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Abstract
This paper addresses the vibration attenuation provided by the resonant piezoelectric
shunt enhanced by means of negative capacitances. The shunt impedance is
composed by one or two negative capacitances, a resistance and an inductance. It
is shown that closed analytical formulations, common to all the possible connections
of the negative capacitances, can be derived for the tuning of the circuit components
and for the prediction of the attenuation in terms of dynamic compliance, mobility
and accelerance. The paper also compares the attenuation performance provided
by the two possible layouts for the electrical link between the resistance and the
inductance, i.e. series and parallel. Furthermore, this work evidences which shunt
configurations offer advantages in terms of practical implementation and the benefits
provided by the use of negative capacitances in the shunt circuit. In the last part of
the paper, guidelines for the use of resonant shunt are given to the reader and, finally,
the theoretical results are validated by means of an experimental campaign showing
that it is possible to cancel the resonance on which the resonant shunt is targeted.
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Introduction

Figure 1. A generic structure with a piezoelectric patch shunted with a passive impedance
Zsh (a) and with the addition of NCs in parallel (b), series (c) and SP (d) configuration. Refer
to Section ’Model’ for the definition of the other symbols in the figure. L and R connected in
series (e) and in parallel (f).
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Piezoelectric shunt is a well-known technique for vibration attenuation. The basic
principle of the method is the connection between a piezoelectric actuator, which is
bonded to a vibrating structure, and a properly designed electrical network (Darleux
et al. (2018); Zhao et al. (2015); Gripp and Rade (2018)). The shunt impedance that
offers the highest resonance attenuation in case of single-mode control is made from an
inductance L and a resistance R (LR-shunt or resonant shunt) connected either in series
(Hagood and von Flotow (1991); Berardengo et al. (2016a); Matveenko et al. (2018)) or
parallel (Høgsberg and Krenk (2015); Caruso (2001); Gardonio and Casagrande (2017);
Andreaus and Porfiri (2007)).

There are two factors able to influence the attenuation performance provided by the
piezoelectric shunt: the optimisation of the impedance and the value of the modal electro
mechanical coupling factor (MEMCF) ki of each mode of the electro-mechanical system
(which is made from the vibrating structure, the shunt impedance, and the piezoelectric
actuator). If an optimally tuned shunt impedance is taken into consideration, then the only
way to increase the damping performance is to increase the MEMCF. This parameter
depends on the geometrical, electrical and mechanical features of the electro-mechanical
system (Thomas et al. (2012, 2009); Ducarne et al. (2012)). It is also possible to prove
that the MEMCF of a given mode is function of the distance between the natural
frequencies of the electro-mechanical system with the piezoelectric actuator in open-
(OC) and short-circuit (SC). An increase/decrease of the MEMCF corresponds to an
increase/decrease of the maximum achievable attenuation, as shown in Thomas et al.
(2012).

Different works in the literature showed that the attenuation performance provided
by passive shunt electric networks can be improved using synthetic circuits (e.g., Date
et al. (2000); Beck et al. (2013); Pohl (2017)), and, in particular, the use of Negative
Capacitances (NCs), built by employing operational amplifiers, showed to be highly
effective and reliable. Indeed, NCs are able to artificially increase the MEMCF and thus
to increase the maximum achievable damping performance (Berardengo et al. (2016b,
2017b)). The improved modal electro mechanical coupling factor will be referred here as
enhanced modal electro mechanical coupling factor (EMEMCF) k̃i. NCs have fruitfully
been coupled to different passive shunt impedances. Particularly, the coupling with the
resonant shunt (de Marneffe and Preumont (2008); Neubauer et al. (2006)) showed high
performances for single-mode vibration attenuation, keeping a simple layout.

This shunt network admits several configurations as function of the connection
between the piezoelectric actuator and the NCs and between the resistance and the
inductance. Indeed, the piezoelectric actuator can be connected to a passive shunt
impedance Zsh, made from a resistance R and an inductance L (linked in either parallel
or series), and the NCs in three different ways: parallel, series and series+parallel (SP)
(Berardengo et al. (2016b, 2017b, 2015)), as explained in Figs. 1a-d (−C1 indicates the
NC in parallel configuration, while−C2 indicates the NC connected in series). Moreover,
the control target can change as a function of the application (i.e. displacement, velocity,
acceleration). Even if most of the articles related to the piezoelectric shunt damping focus
on the vibration reduction in terms of displacement, it is highly likely to face situations
where the control target must be different. As an example, if the vibration reduction is
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aimed at lowering sound emission, velocity must be reduced due to the relation between
surface velocity and the consequent emitted noise (Bricault et al. (2019)). In other cases,
where inertial actions must be reduced, the vibration control must be optimised in terms
of acceleration (e.g. Zhu et al. (2020)).

In this article, general analytical formulations are proposed for the optimisation of
the resonant shunt when coupled to NCs referring to various target variables (i.e.
displacement, velocity and acceleration) and the possible layouts for the connection of L
andR (series or parallel). This work is thus intended as an extension of (Berardengo et al.
(2018)), where the optimisation is carried out only in terms of displacement. The aim of
the proposed study is to provide the user with guidelines for the choice of the best layout
and tuning of resonant shunt for the given problem and to suggest solution to overcome
the most critical feasibility issues. This was made possible by the new outcomes of the
proposed analyses. Indeed, the manuscript:

• provides formulations for the tuning of the shunt impedance when velocity and
acceleration are the control variables. This constitutes a generalisation of the
formulations presented in (Berardengo et al. (2018)) for attenuating displacement.
Furthermore, formulations for the prediction of the attenuation are presented;

• evidences that, when NCs are added in the shunt, the optimal values of L and R
for displacement, velocity and acceleration become increasingly different when
the NC effects increase. This implies the importance of using the proper tuning
formulation, especially when NCs are used;

• shows which connection between L and R (i.e. either series or parallel) is
convenient when NCs are used, not just considering the attenuation performance,
but also taking into account implementation problems. It will be shown that
the series connection allows to have lower values for the inductance, implying
an easier practical implementation, especially when the NC effects increase.
Moreover, the series connection when NCs are used in the shunt shows the same
level of robustness to mistuning compared to the parallel connection, in contrast to
what occurs when NCs are not employed (see Yamada et al. (2010));

• proposes a method for lowering the value of the shunt inductance without
deteriorating the attenuation performance. The proposed approach allows to
decrease the complexity of the practical implementation of the shunt circuit and,
at the same time, enables to improve the vibration attenuation;

• presents a sensitivity analysis with respect to the presence of modes different than
that under control. The analytical procedures in the literature (and in this work)
applied to derive the optimal values of L and R (either with or without NCs) are
usually based on single-degree-of-freedom models. However, there are few studies
in the literature that outline the influence of the other modes on the attenuation
provided by the calculated optimal L and R values. This paper presents some
analyses to show the effect of modes close to that under control and to discuss
the reliability of the optimal values derived for L and R with a single-degree-of-
freedom approach.
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Table 1. Definition of Ceq without NCs, enhanced by a single NC in either parallel or series
configuration, and enhanced by two NCs for the SP configuration

simple shunt
without NCs Parallel config. Series config. SP config.

