7 3.970 3.970 3.970 3.313 3.313 3.444 3.481
0.9 3.253 3.253 3.253 3.253 3.253 4.147 4.420

Table 5: AQD between the cdf of the optimal solution for the predictive-only
(P-only) and the predictive-reactive (PR) approaches considering only extreme
cases.

These results show that the PR approach is always beneficial in the extreme
cases. For both values of λ, the AQD in the PR case is always smaller or equal
to the ones related to alternative approaches, with a clear impact of parameter
CT . In some cases, e.g., with λ = 1.5 and a high value of q, the selection of CT
significantly affects the results that vary from 1.756 to 2.180, in the case with
q = 0.5.

Hence, the PR approach is significantly relevant to protect the schedule in
case of extreme events with low occurrence probability but a consistent impact
on the schedule.

5.3 Execution time

The presented approach has been implemented on MATLAB version R2015a
and executed on a laptop with an Intel Core i5 processor at 2.4GHz and 8GB
RAM. The computation times (in seconds) for the different instances are re-
ported in Table 6, with the details of the time spent for i) the predictive step, ii)
the sensitivity evaluation and iii) the reactive step. It is possible to see that the
most time consuming phases are the predictive and sensitivity steps, intended to
be operated off-line, before the execution of the schedule. On the contrary, the
reactive step always takes less than 1 second to be executed, with a maximum
value of 0.177 seconds for the 9 uniform-distributed operations case. Hence, the
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execution of the reactive step is compatible with the on-line utilization of the
proposed approach.

5 jobs 10 jobs
predictive sensitivity reaction predictive sensitivity reaction

5 uniform 0.080 0.370 0.0154 0.250 2.520 0.045
5 triangular 0.070 0.240 0.0168 0.220 2.310 0.029
7 uniform 0.580 1.390 0.0195 13.730 9.780 0.087

7 triangular 1.140 1.710 0.0294 11.420 9.790 0.069
9 uniform 15.510 4.880 0.0434 836.670 40.040 0.177

9 triangular 0.990 2.280 0.0372 794.400 34.080 0.152

Table 6: Computation times.

Besides the reaction time, also the time spent to update the list of thresh-
olds every time a reaction is performed has to be considered, with the aim to
assess the possibility of running the proposed reactive approach in real-time.
The results for the update time are in line with the sensitivity ones. When
this time is very low, like for 5-job 7-uniform-operation case, it can be executed
on-line, during the processing of the batch. In other cases, when the sensitivity
analysis requires more calculations, e.g., the 34 seconds measured for the 10-job
9-triangular-operation case, an on-line execution of the approach is not feasi-
ble. In these cases, two approaches can be pursued: the first one is to execute
parallel computing to reduce the computational time since the calculations for
the sensitivity analysis are independent from each other; the second one is to
set up sensitivity tables during the off-line computation, before the execution
of the process. Through the second approach, during the on-line process, the
value stored will be directly used when a reaction is needed.

6 Conclusions

In this paper, we presented a predictive-reactive flow shop scheduling approach
tailored to production lines with a reduced set of shared resources and stochas-
tic processing times. The aim of the approach is to provide a robust schedule
considering a batch of repeated jobs of the same type to be scheduled through
two steps, the first one able to identify a baseline schedule before the execution
of the process and the second one able to verify the optimality of the schedule
during the execution of the process and to react to the occurrence of unexpected
events, namely a deviation from the expected processing times. The industrial
motivation for the proposed approach stems from the need of managing modern
reconfigurable and automated assembly lines where, due to the intrinsic im-
possibility to balance them, the scheduling of operations competing for shared
resources (e.g., a handling robot or a transporter) is a relevant problem. The ap-
proach has been extensively tested on instances generated from a real industrial
case in the automotive sector addressing the assembling of a door.
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We demonstrated how the use of the approach could be beneficial in a wide
range of cases and particularly valuable when coping with extreme and rare
events, i.e., when the processing time of an operation could deviate strongly
from the expected values although with a very low occurrence probability. The
approach has been tested on instances with 9 operations at most, also demon-
strating computation times compatible with the declared on-line utilisation.

Future development will investigate methods for selecting the quantile q to
be used in the predictive step grounding on the characteristics of the process and
the system, as well as the application to different classes of assembly systems.
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5 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.7 1.1 0.0 0.7 1.1 0.0 0.7 1.1 0.0 1.0 1.1 0.0 0.6 1.2 0.0
0.3 1.1 2.7 0.0 1.1 2.7 0.0 1.1 2.7 0.0 0.9 2.2 0.0 0.5 1.7 0.0
0.5 1.9 4.0 0.0 1.9 4.0 0.0 1.9 4.0 0.0 1.5 3.6 0.0 1.4 2.6 0.0
0.7 2.0 2.6 0.0 1.9 2.6 0.0 1.8 2.4 0.0 1.0 1.8 0.0 0.4 1.3 0.0
0.9 1.4 1.9 0.0 1.0 1.9 0.0 1.0 1.9 0.0 0.5 0.9 0.0 0.3 0.7 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.8 0.1 3.2 1.0 0.1 0.8 0.9 0.6 0.8 0.9 0.5 0.8 0.8 0.8 0.8
0.3 1.0 0.6 0.0 0.5 1.1 0.0 0.4 1.1 0.0 0.4 1.1 0.0 0.4 0.5 0.0
0.5 0.1 0.2 1.8 0.2 0.2 0.5 0.2 0.2 0.5 0.2 0.2 0.5 0.5 0.0 0.5
0.7 1.0 0.6 0.0 1.0 0.6 0.0 1.0 1.0 0.0 1.0 1.0 0.0 0.9 0.3 0.0
0.9 1.6 0.7 0.0 1.6 0.7 0.0 1.6 0.7 0.0 1.1 0.7 0.0 0.1 0.1 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.2 3.6 0.0 0.6 3.6 0.0 0.6 3.8 0.0 0.6 4.0 0.0 0.4 3.6 0.0
0.3 2.8 2.8 0.0 2.8 2.0 0.0 2.4 2.0 0.0 2.4 1.8 0.0 2.4 1.8 0.0
0.5 2.4 0.8 0.0 1.8 0.8 0.0 1.8 0.8 0.0 1.8 0.6 0.0 0.4 0.4 0.0
0.7 2.6 2.8 0.0 2.6 2.4 0.0 2.6 2.4 0.0 1.6 2.4 0.0 0.6 0.4 0.0
0.9 2.4 1.6 0.0 2.6 1.6 0.0 2.6 1.2 0.0 1.8 0.4 0.0 0.6 0.0 0.0

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 3.0 2.8 0.0 3.0 2.8 0.0 3.8 3.0 0.0 3.8 3.0 0.0 1.6 0.8 0.0
0.3 2.4 0.6 0.0 2.4 0.6 0.0 2.4 0.8 0.0 2.2 0.8 0.0 3.2 5.0 0.0
0.5 1.4 1.0 0.0 2.8 2.0 0.0 3.0 1.0 0.0 5.2 1.2 0.0 8.2 3.6 0.0
0.7 2.6 0.6 0.0 2.0 0.8 0.0 1.6 0.0 0.0 1.6 3.2 0.0 4.4 5.2 0.0
0.9 3.4 1.0 0.0 3.0 0.2 0.0 0.4 2.4 0.0 1.2 5.2 0.0 2.0 5.4 0.0