Ceq = Cpi (Cpi − C1)
CpiC2

C2 − Cpi

(Cpi − C1)C2

C1 + C2 − Cpi

Table 2. Expressions of A, B, C and D for the different possible cases (see Eq. (4)). Here,
E = ξiωi(ω

2
e − Ω2) and G = Ω2(ω2

e + 4ξiξeωiωe + (ωoc
i )2)

L and R connected
in parallel

L and R connected
in series

dynamic
compliance

Adisp
p =ω2

e − Ω2 Adisp
s =Adisp

p

Bdisp
p =2ξeωeΩ Bdisp

s =Bdisp
p

Cdisp
p =Ω4 −G+ (ωsc

i )2ω2
e Cdisp

s = Cdisp
p

Ddisp
p =2Ω[ξeωe((ωsc

i )2 − Ω2) + E] Ddisp
s =2Ω[ξeωe((ωoc

i )2 − Ω2) + E]

mobility

Avel
p =-ΩBdisp

p Avel
s =-ΩBdisp

s

Bvel
p =ΩAdisp

p Bvel
s =ΩAdisp

s

Cvel
p =Cdisp

p Cvel
s =Cdisp

s

Dvel
p =Ddisp

p Dvel
s =Ddisp

s

accelerance

Aacc
p =-Ω2Adisp

p Aacc
s =-Ω2Adisp

s

Bacc
p =-Ω2Bdisp

p Bacc
s =-Ω2Bdisp

s

Cacc
p =Cdisp

p Cacc
s =Cdisp

s

Dacc
p =Ddisp

p Dacc
s =Ddisp

s

Model

The model used in this paper was originally developed in Thomas et al. (2012, 2009) and
Ducarne et al. (2012). Then, Berardengo et al. (2016b, 2017b) enhanced its accuracy,
thanks to an improved description of the electrical behaviour of the system and, in
particular, defining the capacitance value of the piezoelectric patch Cpi, when a single-
degree-of-freedom approximation of the system is considered, which takes into account
the contribution of the modes higher than the i-th (Cpi can be roughly seen as the value
of the capacitance of the piezoelectric actuator at a frequency value between the i-th and
the (i+ 1)-th modes). Here, the model is briefly recalled for the sake of clarity.

A generic elastic structure excited by an external force Fext is taken into account
(Figs. 1a-d). One piezoelectric patch is bonded to this structure and a generic passive
impedanceZsh is shunted to the piezoelectric patch. The symbol V in Figs. 1a-d indicates
the voltage between the electrodes of the piezoelectric actuator, while the symbol Q is
used to indicate the electric charge in one of the electrodes. Vsh and Qsh in Figs. 1a-d
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Table 3. Definition of the parameters ωe and ξe for the two connection types of R and L

L and R L and R
connected in series connected in parallel

ωe =
√

1
LCeq

√
1

LCeq

ξe = R
2

√
Ceq

L
1

2R

√
L

Ceq

are the voltage and the charge seen by the shunt impedance Zsh, respectively, and they
coincide with V and Q when no NCs are connected to the actuator (Fig. 1a).

The displacement U(x, t) of any point x of the structure at time t can be expressed as
a function of the modal coordinates qi and the eigenmodes Φi of the system calculated
with the piezoelectric patch in SC and scaled to the unit modal mass, where i = 1, ..., N ,
being N the number of vibration eigenmodes.

Considering the case of low modal density, it is possible to describe the electro-
mechanical system dynamics by means of a single-degree-of-freedom approximation.
The system dynamics can be thus modelled, for Ω close to ωi (Ω indicates the angular
frequency and ωi the i-th natural frequency of the electro-mechanical system in SC), by
writing the following equations:

q̈i + 2ξiωiq̇i + (ωsc
i )2qi − ωik̃iV̄sh = Fi (1)

V̄sh − Q̄sh + ωik̃iqi = 0 (2)

where Fi is the modal forcing, ξi is the non-dimensional damping ratio associated to the
i-th mode, V̄sh = Vsh

√
Ceq and Q̄sh = Qsh/

√
Ceq. The variable Ceq is an equivalent

capacitance whose value depends of the NC values (see Tab. 1). The symbol ωsc
i

indicates the i-th natural frequency of the electro-mechanical system when Zsh is an
SC (Vsh = 0). Similarly, it is possible to define ωoc

i as the i-th natural frequency of the
electro-mechanical system when Zsh is an OC (Qsh = 0). The values of ωoc

i and ωsc
i

change depending on whether an NC is connected to the piezoelectric actuator or not,
and on its layout (Figs. 1a-d). The analytical expressions of ωoc

i and ωsc
i can be found in

(Berardengo et al. (2016b)).
Equation (1) describes the motion of the electro-mechanical system, while Eq. (2)

describes the dynamics of the electrical part of the system.
The main effect of the NCs in the shunt circuit is to artificially increase the value of the

MEMCF ki and thus to improve the control performances (Berardengo et al. (2016b)).
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Particularly, the effect of an NC in parallel connection is to shift the OC eigenfrequencies
towards higher frequency values, while the effect of an NC in series is to shift the SC
eigenfrequencies towards lower frequency values; the SP configuration, instead, both
decreases the SC and increases the OC eigenfrequencies at the same time. In light of
this, the use of NCs always leads to an increase of the distance between the SC and
OC eigenfrequencies and thus to an increase of ki. Therefore, it is possible to define the
new parameter k̃i (the EMEMCF). Under the hypothesis of low modal density, this new
parameter can be accurately approximated as:

|k̃i| '

√
(ωoc

i )2 − (ωsc
i )2

ω2
i

(3)

It is noticed that |k̃i| = |ki| when no NCs are used, otherwise |k̃i| > |ki| (Berardengo
et al. (2016b)). Since ki is related to the energy transfer between the i-th mode and the
electric circuit and vice versa (Thomas et al. (2012)), it is possible to conclude that k̃i
represents the improvement in the energy transfer guaranteed by the use of NCs in the
circuit because of the analogy between ki and k̃i.

If the generic passive impedance Zsh is composed by an inductance L and a resistance
R, the traditional resonant shunt coupled to NCs is obtained (RL-NC shunt). L and R
can be connected in either series or parallel (Figs. 1e and f, respectively). Thus, there are
six possible configurations for the RL-NC shunt (i.e. two possible layouts for the link
between L and R and three different NC configurations).

From Eqs. (1) and (2), it is possible to derive the analytical expressions of the
frequency response function (FRF) between Fi and the modal displacement qi for R
and L in parallel (Hdisp

i,p (jΩ)) and in series (Hdisp
i,s (jΩ)) (where j is the imaginary unit).

These two FRFs are valid for all the NC types, and also when no NCs are used if the
appropriate electro-mechanical system parameter values are employed.

The corresponding FRFs in terms of modal velocity q̇i over modal force Fi (mobility,
superscript ’vel’) can be obtained by multiplying Hdisp

i (jΩ) by jΩ, while the FRFs in
terms of modal acceleration q̈i over modal force Fi (accelerance, superscript ’acc’) can
be achieved by multiplying Hdisp

i (jΩ) by (−Ω2).
All the FRFs can be generically expressed as:

Hi(jΩ) =
A+ jB

C + jD
(4)

where the coefficients A, B, C and D for the different possible cases are defined in Tab.
2. The above FRFs are expressed as functions of ξe and ωe which are the non-dimensional
damping ratio and the resonant frequency of the electrical circuit, respectively. The
analytical expressions of these two parameters are provided in Tab. 3 for both the types
of connection between L and R.

Since the NCs are active elements, it is important to recall that the stability of the
electro-mechanical system must be checked. The stability conditions are provided in
(Berardengo et al. (2018)), and they depend upon the relationships between the values
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Table 4. Expressions of ωopt
e and ξopte for the different possible cases. Here

T = 14(ωoc
i )2(ωsc

i )2.

L and R connected
in parallel

L and R connected
in series

dynamic
compliance

ωopt
e =

√
3(ωsc

i )2−(ωoc
i )2

2

ξopt
e =

√
3

2

√
(ωoc

i )2−(ωsc
i )2

3(ωsc
i )2−(ωoc

i )2

ωopt
e = ωoc

i

ξopt
e =

√
3

2

√
(ωoc

i )2−(ωsc
i )2

(ωoc
i )2+(ωsc

i )2

mobility
ωopt

e = ωsc
i

ξopt
e =

√
3

2
√

2

√
(ωoc

i )2

(ωsc
i )2 − 1

ωopt
e =

√
2(ωoc

i )2√
(ωoc

i )2+(ωsc
i )2

ξopt
e =

√
[(ωoc

i )2−(ωsc
i )2][5(ωoc

i )4+T+5(ωsc
i )4]

4ωoc
i [(ωoc

i )2+(ωsc
i )2]

accelerance
ωopt

e =

√
(ωoc

i )2+(ωsc
i )2

2

ξopt
e =

√
3

2
√

2

√
(ωoc

i )2

(ωsc
i )2 − 1

ωopt
e =

(ωoc
i )2

ωsc
i

ξopt
e =

√
3

2
√

2

√
1− (ωsc

i )2

(ωoc
i )2

of the NCs and the value of the blocked piezoelectric capacitance C∞ and that of the
piezoeletric capacitance at the null frequency C0.

Shunt impedance optimisation

The first element of the shunt impedance to be optimised is the NC. Different works in
the literature (e.g. Berardengo et al. (2016b)) explain that the closer the NCs are to the
value of Cpi (always respecting the stability limits), the higher k̃i is and thus the higher
the maximum achievable attenuation is.

The other elements to be optimised are L and R.

Optimisation of the value of the inductance
The optimisation of the value of L (as well as that of R) is carried out in this paper
by using a commonly-accepted procedure which was previously applied to tuned mass
dampers and simple piezoelectric resonant shunts without NCs (e.g., Hagood and von
Flotow (1991); Thomas et al. (2012)). Basically, it is aimed at minimising the maximum
of the FRF amplitude of the electro-mechanical system in correspondence of a given
mode. It is also noticed that when the control target is displacement, the maximum of the
amplitude of the FRF qi/Fi is taken into consideration; when the target is velocity, the
FRF considered is q̇i/Fi, and, finally, when the target is acceleration, the FRF used is
q̈i/Fi.
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Furthermore, it is noticed that, since single mode control is taken into account, there
is just a multiplicative constant (that is a function of Φi) between modal and point FRFs.
Therefore, the values of the tuning parameters used for the attenuation in terms of modal
displacement are also the optimal values for attenuating point displacement. The same
applies to velocity and acceleration.

The method used to derive the optimal inductance is briefly summarised, and it is
based on considerations on the shape of the electro-mechanical system FRF. At first, the
procedure optimises the value of the electrical frequency ωe. If an electro-mechanical
system with null damping (i.e. ξi = 0) is considered, there exist two points F− and
F+ at ωF− and ωF+ , respectively, where all the curves |Hi(Ω)| cross, for a given value
of ωe when ξe is varied (refer to (Thomas et al. (2012); Berardengo et al. (2018)) for
more details). The value of ωe considered as optimal (indicated as ωopt

e ) is such that
|Hi(Ω = ωF−)| = |Hi(Ω = ωF+)|.

The expressions of ωopt
e for the different possible cases are provided in Tab. 4.