10 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.5 0.5 0.2 0.6 0.6 0.2 0.5 0.7 0.2
0.3 0.2 0.6 0.4 0.4 0.8 0.1 0.6 1.1 0.2 0.5 1.0 0.2 0.4 0.8 0.2
0.5 0.7 1.3 0.2 0.8 1.4 0.2 1.0 1.5 0.2 0.8 1.4 0.2 0.8 1.0 0.2
0.7 0.8 1.0 0.0 1.0 1.2 0.0 1.0 1.1 0.0 0.7 0.9 0.0 0.5 0.7 0.0
0.9 0.7 0.7 0.0 0.7 0.8 0.0 0.7 0.8 0.0 0.5 0.5 0.0 0.2 0.5 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.6 0.5 0.9 0.7 0.5 0.2 0.7 0.6 0.2 0.7 0.6 0.2 0.6 0.6 0.2
0.3 0.7 0.5 0.0 0.6 0.7 0.0 0.5 0.7 0.0 0.5 0.7 0.0 0.3 0.5 0.0
0.5 0.9 0.8 0.5 0.8 0.8 0.1 0.8 0.8 0.1 0.8 0.8 0.1 0.7 0.7 0.1
0.7 1.0 0.8 0.0 1.0 0.8 0.0 1.0 0.9 0.0 1.0 0.9 0.0 1.0 0.6 0.0
0.9 1.2 0.9 0.0 1.2 0.9 0.0 1.2 0.9 0.0 1.1 0.9 0.0 0.7 0.7 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 1.1 1.4 0.0 1.2 1.5 0.0 1.3 1.6 0.0 1.2 1.7 0.0 1.1 1.3 0.1
0.3 2.1 1.2 0.0 2.1 1.1 0.0 2.1 1.2 0.0 2.2 1.0 0.0 1.7 0.9 0.0
0.5 1.3 1.2 0.2 1.2 1.2 0.2 1.2 1.1 0.1 1.1 0.9 0.1 0.9 0.9 0.1
0.7 2.1 1.0 0.9 2.1 0.9 0.2 2.0 1.1 0.2 1.6 0.7 0.2 1.5 0.3 0.2
0.9 1.1 1.1 0.1 1.0 1.1 0.0 1.0 0.9 0.0 0.9 0.8 0.0 0.6 0.8 0.0

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 2.5 2.1 0.0 2.5 2.1 0.0 2.7 2.1 0.0 2.7 2.2 0.0 2.2 1.8 0.0
0.3 1.9 1.6 0.0 2.0 1.6 0.0 2.0 1.6 0.0 2.1 1.6 0.0 1.1 0.7 0.0
0.5 1.7 1.8 0.0 1.4 2.0 0.0 1.4 1.8 0.0 1.0 1.3 0.0 0.4 0.9 0.0
0.7 2.4 1.5 0.0 2.3 1.6 0.0 2.2 1.4 0.0 1.6 0.8 0.0 1.0 0.4 0.0
0.9 2.3 1.8 0.0 2.2 1.5 0.0 1.7 1.1 0.0 1.4 0.6 0.0 1.2 0.5 0.0

Table 7: Difference between the 10th, 50th and 90th quantiles predictive-only’s
cdf and the predictive-reactive cdf, for the cases with 5 and 10 jobs, and 5
uniformly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.2 0.0
0.3 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
0.5 1.0 1.2 0.0 1.0 1.2 0.0 1.0 1.2 0.0 1.0 1.2 0.0 0.5 1.0 0.0
0.7 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0
0.9 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.2 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.2 0.2 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.1
0.3 0.6 0.4 0.2 0.6 0.0 0.2 0.2 0.0 0.6 0.0 0.0 0.2 0.0 0.0 0.2
0.5 0.6 0.4 0.0 0.6 0.4 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 1.6 0.4 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.8 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 1.6 1.6 0.0 0.8 1.6 0.0 0.2 0.6 0.0 0.2 0.0 0.0 0.2 0.4 0.0
0.3 1.2 1.2 0.0 1.0 0.8 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.0 0.4 0.0
0.5 1.6 1.6 0.0 1.4 1.2 0.0 0.8 0.6 0.0 0.2 0.8 0.0 0.2 0.8 0.0
0.7 1.8 0.8 0.0 0.8 0.2 0.0 0.8 0.6 0.0 0.8 0.6 0.0 0.6 0.6 0.0
0.9 0.4 1.6 0.0 0.6 0.6 0.0 0.6 0.6 0.0 0.8 0.8 0.0 0.8 1.0 0.0

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.8 0.0 0.0 0.8 0.2 0.0 0.8 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0
0.3 0.0 0.2 0.0 0.4 0.0 0.0 0.4 0.2 0.0 0.4 0.0 0.0 0.4 0.0 0.0
0.5 0.2 0.4 4.0 0.2 0.8 1.0 0.2 0.8 1.0 0.2 0.6 1.0 0.0 0.6 1.0
0.7 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.4 0.0 0.0 0.2 0.0 0.0 0.2 0.0
0.9 0.0 0.6 0.0 0.0 0.6 0.0 0.0 0.6 0.0 0.0 0.6 0.0 0.0 0.6 0.0

10 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.1 0.3 0.0 0.1 0.3 0.0 0.1 0.3 0.0 0.1 0.3 0.0 0.1 0.2 0.0
0.3 0.2 0.1 0.0 0.2 0.1 0.0 0.2 0.1 0.0 0.2 0.1 0.0 0.1 0.1 0.0
0.5 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.2 0.3 0.0
0.7 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0
0.9 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.1 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.3 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.6 0.5 1.5 0.4 0.4 0.5 0.3 0.3 0.1 0.3 0.2 1.0 0.3 0.2 1.0
0.3 0.5 0.5 0.0 0.5 0.4 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0
0.5 0.6 0.4 0.5 0.5 0.4 1.3 0.4 0.3 0.3 0.3 0.0 0.7 0.3 0.0 0.7
0.7 0.4 0.3 0.0 0.3 0.1 0.1 0.3 0.1 0.0 0.3 0.1 0.0 0.3 0.1 0.0
0.9 0.3 0.5 1.0 0.1 0.1 0.3 0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.1 0.4

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.3 0.9 0.7 0.3 0.8 0.7 0.3 0.7 0.3 0.2 0.3 0.9 0.0 0.0 0.9
0.3 0.4 0.8 0.5 0.2 0.7 0.5 0.2 0.6 0.5 0.0 0.1 0.5 0.0 0.0 0.8
0.5 0.3 0.6 1.7 0.3 0.4 0.3 0.3 0.3 0.3 0.1 0.0 0.3 0.0 0.1 2.0
0.7 0.3 0.9 1.1 0.3 0.6 1.1 0.1 0.2 0.4 0.0 0.1 1.0 0.0 0.0 1.0
0.9 0.3 0.6 0.8 0.2 0.3 0.7 0.1 0.0 0.5 0.0 0.1 0.5 0.0 0.1 0.5