Moreover, the expressions of ω2
F− and ω2

F+ for L and R in parallel (valid in case of
dynamic compliance, mobility and accelerance) are:

2ω2
e + (ωoc

i )2 + (ωsc
i )2 ±

√
[2ω2

e + (ωoc
i )2 + (ωsc

i )2]2 − 16ω2
e (ωsc

i )2

4
(5)

The expressions for L and R in series are:

ω2
e + (ωoc

i )2 ±
√

(ωoc
i )4 + ω2

e [ω2
e − 2(ωsc

i )2]

2
(6)

The proper expression of ωopt
e (Tab. 4) must be used to find ωF− and ωF+ in optimal

tuning condition for each considered case.
Finally, the corresponding value of Lopt (i.e. the optimal value of the inductance) can

be found using the expressions in Tab. 3.

Optimisation of the value of the resistance
After the tuning of ωe, the optimisation is carried out on the electrical damping ξe (again
under the hypothesis of ξi=0).

The optimal value of ξe would be such that both the points F− and F+ are maxima
of |Hi(Ω)|. However, Thomas et al. (Thomas et al. (2012)) explained that this is not
possible. Anyway, two values of ξe (here indicated as ξ−e and ξ+

e ) exist such that either
F− or F+ is a maximum of the FRF amplitude, respectively. The optimal value of
ξe (indicated here as ξopt

e ) is set as the geometric mean of ξ+
e and ξ−e : (ξopt

e )2 =
[(ξ+

e )2 + (ξ−e )2]/2. The expression of ξopt
e for the different possible cases is provided

in Tab. 4.
Finally, the corresponding value of Ropt (i.e. the optimal value of the resistance) can

be derived using the expressions presented in Tab. 3. The FRF amplitude with ξopt
e and

ωopt
e can be seen in Fig. 2 for the dynamic compliance, the mobility and the accelerance

(see the red thin solid line in plot (a), the blue thin dashed line in plot (b) and the orange
thick solid line in plot (c), respectively).
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Figure 2. FRFs for a system with ki=0.3, k̃i=0.4, ξi=0.3%, ωi/(2π) =30 Hz, NC connected
in series, and L and R connected in series. FRFs in terms of dynamic compliance (i.e.
|Hi|disp) (a), FRFs in terms of mobility (i.e. |Hi|vel) (b), and FRFs in terms of accelerance
(i.e. |Hi|acc) (c). Thick dashed line for FRFs with the piezoelectric patch in SC (without NCs),
thin solid line for FRFs with L and R set using the criteria found for the dynamic compliance
optimisation, thin dashed line for FRFs with L and R set using the criteria found for the
mobility optimisation, and thick solid line for FRFs with L and R set using the criteria found for
the accelerance optimisation.

A remarkable result of Tab. 4 and Eqs. 5 and 6 is that the obtained optimisation
formulas are general and common to all the possible NC layouts (i.e. SP, series, parallel).
This is possible because ωopt

e , ωF− , ωF+ , and ξopt
e are expressed as functions of ωoc

i

and ωsc
i , which depend on the NC layout, as mentioned. Furthermore, these expressions

are common also to the case of a pure resonant shunt without the addition of NCs. As
a proof of this, it can be also noticed that the expressions gathered in Tab. 4 and Eqs. 5
and 6, in the case of absence of NCs in the shunt circuit, equal the formulations for the
simple resonant shunt without the addition of NCs proposed in Thomas et al. (2012) and
Yamada et al. (2010).

Controlled FRFs
The optimisation formulas of Tab. 4 are used here to illustrate an example of the
achievable results. Figure 2 shows the FRFs for a system chosen as example. Plot (a)
shows the FRFs in terms of dynamic compliance, plot (b) depicts the FRFs in terms of
mobility, and plot (c) shows the FRFs in terms of accelerance.

This figure evidences that the attenuation levels achieved for the dynamic compliance,
mobility, and accelerance FRFs (using the corresponding optimisation criterion) are close
each other (as will be shown in more detail further in the paper) (differences lower than 1
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dB in Fig. 2 and up to few decibels in case of higher k̃i values). Of course, it is important
to employ the correct criterion, according to the desired type of optimisation, because
the three different optimisation criteria lead to different results (i.e. compare the three
controlled FRFs in each plot of Fig. 2).

It is noticed that, when the hypothesis of low modal density is not satisfied, the
optimal values of L and R can be slightly different from those obtained from the optimal
formulations of Tab. 4 because of the influence of the other modes (Høgsberg and
Krenk (2017); Toftekær et al. (2018)) (indeed, the optimisation criteria are based on
considerations about the single-degree-of-freedom FRF shape and, if the contribution
of the other modes is not negligible, the FRF shape changes). However, even when the
hypothesis of low modal density is not satisfied, the expressions reported in Tab. 4 can
be still considered as the reference values of ωopt

e and ξopt
e from which the perfect tuning

has to be looked for. A further discussion related to the case of high modal density is
provided further in the paper.

Trends of the tuning parameters
This subsection focuses on the differences in terms of values of ωopt

e and ξopt
e between

the two connection types of L and R (i.e. series and parallel), when NCs are used in the
shunt circuit, and among the different control variables (i.e. displacement, velocity and
acceleration). Since NCs in series are effective for controlling modes at low frequency,
while NCs in parallel are effective for controlling modes at high frequency (Berardengo
et al. (2016b, 2018)), these two layouts are not compared here because they are usually
used for different control problems. In this analysis, the case of NCs in SP configuration
is not explicitly treated because its results are not far from those related to the case of the
NC in series (Berardengo et al. (2018)).

Figure 3 shows the trends of ωopt
e (normalised over the value of ωi) and ξopt

e for a
system with ki=0.1 and an NC in either parallel or series. If the value of ki is changed,
the trends remain close to those of the figure and thus just a single case is shown here for
the sake of conciseness.

It is evident that, when k̃i increases thanks to the use of the NC, the values of ωopt
e for

the different optimisations (i.e. displacement, velocity and acceleration) become farther
and farther. The same applies to the values of ξopt

e . This means that it is more and more
important to use the proper optimisation criteria, according to the type of variable to be
attenuated, when k̃i increases. The only exception is related to the values of ξopt

e for
acceleration and velocity: they are equal in case of parallel connection of L and R (see
Tab. 4), while they are different but really close in case of series connection.

Another point is worthy of attention. Analysing the trends of ωopt
e (Figs. 3a and c),

one can notice that the trends for series and parallel connections of L and R diverge
when k̃i increases. Due to the definition of ωopt

e in Tab. 3, this directly implies that also
the resulting values of Lopt for the two types of connection will diverge increasing k̃i.
As shown in Figs. 4a and c, the series connection of L and R always allows to have
values of Lopt lower than those related to the parallel connection. This translates in an
easier practical implementation of the shunt circuit. Moreover, when an NC in series is
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Figure 3. Trends of ωopt
e (normalised over ωi) and ξopte as a function of k̃i for a system with

ki=0.1: NC in parallel for plots (a) and (b), and NC in series for plots (c) and (d). Red thick
lines for R and L connected in series and blue thin lines for R and L connected in parallel.
Solid line for control in displacement, dashed line for velocity and dash-dotted line for
acceleration.

used together with L and R connected in series, a strong decrease of the value of Lopt

occurs increasing k̃i (see Fig. 4c). This is due to two different factors: when a series NC
is used, the value of ωopt

e (see Fig. 3c) and the value of Ceq (see Tab. 1) increase when k̃i
increases (i.e. when the value of C2 becomes closer and closer to Cpi). Both these effects
lead to a decrease of the value of Lopt (see Tab. 3).

Even if many works in the literature (e.g. Fleming et al. (2003)) suggest to add a
positive capacitance in parallel to the piezoelectric actuator to decrease the high value of
Lopt that is encountered when controlling modes at low frequency, here it is evident that
an alternative approach is to add an NC in series. This latter solution has the advantage
to improve the attenuation performance, while the former deteriorates the vibration
attenuation. Therefore, this analysis evidences a new and advantageous approach for
solving the problem of high Lopt values in resonant shunt.

Considering the trends of ξopt
e (see Figs. 3b and d), a divergence of the trends for

the two different types of connection of L and R is found. However, due to the different
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Figure 4. Trends of Lopt and Ropt as a function of k̃i for a system with ki=0.1: NC in parallel
with ωi/(2π)=1000 Hz for plots (a) and (b), and NC in series with ωi/(2π)=30 Hz for plots (c)
and (d). Red thick lines for R and L connected in series and blue thin lines for R and L
connected in parallel. Solid line for control in displacement, dashed line for velocity and
dash-dotted line for acceleration.

definitions of the electric damping (see Tab. 3), this implies that the values ofRopt tend to
become closer and closer when k̃i increases (see Figs. 4b and d). Yamada et al. evidenced
in (Yamada et al. (2010)) that the connection of R and L in parallel is advantageous
in terms of robustness to possible mistuning for low values of ki because of the higher
values ofRopt. However, the use of NCs tends to make this advantage of lower and lower
importance because the values of Ropt become closer and closer increasing the value of
k̃i (or, in some cases, Ropt becomes even higher for L and R connected in series, see
Fig. 4d).

A final point to be evidenced is related to the case of an NC connected in series and L
and R linked in parallel (see Figs. 3c and d and Figs. 4c and d). In this case the curves
related to the control in terms of displacement stop for k̃i '0.8. This is because the
formulas for the optima cannot be used for such high values of k̃i because the quantity
[3(ωsc

i )2 − (ωoc
i )2] in the expressions of ωopt

e and ξopt
e becomes negative, thus making
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them imaginary (see Tab. 4). This problem does not occur for the optimisation in terms
of either velocity or acceleration.

Attenuation performance
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Figure 5. ∆ for different systems with optimisation in terms of displacement (a and b),
velocity (c) and acceleration (d). Thin lines for ki=0.01 and thick lines for ki=0.3; solid lines for
ξi = 10−2, dashed lines for ξi = 10−3, dash-dotted lines for ξi = 10−4.

This section analyses the attenuation performances achievable with the resonant shunt
enhanced by NCs when the optimisation formulas of Tab. 4 are used. To this purpose, the
attenuation is estimated using the AdB index (expressed in decibel) defined as:

AdB = 20 log10

Hsc

Hshunt
= 10 log10

H2
sc[(C|Ω=ωF− )2 + (D|Ω=ωF− )2]

(A|Ω=ωF− )2 + (B|Ω=ωF− )2
(7)

Hsc in Eq. (7) denotes the maximum value of |Hi(Ω)| in the SC condition without any
NC. Its value is 1/(2ξiω

2
i

√
1− ξ2

i ) in the case of dynamic compliance, 1/(2ξiωi) for
mobility and 1/(2ξi

√
1− ξ2

i ) for accelerance. Hshunt is the amplitude of Hi(Ω) at ωF−

(Thomas et al. (2012)) with the resonant shunt (coupled to NCs) tuned optimally. These
two terms,Hsc andHshunt, are expressed in displacement (over force) if the optimisation
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Figure 6. AdB,num for different ξi values (10−2 for the curves in the lower part of each plot
and 10−3 for the curves in the upper part of each plot): control in terms of displacement
(a,d,g,l), control in terms of velocity (b,e,h,m), control in terms of acceleration (c,f,i,n). Solid
lines for L and R connected in parallel and dashed lines for L and R connected in series.

is in terms of displacement, in terms of velocity (over force) if the optimisation is in terms
of velocity, and in acceleration (over force) if the optimisation is in terms of acceleration.
Thanks to the flat shape of the amplitude of the FRF in the optimally tuned condition
(Fig. 2), |Hi(Ω)| at ωF− can be considered as a reliable approximation of the peak of
|Hi(Ω)|. AdB can be shown to be always non-dependent on the value of ωi.

It is possible to write AdB for the different considered cases as a function of ξi, ki and
k̃i using the procedure reported in (Berardengo et al. (2016b)), where ωsc

i and ωoc
i are

expressed as functions of ki and k̃i. In some cases, the expression is short and easy to
write. As an example, in case of mobility and R and L connected in parallel, all the NC
layouts lead to the same expression:

AdB = 10 log10

k̃2
i + 2ξi(4ξi +

√
6k̃2

i )

8ξ2
i

(8)
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Figure 7. Trend of AdB,num as a function of k̃i for different values of ξi and ki=0.01 for an
NC in parallel (a) and an NC in series (b). Thick lines for L and R connected in series and
thin lines for L and R connected in parallel. Orange dashed lines for attenuation in terms of
displacement, red solid lines for attenuation in terms of velocity, and blue dash-dotted lines for
attenuation in terms of acceleration.