Table 8: Difference between the 10th, 50th and 90th quantiles predictive-only’s
cdf and the predictive-reactive cdf, for the cases with 5 and 10 jobs, and 5
triangularly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.5 0.5 0.2 0.6 0.6 0.2 0.5 0.7 0.2
0.3 0.2 0.6 0.4 0.4 0.8 0.1 0.6 1.1 0.2 0.5 1.0 0.2 0.4 0.8 0.2
0.5 0.7 1.3 0.2 0.8 1.4 0.2 1.0 1.5 0.2 0.8 1.4 0.2 0.8 1.0 0.2
0.7 0.8 1.0 0.0 1.0 1.2 0.0 1.0 1.1 0.0 0.7 0.9 0.0 0.5 0.7 0.0
0.9 0.7 0.7 0.0 0.7 0.8 0.0 0.7 0.8 0.0 0.5 0.5 0.0 0.2 0.5 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.6 0.5 0.9 0.7 0.5 0.2 0.7 0.6 0.2 0.7 0.6 0.2 0.6 0.6 0.2
0.3 0.7 0.5 0.0 0.6 0.7 0.0 0.5 0.7 0.0 0.5 0.7 0.0 0.3 0.5 0.0
0.5 0.9 0.8 0.5 0.8 0.8 0.1 0.8 0.8 0.1 0.8 0.8 0.1 0.7 0.7 0.1
0.7 1.0 0.8 0.0 1.0 0.8 0.0 1.0 0.9 0.0 1.0 0.9 0.0 1.0 0.6 0.0
0.9 1.2 0.9 0.0 1.2 0.9 0.0 1.2 0.9 0.0 1.1 0.9 0.0 0.7 0.7 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 1.1 1.4 0.0 1.2 1.5 0.0 1.3 1.6 0.0 1.2 1.7 0.0 1.1 1.3 0.1
0.3 2.1 1.2 0.0 2.1 1.1 0.0 2.1 1.2 0.0 2.2 1.0 0.0 1.7 0.9 0.0
0.5 1.3 1.2 0.2 1.2 1.2 0.2 1.2 1.1 0.1 1.1 0.9 0.1 0.9 0.9 0.1
0.7 2.1 1.0 0.9 2.1 0.9 0.2 2.0 1.1 0.2 1.6 0.7 0.2 1.5 0.3 0.2
0.9 1.1 1.1 0.1 1.0 1.1 0.0 1.0 0.9 0.0 0.9 0.8 0.0 0.6 0.8 0.0

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 2.5 2.1 0.0 2.5 2.1 0.0 2.7 2.1 0.0 2.7 2.2 0.0 2.2 1.8 0.0
0.3 1.9 1.6 0.0 2.0 1.6 0.0 2.0 1.6 0.0 2.1 1.6 0.0 1.1 0.7 0.0
0.5 1.7 1.8 0.0 1.4 2.0 0.0 1.4 1.8 0.0 1.0 1.3 0.0 0.4 0.9 0.0
0.7 2.4 1.5 0.0 2.3 1.6 0.0 2.2 1.4 0.0 1.6 0.8 0.0 1.0 0.4 0.0
0.9 2.3 1.8 0.0 2.2 1.5 0.0 1.7 1.1 0.0 1.4 0.6 0.0 1.2 0.5 0.0

10 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.4 0.7 0.5 0.0 0.0 0.4 0.9 1.0 0.3 1.3 1.2 0.3 1.3 1.2 0.3
0.3 0.1 0.4 1.1 0.4 0.4 0.2 1.1 1.2 0.5 1.1 1.2 0.5 1.1 1.2 0.5
0.5 0.3 0.5 0.6 0.5 0.2 0.0 1.0 1.0 0.2 1.0 1.0 0.2 1.0 1.0 0.2
0.7 0.3 0.3 0.0 0.9 1.0 0.0 1.2 1.0 0.0 1.2 1.0 0.0 1.2 1.0 0.0
0.9 1.0 0.8 0.0 1.3 1.0 0.0 1.3 1.0 0.0 1.3 1.0 0.0 1.3 1.0 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 1.6 1.5 0.0 1.6 1.5 0.0 1.6 1.5 0.0 1.6 1.5 0.0 1.6 1.5 0.0
0.3 1.4 1.4 0.0 1.4 1.4 0.0 1.4 1.4 0.0 1.4 1.4 0.0 1.4 1.4 0.0
0.5 2.5 2.1 0.0 2.5 2.1 0.0 2.5 2.1 0.0 2.5 2.1 0.0 2.5 2.1 0.0
0.7 2.4 2.2 0.0 2.4 2.2 0.0 2.4 2.2 0.0 2.4 2.2 0.0 2.4 2.2 0.0
0.9 2.7 2.3 0.0 2.7 2.3 0.0 2.7 2.3 0.0 2.7 2.3 0.0 2.7 2.3 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 2.1 3.3 0.3 2.1 3.3 0.3 2.1 3.3 0.3 2.1 3.4 0.3 2.0 3.1 1.1
0.3 3.0 2.6 0.2 3.2 3.0 0.2 3.4 2.7 0.1 3.0 3.4 0.2 2.8 2.9 0.2
0.5 2.2 2.1 0.0 2.2 2.2 0.0 2.4 2.4 0.0 2.3 1.9 0.0 2.3 2.0 0.0
0.7 3.3 2.8 0.2 3.4 2.8 0.2 3.0 2.3 0.2 2.9 2.3 0.3 2.9 2.3 0.3
0.9 3.8 2.9 0.0 3.6 2.5 0.0 3.3 2.5 0.0 3.3 2.5 0.0 3.4 2.5 0.0

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 4.6 4.2 0.0 4.6 4.2 0.0 4.6 4.4 0.0 4.6 4.3 0.0 4.6 4.4 0.0
0.3 5.0 4.1 0.0 5.0 4.1 0.0 5.0 4.1 0.0 4.9 4.1 0.0 5.2 4.1 0.0
0.5 5.3 3.9 0.0 5.3 3.9 0.0 5.3 3.9 0.0 5.3 3.9 0.0 5.3 4.0 0.0
0.7 5.2 3.9 0.0 5.2 3.9 0.0 5.2 3.9 0.0 5.2 3.9 0.0 5.2 3.9 0.0
0.9 4.8 4.4 0.0 4.8 4.4 0.0 4.8 4.4 0.0 4.8 4.4 0.0 4.9 4.4 0.0