In this performance analysis, the case of the SP configuration for the NCs is not shown
because it tends to a pure series NC configuration if C1 tends to zero, and to a pure
parallel NC configuration if C2 tends to ∞ (Fig. 1b-d). This result has been already
highlighted in (Berardengo et al. (2018)) for the case of the dynamic compliance, where
the attenuation curves of the parallel were found to be slightly higher than those of the
series and the SP curves resulted between them. The same result is thus expected and
confirmed by the model in the case of mobility and accelerance. The only difference is
that, in these two cases, the attenuation curve of the NC in series is slightly higher than
that of the NC in parallel.

It is underlined that the index AdB has been calculated considering the amplitude
of the controlled FRF at ωF− (i.e. Hshunt). This is a reliable approximation when
the structural damping is null (i.e. ξi = 0, see Berardengo et al. (2018)). However,
in practical applications, ξi 6= 0, and in this case the |Hi| curves no longer cross at
points F+ and F−, although they remain close to this condition in case the ξi value
is small enough. However, in order to verify if a non-null ξi value leads to attenuation
values different from those expected using the AdB formulation (due to the fact that the
maximum of the FRF could be at a frequency value different from ωF− ) for the different
shunt configurations, also the actual attenuation calculated in decibels (i.e. related to
the actual maximum of the FRF amplitude), named here AdB,num, has been computed
numerically as:
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AdB,num = 20 log10

Hsc

Hnum
(9)

whereHnum is the actual maximum of the amplitude of the controlled FRF when optimal
values of ωe and ξe are used (i.e. Tab. 4). Therefore, the difference between Hnum (see
Eq. (9)) and Hshunt (see Eq. (7)) is that Hshunt is the controlled FRF amplitude at ωF− ,
which is an approaximation of the actual FRF peak amplitude Hnum.

The difference between AdB and AdB,num has been evaluated by defining the variable
∆:

∆ = AdB −AdB,num (10)

The trend of ∆ as a function of k̃i for dynamic compliance, mobility and accelerance
has been calculated for all the types of connection between L and R and type of
connection of the NC and for some systems chosen as examples. These trends are
reported in Figs. 5a and b for those configurations which show a value of ∆ higher
than 0.5 dB in a certain k̃i range in the case of the dynamic compliance. The two cases
in which the value of ∆ increases over 0.5 dB are for the NC in parallel and L and R
connected in series (Fig. 5a), where however the maximum ∆ value is acceptable, and
for the NC in series (and also SP) and L and R connected in series (Fig. 5b). In this latter
case, the value of ∆ strongly increases for very high values of k̃i (i.e. over about 0.8, Fig.
5b). This occurs because, with this configuration, the amplitude of the controlled FRF at
very low frequency (i.e. few Hertz) increases and becomes higher than at resonance.

Considering mobility and accelerance, AdB is always an accurate estimation of
AdB,num, being the values of ∆ lower than 0.5 dB. The only cases in which this threshold
is overcome are those related to Figs. 5c (for mobility) and d (for accelerance). However,
in both the cases the highest values of ∆ are always limited. Notice that, for some cases
(especially accelerance), it is possible that for values of k̃i higher than those shown in the
previous figures (i.e. higher than 0.95), together with high ξi values and low ki values,
AdB could become not accurate in estimating AdB,num. However, these cases are of no
practical interest because such high k̃i values are unlikely to be reached with low ki
values due to the instability limits and problems related to possible saturation of the
operational amplifiers of the NCs.

Since NCs in series are effective for controlling modes at low frequency, while NCs in
parallel are effective for controlling modes at high frequency (Berardengo et al. (2016b,
2018)), these two layouts are not compared here in terms of attenuation performance
because they are usually used for different control problems, as mentioned. As for the
SP, it can control modes in any frequency range (Berardengo et al. (2016b)) and, as
mentioned, its performances are between those of the other two NC configurations.

An interesting comparison is instead that regarding the connection type between L and
R. Figure 6 showsAdB,num for both an NC in parallel and series for some systems chosen
as examples. Plots (a,d,g,l) show that connecting L and R in series provides a higher
attenuation performance at high k̃i values in terms of displacement. The attenuation
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Table 5. Parameter values for the two systems used to simulate the case of high modal
density (ξi = 10−2 for all the modes of the table)

system 1 system 2
mode number ωi/(2π) [Hz] ki mode number ωi/(2π) [Hz] ki

1 500 0.15 1 100 0.15
2 1000 0.15 2 ω3(1− θ) 0.15
3 ω2(1 + θ) 0.10 3 1000 0.15
4 1900 0.10 4 ω3(1 + θ) 0.10
– – – 5 1900 0.10

performances tend to become closer when considering velocity (see plots (b,e,h,m) and
are almost equal in terms of acceleration (plots (c,f,i,n)).

The connection of L and R in series has shown to offer higher attenuations
when controlling either displacement or velocity. Furthermore L and R connected
in series allow to have lower values of Lopt, which in turn implies an easier
practical implementation. However, another point deserves attention. Usually, L must
be implemented employing operational amplifiers due to its high value (Moheimani and
Fleming (2006)), and these circuits can generate additional parasitic resistances in series
with the resulting inductances (Park and Inman (2003)). For the series connection of
L and R, the compensation of these resistive parasitic effects can be straightforwardly
carried out by changing R accordingly. Conversely, it is much more difficult to achieve
this result when R and L are connected in parallel. Therefore, the series connection
should be always preferred for an easier practical implementation of the entire circuit.

In order to have a quick comparison of the achievable attenuation levels, Fig. 7 shows
the trend ofAdB,num as a function of k̃i for different configurations of NC and connection
between L and R, and also for different target variables (i.e. displacement, velocity,
acceleration; each obtained using the corresponding optimisation criteria), for different
values of ξi. Even if the plot is shown just for a system with ki=0.01, these curves are also
very close to the curves achievable for other values of ki (actually, they are exactly the
same when an NC in parallel is considered). Therefore, this figure can be considered
as a sort of abacus, allowing to know in advance the maximum possible attenuation
achievable when using the piezoeletric resonant shunt coupled to NCs.

Looking at Figs. 6 and 7, it can be also noticed that the attenuation levels achievable
in terms of dynamic compliance, mobility and accelerance are close each other (given
the same configuration of the NC) (compare, as an example, the curves of Figs. 6a, b,
and c or look at the curves of Figs. 7a and b). When the value of k̃i becomes high, the
attenuation curves of dynamic compliance, mobility and accelerance can differ of few
decibels.

The case of high modal density
The optimisation formulas provided in this paper are valid in case of low modal density
(see Section ’Model’). However, in Section ’Controlled FRFs’, it has been mentioned
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Figure 8. Trend of AdB,1dof , AdB,Ndof and AdB,act as a function of θ for the first (a) and the
second (b) systems of Tab. 5. k̃2=0.30 for system 1 and k̃3=0.35 for system 2.

that, in case of high modal density, the optimisation formulas of Tab. 4 provide the
starting values for seeking the actual optimal values of ωe and ξe. Furthermore, even
in presence of a significant modal superposition, in many cases the attenuation foreseen
by the index AdB using the optimal values coming from Tab. 4 is still able to provide a
reliable estimation of the actual attenuation.

To show the above points, some examples are now discussed. To this purpose, a multi-
degree-of-freedom system, chosen as an example, is simulated by means of the model
presented in (Berardengo et al. (2017a)). In the first analysis, four modes are simulated
and the aim is to attenuate the second one (at ω2) in terms of acceleration; an NC in series
is used. Table 5 (system 1) shows the values of ωi, ξi and ki for the four modes. Here, a
parameter θ is used, and it expresses the relative distance between ω3 and ω2:

θ =
ω3 − ω2

ω2
(11)

Lower and lower values of θ mean that ω3 becomes closer and closer to ω2, making
the modal superimposition higher and higher. Changing the value of θ, it is possible to
increase/decrease the level of modal superimpostion of the two modes. It is also noticed
that the chosen values of ξi are high for all the modes in order to increase the level of
modal superimposition. Furthermore, also the eigenvector components are all set to 1 and
the values of ki are close. Indeed, both factors allow to make the influence of the other
modes on the target mode high.

Three different indexes are then calculated:AdB,1dof ,AdB,Ndof andAdB,act. For all of
them, the values of ωopt

e and ξopt
e have been set by means of the formulations proposed

in Tab. 4. AdB,1dof is the attenuation calculated by means of Eq. (7) and calculating ωsc
2

(which is affected by the presence of the NC) and ωoc
2 supposing to have negligible modal
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superimposition and using the theoretical expressions provided in (Berardengo et al.
(2016b)). Therefore, AdB,1dof is the estimation of the attenuation in case of low modal
density. AdB,Ndof is the attenuation calculated again with Eq. (7) but in this case the
values of ωsc

2 and ωoc
2 are directly estimated by carrying out a modal analysis of the FRF

of the multi-degree-of-freedom system, which accounts for all the modes considered. In
this way it is possible to take into account the modal contributions of the other modes.
Indeed, when the modal superimposition is high, the actual values of ωsc

i and ωoc
i can

become different from the theoretical expressions reported in (Berardengo et al. (2016b)).
Finally, AdB,act is the actual attenuation when all the modes are considered and again
the values of ωsc

2 and ωoc
2 are found by means of a modal analysis of the FRF. Therefore,

AdB,Ndof can be seen as an approximation of AdB,act.
Figure 8a shows the trends of the three indexes as a function of the value of θ. The

values of the indexes are close each other, exception made for θ = 0.05, which is the
case in which the modal superimposition becomes very high. Therefore, in all the other
cases the expressions of Tab. 4 still constitute good approximations of the actual optimal
values of ωe and ξe.

Another example is provided in Fig. 8b. Here, five modes are simulated and the aim
is to attenuate the third one (at ω3) in terms of velocity using an NC in series. Table 5
(system 2) shows the values of ωi, ξi and ki for the five modes. In this case, the parameter
θ expresses the relative distance between ω3 and ω2 and between ω3 and ω4:

θ =
ω3 − ω2

ω3
=
ω4 − ω3

ω3
(12)

The results of this example are close to those of the previous case. Therefore, the
formulations proposed in the paper to find the values of ωopt

e , ξopt
e and the attenuation

can be used and guarantee good estimations of the optimal values of L, R and of the
actual attenuation when the modal coupling is not very high; otherwise, they represent a
good starting point from which the perfect tuning has to be looked for.

Experiments
The set-up employed was based on a cantilever beam with two piezoelectric patches
bonded at the clamped end and electrically connected in series. This is the same set-up
used in (Berardengo et al. (2018)), where more details can be found as well as all the
procedures for estimating the system parameters.

The eigenfrequencies and non-dimensional damping ratios were estimated with
experimental modal analysis with the piezoelectric actuator in SC (without NCs). The
ki values were found estimating ωsc

i and ωoc
i without NCs in the shunt circuit (see Eq.

(3)). Since the different tests shown here were performed on different days, slight changes
in the modal data occurred (see Section ’Results’).

The inductance L was built using a synthetic circuit based on the Antoniou’s circuit,
where operational amplifiers are employed, because of its high values. The electrical
layouts used for implementing the NC (together with the values of all the electric
components of the circuit) can be found in Berardengo et al. (2018).
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Figure 9. Theoretical expectations (dashed line for AdB and solid line for AdB,num) and
experimental results (circles) for Test A (a), Test B (b) and Test C (c).

The tests were carried out on the first mode of the beam aiming at validating
the formulations derived for the values of ωopt

e and ξopt
e (Tab. (4)) for velocity and

acceleration, as well as the corresponding AdB values (Eq. (7)). For the displacement
optimisation, the results have been already validated in Berardengo et al. (2018). In the
experiments, the first mode (with an estimated value of Cp1 of 39.38 nF) was chosen
because of its high magnitude. All the tests shown here were performed with the series
connection between L and R because of its advantages (see previously). As an example,
Fig. 9 shows the attenuation curves for the following tests:

• optimisation in terms of mobility, NC in parallel, ω1/(2π)=34.45 Hz, ξ1=0.35%,
k1=0.2605 (Test A);

• optimisation in terms of mobility, NC in series, ω1/(2π)=34.45 Hz, ξ1=0.40%,
k1=0.2634 (Test B);

• optimisation in terms of accelerance, NC in series, ω1/(2π)=34.50 Hz, ξ1=0.38%,
k1=0.2660 (Test C).