Table 9: Difference between the 10th, 50th and 90th quantiles predictive-only’s
cdf and the predictive-reactive cdf, for the cases with 5 and 10 jobs, and 7
uniformly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.1 0.3 0.0 0.1 0.3 0.0 0.1 0.3 0.0 0.1 0.3 0.0 0.1 0.2 0.0
0.3 0.2 0.1 0.0 0.2 0.1 0.0 0.2 0.1 0.0 0.2 0.1 0.0 0.1 0.1 0.0
0.5 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.2 0.3 0.0
0.7 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0
0.9 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.1 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.3 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.6 0.5 1.5 0.4 0.4 0.5 0.3 0.3 0.1 0.3 0.2 1.0 0.3 0.2 1.0
0.3 0.5 0.5 0.0 0.5 0.4 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0
0.5 0.6 0.4 0.5 0.5 0.4 1.3 0.4 0.3 0.3 0.3 0.0 0.7 0.3 0.0 0.7
0.7 0.4 0.3 0.0 0.3 0.1 0.1 0.3 0.1 0.0 0.3 0.1 0.0 0.3 0.1 0.0
0.9 0.3 0.5 1.0 0.1 0.1 0.3 0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.1 0.4

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.3 0.9 0.7 0.3 0.8 0.7 0.3 0.7 0.3 0.2 0.3 0.9 0.0 0.0 0.9
0.3 0.4 0.8 0.5 0.2 0.7 0.5 0.2 0.6 0.5 0.0 0.1 0.5 0.0 0.0 0.8
0.5 0.3 0.6 1.7 0.3 0.4 0.3 0.3 0.3 0.3 0.1 0.0 0.3 0.0 0.1 2.0
0.7 0.3 0.9 1.1 0.3 0.6 1.1 0.1 0.2 0.4 0.0 0.1 1.0 0.0 0.0 1.0
0.9 0.3 0.6 0.8 0.2 0.3 0.7 0.1 0.0 0.5 0.0 0.1 0.5 0.0 0.1 0.5

10 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0
0.3 0.6 0.3 0.0 0.6 0.3 0.0 0.6 0.3 0.0 0.6 0.3 0.0 0.6 0.3 0.0
0.5 0.4 0.4 0.0 0.4 0.4 0.0 0.4 0.4 0.0 0.4 0.4 0.0 0.4 0.4 0.0
0.7 0.4 0.3 0.0 0.4 0.3 0.0 0.4 0.3 0.0 0.4 0.3 0.0 0.4 0.3 0.0
0.9 0.4 0.3 0.0 0.4 0.3 0.0 0.4 0.3 0.0 0.4 0.3 0.0 0.4 0.3 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.6 0.2 0.6 0.8 0.0 0.6 0.8 0.0
0.3 1.0 0.8 0.0 1.0 0.8 0.0 1.0 0.8 0.0 1.0 0.8 0.0 1.0 0.8 0.0
0.5 0.8 0.6 1.6 0.9 0.6 0.3 0.9 0.6 0.4 0.9 0.8 0.4 0.9 0.8 0.4
0.7 1.0 0.5 0.8 1.0 0.5 3.8 1.1 0.7 1.0 1.1 0.7 1.0 1.1 0.7 1.0
0.9 0.8 0.7 0.5 0.8 0.7 0.5 0.9 0.8 0.4 0.9 0.8 0.4 0.9 0.9 0.4

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.8 1.8 2.3 0.7 1.5 2.3 0.6 1.2 0.8 0.2 0.3 1.6 0.0 0.0 3.8
0.3 0.6 1.6 1.8 0.4 1.2 1.8 0.4 0.8 1.8 0.1 0.1 2.7 0.0 0.0 2.7
0.5 0.4 1.5 1.6 0.4 1.3 1.6 0.3 0.8 1.6 0.1 0.2 2.0 0.0 0.0 2.6
0.7 0.4 1.3 3.4 0.3 1.0 2.6 0.1 0.3 2.0 0.1 0.1 2.0 0.0 0.0 2.0
0.9 0.6 1.0 4.5 0.4 0.6 0.7 0.1 0.2 1.7 0.1 0.1 1.7 0.1 0.1 1.7

Table 10: Difference between the 10th, 50th and 90th quantiles predictive-only’s
cdf and the predictive-reactive cdf, for the cases with 5 and 10 jobs, and 7
triangularly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.4 0.7 0.6 0.2 0.2 0.6 0.6 0.3 0.4 0.8 0.8 0.4 0.8 0.8 0.4
0.3 0.3 0.6 1.1 0.1 0.2 0.3 0.7 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.4
0.5 0.2 0.1 0.6 0.6 0.3 0.6 0.9 0.5 0.4 0.9 0.5 0.4 0.9 0.5 0.4
0.7 0.4 0.3 0.0 1.1 0.8 0.0 1.1 0.8 0.0 1.1 0.8 0.0 1.1 0.8 0.0
0.9 0.6 0.2 0.0 0.8 0.6 0.0 0.8 0.6 0.0 0.8 0.6 0.0 0.8 0.6 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.9 0.9 0.0 0.9 0.9 0.0 0.9 0.9 0.0 0.9 0.9 0.0 0.9 0.9 0.0
0.3 0.9 0.8 0.0 0.9 0.8 0.0 0.9 0.8 0.0 0.9 0.8 0.0 0.9 0.8 0.0
0.5 1.8 1.5 0.0 1.8 1.5 0.0 1.8 1.5 0.0 1.8 1.5 0.0 1.8 1.5 0.0
0.7 1.6 1.3 0.0 1.6 1.3 0.0 1.6 1.3 0.0 1.6 1.3 0.0 1.6 1.3 0.0
0.9 1.6 1.4 0.0 1.6 1.4 0.0 1.6 1.4 0.0 1.6 1.4 0.0 1.6 1.4 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 2.3 1.6 0.1 2.3 1.7 0.1 2.4 1.8 0.1 2.3 2.0 0.1 2.1 1.4 0.2
0.3 3.3 1.5 0.0 3.3 1.5 0.0 3.3 1.6 0.0 3.6 1.4 0.0 2.6 1.2 0.0
0.5 1.8 2.1 0.4 1.7 2.1 0.4 1.8 1.9 0.3 1.6 1.6 0.3 1.7 1.7 0.3
0.7 3.3 0.9 1.9 3.3 1.0 0.5 3.1 1.4 0.5 2.7 0.5 0.5 2.7 0.5 0.5
0.9 1.4 1.6 0.2 1.0 1.6 0.0 1.0 1.3 0.0 1.1 1.5 0.0 1.1 1.5 0.0

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 3.3 2.7 0.0 3.3 2.7 0.0 3.3 2.7 0.0 3.3 2.8 0.0 3.3 2.8 0.0
0.3 2.5 3.0 0.0 2.6 3.0 0.0 2.6 3.0 0.0 2.9 3.0 0.0 2.9 2.9 0.0
0.5 3.4 2.7 0.0 3.4 2.7 0.0 3.4 2.7 0.0 3.4 2.7 0.0 3.4 2.7 0.0
0.7 3.3 2.5 0.0 3.3 2.5 0.0 3.3 2.5 0.0 3.3 2.5 0.0 3.3 2.5 0.0
0.9 2.8 2.7 0.0 2.8 2.7 0.0 2.8 2.7 0.0 2.8 2.7 0.0 2.8 2.7 0.0