Furthermore, Figs. 10a and b show the comparison between experimental and
numerical FRFs for one case of test C and one case of test B, respectively. The agreement
between analytical and experimental results is good. Therefore, the analytical expressions
derived in the paper for the optimisation of the shunt impedance can be considered as
validated, as well as the formulas for the prediction of the attenuation.

Figures 10c and d show the experimental FRFs of Fig. 10b (that are in mobility
with optimisation for mobility) in terms of displacement and acceleration, respectively.
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Figure 10. FRFs in terms of accelerance with an NC in series and k̃i=0.5948 (Test C),
Lopt=67.59 H, Ropt=13.04 kΩ (a), and FRFs in terms of mobility with an NC in series and
k̃i=0.6734 (Test B), Lopt=61.10 H, Ropt=12.21 kΩ (b). Experimental FRFs of plot b depicted
in terms of dynamic compliance (c) and accelerance (d). Experimental FRFs of plot b on a
wide frequency range (e), and in linear scale (f). Solid curves for the model expectations and
dashed curves for the experiments.

Although a good attenuation effect can be noticed, it is evident that the controlled FRFs
of plots (c) and (d) are not properly tuned because the optimisation is carried out in
mobility. This is in agreement with the results shown in Fig. 2.

Finally, Fig. 10e shows the experimental FRFs of Fig. 10b on a wide frequency range
in order to evidence that the shunt control works only on the targeted resonance (i.e. the
first one in this case), and does not affect the trend of the FRF in other frequency ranges.
Furthermore, Fig. 10f depicts the experimental FRFs of Fig. 10b with linear scale on the
vertical axis (the FRFs are normalised, having the FRF in SC with unitary height, in order
to allow for a straightforward percentage check) to stress the high attenuation provided
by the shunt, that even leads to the cancellation of the resonance.
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Guidelines
When NCs are employed, it is important to use the proper tuning criteria according
to the type of variable to be minimised. Indeed, the values of Lopt and Ropt become
farther farther for displacement, velocity and acceleration attenuation when the value of
k̃i increases due to NCs.

Considering the connection type between L and R, the series offers higher attenuation
levels than the parallel when controlling either displacement or velocity.

Regarding the NC type, it must be chosen according to the order of the mode to be
damped: NCs in either SP or series are more advisable for low order modes, and either
SP or parallel for high order modes.

Two further aspects are worthy of attention. One is related to the value of Lopt. Often,
when controlling modes at low frequency, this value is high and thus implies problems
related to the practical implementation. This paper evidences that the use of an NC in
series, coupled to L and R connected in series, allows to achieve at the same time two
different goals: an increase of the attenuation performance and a decrease of the value of
Lopt, which in turn implies an easier practical implementation of the shunt circuit. The
second important aspect is that when the value of k̃i increases due to NCs, the values of
Ropt for the two connection types of L and R get closer and closer, making their levels
of robustness to mistuning closer and closer.

Conclusion
This paper has addressed the optimisation of the piezoelectric resonant shunt enhanced
by the use of NCs. The electric impedance connected to the piezoelectric actuator is made
from a resistance, an inductance, and one or two NCs. The paper shows that it is possible
to derive closed analytical formulations for optimising the resistance and inductance
values, and for the prediction of the consequent vibration attenuation, when the target
is to attenuate displacement, velocity or acceleration. These formulations are valid for
all the possible NC layouts. When either velocity or acceleration are the control target,
the impedance tuning leads to advantageous networks in terms of practical problems
because of the lower values of the optimal inductance compared to the case of tuning in
terms of displacement. Moreover, the formulations for the attenuation prediction in terms
of velocity and acceleration are in general more accurate than in the case of displacement.

The two possible connection types of the resistance and the inductance have been
compared, showing that the series offers higher attenuation than the parallel and an easier
practical implementation. Furthermore, the paper suggests how to decrease the value of
Lopt, increasing at the same time the attenuation performance.
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Ducarne J, Thomas O and Deü J (2012) Placement and dimension optimization of shunted
piezoelectric patches for vibration reduction. Journal of Sound and Vibration 331(14): 3286–
3303.

Fleming A, Behrens S and Moheimani S (2003) Reducing the inductance requirements of
piezoelectric shunt damping systems. Smart Materials and Structures 12(1): 57–64.

Prepared using sagej.cls



25

Gardonio P and Casagrande D (2017) Shunted piezoelectric patch vibration absorber on two-
dimensional thin structure: tuning considerations. Journal of Sound and Vibration 395: 26–47.

Gripp JAB and Rade DA (2018) Vibration and noise control using shunted piezoelectric
transducers: A review. Mechanical Systems and Siganl Processing 112: 359–383.

Hagood N and von Flotow A (1991) Damping of structural vibrations with piezoelectric materials
and passive electrical networks. Journal of Sound and Vibration 146: 243–268.

Høgsberg J and Krenk S (2015) Balanced calibration of resonant piezoelectric rl shunts with quasi-
static background flexibility correction. Journal of Sound and Vibration 341: 16–30.

Høgsberg J and Krenk S (2017) Calibration of piezoelectric rl shunts with explicit residual mode
correction. Journal of Sound and Vibration 386: 65–81.

Matveenko V, Iurlova N, Oshmarin D, Sevodina N and Iurlov M (2018) An approach to
determination of shunt circuits parameters for damping vibrations. International Journal of
Smart and Nano Materials 9(2): 135–149.

Moheimani S and Fleming A (2006) Piezoelectric Transducers for Vibration Control and
Damping. Springer-Verlag.

Neubauer M, Oleskiewicz R, Popp K and Krzyzynski T (2006) Optimization of damping and
absorbing performance of shunted piezo elements utilizing negative capacitance. Journal of
Sound and Vibration 298(1-2): 84–107.

Park C and Inman D (2003) Enhanced piezoelectric shunt design. Shock and Vibration 10(2):
127–133.

Pohl M (2017) An adaptive negative capacitance circuit for enhanced performance and robustness
of piezoelectric shunt damping. Journal of Intelligent Material Systems and Structures 28(19):
2633–2650.
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