10 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.6 1.3 1.0 0.0 0.0 0.8 1.6 1.7 0.6 2.4 2.2 0.6 2.4 2.2 0.6
0.3 0.3 0.7 2.0 0.7 0.6 0.5 2.0 2.1 0.8 2.0 2.1 0.8 2.0 2.1 0.8
0.5 0.5 0.8 1.1 1.0 0.5 0.1 1.8 1.8 0.4 1.8 1.8 0.4 1.8 1.8 0.4
0.7 0.5 0.5 0.0 1.6 1.7 0.0 2.1 1.8 0.0 2.1 1.8 0.0 2.1 1.8 0.0
0.9 1.7 1.3 0.0 2.2 1.8 0.0 2.2 1.8 0.0 2.2 1.8 0.0 2.2 1.8 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 2.8 2.5 0.0 2.8 2.5 0.0 2.8 2.5 0.0 2.8 2.5 0.0 2.8 2.5 0.0
0.3 2.4 2.3 0.0 2.4 2.3 0.0 2.4 2.3 0.0 2.4 2.3 0.0 2.4 2.3 0.0
0.5 4.2 3.6 0.0 4.2 3.6 0.0 4.2 3.6 0.0 4.2 3.6 0.0 4.2 3.6 0.0
0.7 4.0 3.7 0.0 4.0 3.7 0.0 4.0 3.7 0.0 4.0 3.7 0.0 4.1 3.7 0.0
0.9 4.6 3.9 0.0 4.6 3.9 0.0 4.6 3.9 0.0 4.6 3.9 0.0 4.6 3.9 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 3.8 6.1 0.5 3.8 6.2 0.5 3.8 6.1 0.5 3.9 6.3 0.5 3.6 5.8 2.1
0.3 5.4 4.6 0.4 5.7 5.3 0.4 6.1 4.9 0.1 5.3 6.0 0.3 5.0 5.2 0.3
0.5 4.0 3.7 0.0 4.0 4.0 0.0 4.4 4.4 0.0 4.1 3.4 0.0 4.1 3.6 0.0
0.7 5.9 5.0 0.3 6.0 4.9 0.3 5.4 4.1 0.3 5.1 4.1 0.5 5.2 4.1 0.5
0.9 6.7 5.1 0.0 6.5 4.4 0.0 5.9 4.4 0.0 5.9 4.4 0.0 6.0 4.4 0.0

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 7.6 6.9 0.0 7.6 6.9 0.0 7.6 7.3 0.0 7.6 7.2 0.0 7.6 7.3 0.0
0.3 8.3 6.8 0.0 8.3 6.8 0.0 8.3 6.8 0.0 8.2 6.9 0.0 8.7 6.9 0.0
0.5 8.8 6.5 0.0 8.8 6.5 0.0 8.8 6.5 0.0 8.8 6.5 0.0 8.8 6.7 0.0
0.7 8.6 6.5 0.0 8.6 6.5 0.0 8.6 6.5 0.0 8.6 6.5 0.0 8.6 6.5 0.0
0.9 7.9 7.3 0.0 7.9 7.3 0.0 7.9 7.3 0.0 7.9 7.3 0.0 8.2 7.3 0.0

Table 11: Difference between the 10th, 50th and 90th quantiles predictive-only’s
cdf and the predictive-reactive cdf, for the cases with 5 and 10 jobs, and 9
uniformly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0
0.3 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0
0.5 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0
0.7 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0
0.9 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.7 0.4 3.7 0.6 0.3 1.3 0.6 0.4 0.3 0.6 0.6 2.4 0.6 0.6 2.4
0.3 0.8 0.6 0.0 0.8 0.6 0.0 0.8 0.6 0.0 0.8 0.6 0.0 0.8 0.6 0.0
0.5 0.6 0.3 1.2 0.6 0.3 3.2 0.7 0.4 0.8 0.8 0.5 1.9 0.8 0.5 1.9
0.7 0.2 0.3 0.0 0.3 0.4 0.3 0.4 0.6 0.0 0.4 0.6 0.1 0.4 0.6 0.1
0.9 0.5 0.5 2.6 0.5 0.6 0.7 0.6 0.7 1.1 0.6 0.8 1.1 0.6 0.8 1.1

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.3 1.4 1.1 0.3 1.3 1.1 0.3 1.2 0.5 0.2 0.6 1.4 0.0 0.2 1.4
0.3 0.6 1.2 0.8 0.5 1.2 0.8 0.4 0.9 0.8 0.1 0.2 0.9 0.1 0.1 1.4
0.5 0.4 1.2 1.7 0.4 0.9 0.8 0.4 0.8 0.8 0.1 0.1 0.3 0.1 0.1 3.0
0.7 0.6 1.5 1.9 0.5 1.1 1.9 0.2 0.4 0.6 0.0 0.2 1.6 0.0 0.0 1.6
0.9 0.4 1.2 1.4 0.3 0.7 1.2 0.1 0.2 0.9 0.0 0.1 0.9 0.0 0.1 0.9

10 Jobs

L
a
m

b
d
a

0.3

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.5 0.4 0.0 0.5 0.4 0.0 0.5 0.4 0.0 0.5 0.4 0.0 0.5 0.4 0.0
0.3 0.8 0.5 0.0 0.8 0.5 0.0 0.8 0.5 0.0 0.8 0.5 0.0 0.8 0.5 0.0
0.5 0.6 0.5 0.0 0.6 0.5 0.0 0.6 0.5 0.0 0.6 0.5 0.0 0.6 0.5 0.0
0.7 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0
0.9 0.5 0.4 0.0 0.5 0.4 0.0 0.5 0.4 0.0 0.5 0.4 0.0 0.5 0.4 0.0

0.5

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.9

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 1.1 1.1 0.1 1.1 1.1 0.1 1.1 1.3 0.3 1.2 1.5 0.1 1.2 1.5 0.1
0.3 2.1 1.7 0.0 2.1 1.7 0.0 2.1 1.7 0.0 2.1 1.7 0.0 2.1 1.7 0.0
0.5 1.6 1.2 3.2 1.7 1.2 0.6 1.8 1.2 0.9 1.8 1.5 0.9 1.8 1.5 0.9
0.7 2.1 1.1 1.5 2.1 1.1 7.7 2.2 1.4 2.0 2.2 1.4 2.0 2.2 1.4 2.0
0.9 1.6 1.3 1.0 1.6 1.4 1.0 1.7 1.6 0.7 1.7 1.6 0.7 1.7 1.7 0.7

0.95

q
Change Threshold

0.1 0.3 0.5 0.7 0.9
Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

0.1 1.0 2.4 3.1 0.9 1.9 3.1 0.8 1.6 1.1 0.3 0.4 2.1 0.1 0.1 5.1
0.3 0.8 2.2 2.5 0.6 1.7 2.5 0.5 1.2 2.5 0.1 0.2 3.7 0.1 0.1 3.7
0.5 0.6 2.1 2.2 0.6 1.8 2.2 0.4 1.1 2.2 0.2 0.3 2.8 0.1 0.1 3.7
0.7 0.6 1.8 4.7 0.4 1.4 3.6 0.2 0.4 2.8 0.1 0.1 2.8 0.1 0.1 2.8
0.9 0.8 1.4 6.2 0.6 0.9 1.0 0.2 0.3 2.4 0.1 0.2 2.4 0.1 0.2 2.4

Table 12: Difference between the 10th, 50th and 90th quantiles predictive-only’s
cdf and the predictive-reactive cdf, for the cases with 5 and 10 jobs, and 9
triangularly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 3.514 3.508 3.529 3.478 3.589 4.097 4.176
0.3 2.971 2.991 2.997 2.926 3.066 3.988 4.246
0.5 3.628 3.654 3.664 3.670 3.775 4.422 5.100
0.7 2.779 2.796 2.748 2.773 2.916 3.637 4.875
0.9 2.725 2.713 2.736 2.763 2.922 3.597 4.786

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 4.406 4.407 4.407 4.291 4.740 5.849 6.435
0.3 4.326 4.323 4.232 4.157 4.566 5.661 6.745
0.5 4.255 4.140 4.142 4.144 4.823 5.919 6.982
0.7 3.368 3.377 3.402 3.491 4.596 5.533 6.103
0.9 3.977 3.974 3.975 3.095 4.909 5.660 6.144

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 11.829 11.830 11.840 11.798 12.145 16.098 17.011
0.3 12.635 12.660 12.763 13.059 13.426 16.185 17.123
0.5 12.147 12.204 12.186 12.795 14.551 16.313 17.342
0.7 12.033 12.176 12.474 12.607 14.901 15.765 16.983
0.9 11.982 12.494 12.659 12.810 14.544 15.641 16.878

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 15.038 15.082 15.130 15.211 15.699 22.200 23.323
0.3 13.902 14.088 14.457 14.612 16.686 20.852 22.231
0.5 15.393 15.661 15.944 16.356 17.388 22.943 24.092
0.7 14.637 14.795 14.917 15.028 16.438 21.597 22.874
0.9 15.519 15.702 15.935 16.241 17.910 23.120 25.001

10 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 4.086 4.154 4.338 4.908 7.319 7.752 8.892
0.3 4.117 4.390 4.667 5.872 7.547 8.101 9.234
0.5 4.480 4.757 4.949 6.038 7.507 7.908 9.012
0.7 1.742 1.829 2.462 2.758 2.767 3.224 4.124
0.9 2.096 2.486 2.888 2.958 2.958 3.341 5.213

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 3.916 3.916 3.916 4.179 6.228 6.401 7.564
0.3 3.418 3.450 3.593 4.459 5.322 5.808 7.019
0.5 5.323 5.602 6.651 8.690 8.690 8.690 10.023
0.7 6.544 7.217 8.971 9.845 9.845 9.845 11.023
0.9 6.905 7.828 8.888 8.958 8.958 8.958 10.234

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 15.400 15.414 15.507 15.574 15.990 25.122 27.234
0.3 17.684 17.797 17.768 17.821 20.552 29.194 29.987
0.5 16.514 16.515 16.559 16.672 18.297 25.375 25.987
0.7 14.190 14.483 15.409 16.468 17.343 19.787 20.342
0.9 15.064 15.621 16.497 16.791 17.726 21.203 21.987

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 19.253 19.253 19.253 19.253 19.253 25.361 26.128
0.3 20.038 20.038 20.038 20.038 20.038 23.373 24.099
0.5 19.599 19.599 19.599 19.599 19.599 23.331 23.878
0.7 19.657 19.666 19.765 19.879 19.802 22.756 22.998
0.9 20.002 20.050 20.510 20.158 20.190 22.776 23.347

Table 13: AQD between the cdf of the optimal solution for the predictive-only
(P-only) and the predictive-reactive (PR) approaches, using 5 and 10 jobs, and
5 uniformly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 102.595 102.604 102.604 102.623 102.680 102.680 102.998
0.3 103.706 103.715 103.715 103.731 103.731 103.731 104.274
0.5 103.998 104.015 104.015 104.043 104.043 104.043 104.877
0.7 102.757 102.763 102.770 102.802 102.802 102.802 103,556
0.9 103.295 103.308 103.339 103.339 103.339 103.339 104.033

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 62.431 62.514 62.823 63.424 64.785 64.958 65.566
0.3 61.452 61.509 61.752 63.117 63.918 64.003 64.998
0.5 62.519 62.679 63.213 63.878 64.363 64.425 64.565
0.7 61.229 61.638 62.313 62.747 63.084 63.189 64.927
0.9 64.591 65.017 65.549 66.085 66.419 66.565 67.223

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 92.140 92.196 92.304 92.022 95.739 100.216 100.877
0.3 92.563 92.730 92.966 93.642 97.166 98.294 99.231
0.5 91.869 92.333 92.813 94.100 96.681 97.237 98.332
0.7 93.506 93.909 95.114 96.613 97.585 97.662 98.915
0.9 90.206 90.903 91.965 93.204 94.347 94.784 98.147

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 102.035 102.257 102.473 103.373 107.323 106.897 108.832
0.3 103.018 103.601 104.122 106.274 105.997 106.564 107.733
0.5 103.587 104.848 106.084 106.506 106.049 106.773 107.288
0.7 101.653 102.734 102.862 102.804 102.760 103.223 104.989
0.9 105.659 106.466 106.395 106.075 105.928 106.591 107.453

10 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 341.720 341.720 341.720 341.720 341.720 342.053 343.475
0.3 389.425 389.425 389.425 389.425 389.425 389.560 390.873
0.5 391.455 391.455 391.455 391.455 391.455 391.945 392.867
0.7 390.290 390.290 390.290 390.290 390.290 390.880 392.033
0.9 386.930 386.930 386.930 386.930 386.930 387.285 389.825

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 290.654 290.888 291.070 291.208 291.254 291.280 293.284
0.3 294.532 294.620 294.606 294.610 294.660 294.678 296.915
0.5 294.196 294.292 294.380 294.424 294.536 294.536 296.782
0.7 290.002 290.048 290.042 290.062 290.076 290.076 292.872
0.9 292.630 292.638 292.628 292.686 292.712 292.712 294.881

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 230.992 230.933 230.622 231.167 233.376 230.376 232.920
0.3 234.635 234.940 236.307 237.086 237.370 236.228 238.838
0.5 224.252 225.102 225.782 226.065 226.918 228.184 230.273
0.7 247.644 248.820 249.150 249.778 251.520 251.468 255.936
0.9 234.524 235.053 235.185 235.093 237.185 236.945 238.846

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 382.578 382.695 382.398 382.078 382.978 386.045 388.745
0.3 382.367 384.493 387.677 388.823 389.127 388.673 391.756
0.5 394.330 397.333 397.473 397.517 398.483 397.773 398.568
0.7 400.697 400.663 400.457 400.780 401.837 401.407 405.846
0.9 401.377 401.207 401.200 401.013 401.370 401.123 403.475

Table 14: AQD between the cdf of the optimal solution for the predictive-only
(P-only) and the predictive-reactive (PR) approaches, using 5 and 10 jobs, and
7 uniformly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 418.766 412.753 414.263 414.276 414.291 421.088 423.843
0.3 462.315 466.516 467.199 467.223 467.223 479.304 481.043
0.5 462.490 467.029 467.778 467.778 467.778 479.513 482.943
0.7 462.844 466.159 466.159 466.159 466.159 478.088 480.713
0.9 464.750 466.304 466.338 466.354 466.354 477.900 481.923

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 114.092 113.888 114.431 116.644 117.249 116.932 118.938
0.3 115.574 116.081 116.874 118.028 117.749 118.351 120.634
0.5 113.471 113.981 114.555 114.634 114.290 115.564 126.934
0.7 113.801 114.667 115.060 114.920 114.354 114.436 115.937
0.9 113.256 113.418 113.226 113.090 113.092 114.509 115.934

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 497.103 497.275 497.468 497.330 497.278 575.810 577.821
0.3 498.390 498.460 498.513 498.665 499.523 575.403 576.511
0.5 502.525 502.438 498.207 497.880 497.800 586.956 588.623
0.7 405.940 406.390 406.390 406.390 406.390 406.390 406.425
0.9 415.770 415.910 415.910 415.910 415.910 415.910 416.845

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 210.134 210.324 210.233 211.702 217.506 217.449 219.733
0.3 213.474 213.943 215.386 216.933 224.511 213.444 215.994
0.5 217.824 218.835 220.444 222.358 227.065 214.020 215.333
0.7 216.199 217.316 219.400 222.946 226.552 218.969 220.138
0.9 212.305 213.881 215.948 219.408 221.621 213.808 215.233

10 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 415.430 415.443 415.463 415.463 415.463 415.463 427.143
0.3 414.167 414.177 414.177 414.177 414.177 414.177 415.362
0.5 414.523 414.523 414.553 414.553 414.553 414.553 416.833
0.7 414.490 414.503 414.503 414.503 414.503 414.503 416.226
0.9 413.523 413.543 413.543 413.543 413.543 413.543 416.826

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 3.916 3.916 3.916 4.179 6.228 6.401 8.125
0.3 3.418 3.450 3.593 4.459 5.322 5.808 7.145
0.5 5.323 5.602 6.651 8.690 8.690 8.690 10.012
0.7 6.544 7.217 8.971 9.845 9.845 9.845 10.265
0.9 6.905 7.828 8.888 8.958 8.958 8.958 10.129

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 500.213 500.269 500.501 502.263 506.986 531.273 534.712
0.3 509.957 511.166 512.610 514.509 520.461 562.717 564.912
0.5 452.314 452.626 452.982 454.294 458.132 506.774 508.622
0.7 456.850 457.440 457.930 459.266 464.704 506.970 509.893
0.9 454.732 455.556 456.122 456.888 461.934 502.894 504.837

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 408.693 408.823 409.320 410.210 317.370 475.747 477.823
0.3 314.220 314.750 316.047 318.920 320.480 320.590 323.918
0.5 251.480 252.785 255.025 255.975 255.975 255.975 256.810
0.7 248.020 248.425 248.985 249.220 249.340 249.340 258.934
0.9 179.460 180.650 180.650 180.650 180.650 180.650 182.304

Table 15: AQD between the cdf of the optimal solution for the predictive-only
(P-only) and the predictive-reactive (PR) approaches, using 5 and 10 jobs, and
9 uniformly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 17.505 18.929 23.763 25.668 27.303 31.766 33.292
0.3 15.833 23.249 24.157 26.188 27.265 30.717 31.029
0.5 4.244 4.990 5.077 7.173 8.790 7.490 8.349
0.7 17.553 22.141 22.272 24.240 26.220 29.770 29.990
0.9 10.321 15.462 16.769 18.708 19.953 23.215 23.845

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 1.595 1.645 1.685 2.211 2.476 3.426 5.934
0.3 1.276 1.276 1.376 1.909 2.471 3.132 3.234
0.5 1.677 1.677 1.829 2.284 2.738 3.461 3.762
0.7 1.486 1.486 1.866 2.215 2.537 3.109 3.928
0.9 1.311 1.458 1.731 2.267 2.523 3.022 4.056

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 5.563 5.441 4.792 4.923 5.059 5.715 7.029
0.3 5.469 5.034 4.451 4.649 4.735 6.110 9.934
0.5 5.152 5.096 4.844 5.085 5.141 6.259 9.238
0.7 5.280 4.997 4.938 4.047 5.075 6.590 7.974
0.9 5.352 5.253 5.255 5.315 5.355 6.695 8.986

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 6.910 6.910 7.125 7.223 7.357 7.638 9.235
0.3 7.352 7.417 7.524 7.590 7.730 8.261 9.277
0.5 7.174 7.227 7.356 7.398 7.429 7.918 8.723
0.7 6.609 6.712 6.856 6.858 6.980 7.204 8.566
0.9 7.550 7.803 7.820 7.962 7.963 8.155 8.349

10 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 1.906 1.906 1.906 1.906 1.906 3.112 4.926
0.3 2.413 2.413 2.413 2.413 2.413 4.388 4.932
0.5 2.478 2.478 2.478 2.478 2.478 4.178 6.837
0.7 2.184 2.184 2.184 2.184 2.184 3.264 4.924
0.9 2.578 2.578 2.578 2.578 2.578 4.305 6.384

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 0.777 0.777 0.777 0.777 0.777 0.777 1.382
0.3 0.698 0.698 0.698 0.698 0.698 0.698 1.843
0.5 0.901 0.901 0.901 0.901 0.901 0.901 2.094
0.7 1.396 1.396 1.396 1.396 1.396 1.396 2.973
0.9 0.823 0.823 0.823 0.823 0.823 0.823 2.945

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 3.359 3.359 3.359 3.443 3.398 5.204 6.934
0.3 3.517 3.517 3.517 3.517 3.517 5.834 5.983
0.5 3.547 3.547 3.547 3.547 3.380 4.828 5.823
0.7 3.779 4.064 4.014 4.046 4.211 6.224 7.834
0.9 3.293 3.340 3.345 3.662 4.272 6.853 8.335

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 4.998 4.902 5.002 5.122 5.132 5.768 6.834
0.3 4.920 4.999 5.006 5.130 5.152 5.563 9.354
0.5 5.003 5.020 5.098 5.120 5.120 5.239 8.823
0.7 5.027 5.019 4.973 5.197 5.824 5.689 6.929
0.9 5.117 5.078 5.861 5.847 5.883 5.330 6.834

Table 16: AQD between the cdf of the optimal solution for the predictive-only
(P-only) and the predictive-reactive (PR) approaches, using 5 and 10 jobs, and
5 triangularly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 75.843 76.345 76.417 76.417 76.422 78.312 80.763
0.3 77.464 77.990 77.990 77.990 78.005 77.962 78.526
0.5 77.340 77.693 77.695 77.695 77.742 77.671 79.536
0.7 77.399 77.493 77.493 77.493 77.517 77.446 79.523
0.9 78.227 78.235 78.239 78.239 78.260 78.123 80.745

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 83.807 83.837 83.0730 79.738 78.381 85.248 86.934
0.3 83.479 83.364 81.851 96.072 90.539 89.110 91.845
0.5 83.063 82.911 81.235 78.913 78.705 82.385 83.748
0.7 84.065 83.758 81.335 79.447 78.801 78.660 80.356
0.9 83.326 80.927 79.082 79.023 78.722 78.722 80.253

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 47.285 47.134 47.381 47.925 49.330 48.343 48.845
0.3 46.069 46.102 46.296 46.884 48.159 47.582 47.927
0.5 46.083 46.664 46.541 47.408 48.685 46.972 47.763
0.7 46.206 46.328 46.902 47.964 49.134 47.253 48.734
0.9 47.446 47.481 47.798 48.640 49.698 48.135 49.346

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 100.999 100.988 101.186 101.805 103.091 102.045 103.467
0.3 100.647 100.603 100.828 101.501 102.760 101.677 103.264
0.5 99.568 99.695 100.173 100.421 101.630 101.1163 102.341
0.7 91.831 92.136 92.690 93.407 93.845 94.218 97.845
0.9 89.184 89.488 90.269 91.259 91.432 91.704 92.846

10 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 221.418 221.316 221.322 221.602 221.064 221.440 223.945
0.3 218.908 218.908 218.908 218.908 218.908 218.810 220.125
0.5 219.510 219.540 219.540 219.540 219.540 219.270 220.844
0.7 218.940 218.940 218.940 218.940 218.940 218.813 220.312
0.9 252.540 252.540 252.540 252.540 252.540 252.180 253.663

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 139.073 139.103 139.238 138.211 133.520 140.943 142.745
0.3 137.666 137.537 137.394 135.111 130.776 139.558 140.427
0.5 136.296 136.033 136.033 135.448 130.633 138.860 139.629
0.7 137.660 138.223 137.656 136.229 132.500 139.234 140.723
0.9 136.418 136.146 135.943 133.629 136.030 136.146 137.899

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 228.149 227.468 227.528 228.095 220.269 229.986 230.884
0.3 222.929 222.926 223.491 224.327 226.551 227.521 228.894
0.5 222.292 222.256 222.872 224.061 226.061 226.889 228.845
0.7 145.594 146.150 147.502 148.729 150.055 148.136 150.839
0.9 198.980 199.790 202.050 204.340 205.610 206.450 208.673

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 262.910 263.177 263.437 263.437 263.437 267.177 268.937
0.3 261.800 261.940 262.007 262.007 262.007 265.683 267.783
0.5 210.205 210.715 210.810 210.810 210.810 211.620 212.005
0.7 210.635 210.900 210.900 210.900 210.900 210.535 210.989
0.9 210.755 210.755 210.755 210.755 210.755 210.255 210.748

Table 17: AQD between the cdf of the optimal solution for the predictive-only
(P-only) and the predictive-reactive (PR) approaches, using 5 and 10 jobs, and
7 triangularly distributed processing times.
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5 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 122.046 121.547 120.956 121.040 121.260 121.377 122.849
0.3 121.829 121.115 121.081 121.085 121.342 121.414 122.684
0.5 121.313 120.355 120.186 120.280 120.504 120.689 121.839
0.7 120.743 120.269 120.345 120.345 120.345 120.821 121.673
0.9 123.084 123.148 122.938 120.534 121.980 120.750 121.745

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 1.595 1.645 1.685 2.211 2.476 3.426 4.923
0.3 1.276 1.276 1.376 1.909 2.471 3.132 4.910
0.5 1.677 1.677 1.829 2.284 2.738 3.461 4.923
0.7 1.486 1.486 1.866 2.215 2.537 3.109 5.023
0.9 1.311 1.458 1.731 2.267 2.523 3.022 5.834

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 5.563 5.441 4.792 4.923 5.059 5.715 7.937
0.3 5.469 5.034 4.451 4.649 4.735 6.110 7.836
0.5 5.152 5.096 4.844 5.085 5.141 6.259 6.789
0.7 5.280 4.997 4.938 4.047 5.075 6.590 6.988
0.9 5.352 5.253 5.255 5.315 5.355 6.695 7.748

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 6.910 6.910 7.125 7.223 7.357 7.638 8.984
0.3 7.352 7.417 7.524 7.590 7.730 8.261 8.872
0.5 7.174 7.227 7.356 7.398 7.429 7.918 8.783
0.7 6.609 6.712 6.856 6.858 6.980 7.204 7.838
0.9 7.550 7.803 7.820 7.962 7.963 8.155 8.358

10 Jobs

L
a
m

b
d
a

0.3

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 418.766 422.753 424.263 424.276 424.291 421.088 423.928
0.3 462.315 466.516 467.199 467.223 467.223 479.304 480.847
0.5 462.490 467.029 467.778 467.778 467.778 479.513 480.145
0.7 462.844 466.159 466.159 466.159 466.159 478.088 479.233
0.9 464.750 466.304 466.338 466.354 466.354 477.900 478.859

0.5

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 148.207 148.447 148.538 148.544 148.544 148.429 149.758
0.3 148.197 148.412 148.488 148.554 148.653 148.549 149.875
0.5 148.208 148.400 148.466 148.496 148.524 148.411 149.039
0.7 148.709 148.840 148.889 149.047 149.026 148.867 151.849
0.9 148.459 148.592 148.693 148.725 148.738 148.648 152.957

0.9

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 162.246 162.280 162.244 161.879 162.104 162.063 163.957
0.3 173.228 172.937 172.809 170.601 172.839 172.896 175.937
0.5 173.142 173.107 173.008 172.866 172.986 172.932 175.836
0.7 173.787 173.751 173.721 173.958 174.168 174.175 175.937
0.9 173.304 173.290 173.327 173.675 177.975 174.547 175.836

0.95

q
PR

P-only FCFS/FROChange Threshold
0.1 0.3 0.5 0.7 0.9

0.1 183.193 182.955 182.600 182.393 182.767 219.791 220.473
0.3 181.431 181.450 181.256 181.578 182.420 219.759 220.934
0.5 185.169 184.866 184.796 184.629 185.077 222.083 222.449
0.7 182.410 182.198 182.166 182.253 182.420 219.657 222.754
0.9 182.623 182.512 182.365 182.671 182.805 220.138 221.947

Table 18: AQD between the cdf of the optimal solution for the predictive-only
(P-only) and the predictive-reactive (PR) approaches, using 5 and 10 jobs, and
9 triangularly distributed processing times.
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