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Climate Conditions
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Abstract

This paper investigates the nexus between climate-related variables, commodity
price co-movements and financial stability. First, we project the commodity price
time series onto a multilayer network. Centrality measures computed on the net-
work are used to detect the existence of common trends between the series and to
characterize the role of different nodes during phases of market downturns and up-
turns, unveiling the onset of financial instability. Then, an econometric analysis is
introduced to show how climate-related variables affect financial stability by influ-
encing co-movements of commodity prices. Overall, the paper reveals how synthetic
indicators of commodity price co-movements generate valuable signals to study the
nexus between climate-related conditions and the dynamics of financial systems.
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1 Introduction1

Governor Carney pointed out that “Climate change is the Tragedy of the Horizon”, in his2

speech to the Lloyd’s of London in 2015 (Carney, 2015). Notwithstanding the increasing3

attention by scholars and policy-makers on climate change risks for the economy and so-4

ciety at large, still there is a heated debate on how to properly evaluate externalities and5

design appropriate policies (see Nordhaus, 1994; McKibbin and Wilcoxen, 2002; Stern,6

2008; Nordhaus, 2007). Many economic activities from international trade (Mattoo et al.,7

2009; Brack, 2013) to agriculture (Howden et al., 2007; Nelson et al., 2009), consumer8

behavior (Whitmarsh, 2009; Wells et al., 2011) and even tourism (Hamilton et al., 2005;9

Becken and Hay, 2007) are, in fact, not immune from exposures to climate change. Glob-10

alization processes are also likely to favor such economic vulnerabilities (see o’Brien et11

al., 2004; Leichenko et al., 2010). No less important, the interlinkages between economic12

activities and changes in the environmental-related systems have been also influenced by13

the rapid rate of variation of climate conditions, whose dynamics and projections still14

have to be fully explored (see Houghton et al., 1991; Alley et al., 2003; Meehl et al., 2007;15

Collins et al., 2013).16

The financial industry has started to exploit these sources of instability by propos-17

ing devoted financial products for investment or hedging purposes. This is the case, for18

instance, of insurance policies against specific natural risks or catastrophic single/multi19

events (e.g., flooding, droughts, earthquakes, hurricanes, wildfires, etc.), or the issuance20

of catastrophic bonds (CAT bonds) to share certain risks with capital markets. The21

exploitation of instability sources has also stimulated pre- and post-disaster financial22

arrangements to foster risk mitigation and finance the recovery. More recently, the Con-23

ference of Parties (COP), held in Paris in 2015, posed clear commitments to ensure that24

financial markets play a full and constructive role to address climate change by facilitat-25

ing, for instance, clean investments, the pooling of climate-related risks, and the adoption26

of appropriate stress testing procedures to enhance financial stability during the transition27

to a low-carbon economy (see Farid et al., 2016).28

Indeed, financial markets have been recognized as increasingly responsive to climate29

change. More in general, the transmission mechanisms of risks from climate change to30

financial systems and individual institutions envision a multidisciplinary research agenda31

(see, e.g. Stolbova et al., 2018). Dietz et al. (2016), for instance, estimate the “climate32

value at risk” of global financial assets when carbon emissions are cut to limit warming to33

no more than 2oC, while Dafermos et al. (2018) find that climate change can impact on34

financial stability by deteriorating firm liquidity and by reducing the price of corporate35

bonds and the supply of credit. Moreover, Battiston, Mandel, et al. (2017) extend the36

concept of climate value at risk to individual institutions through network analysis and37

propose a stress-test procedure taking into account financial dependencies to evaluate38

the degree to which financial institutions are exposed to sources of climate risk. The39

authors study portfolio composition in terms of green (or brown) investments and find40

that investors’ equity holdings bear large exposures to climate-policy-relevant sectors and41

that a late climate policy adoption could have adverse systemic consequences.42

Climate change can, in fact, influence the stability of financial systems directly through43

more frequent and severe disasters impacting the economy, while the uncertainty related44

to the re-conversion process into a low-carbon economy and its timing and speed can45

potentially determine disruptive variations on the asset prices of carbon-intensive sec-46

tors and pose major risks and opportunities to society at large (Giuzio et al., 2019).47

Therefore, the assessment of stability conditions of capital markets should also take into48

account the complex and evolving exposures due to the risks associated to climate change49
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and environmentally-related phenomena. Financial systems are thus not immune from50

these risks and a proper evaluation of the interdependencies between climate change and51

financial stability call for novel approaches and indicators able to monitor and assess how52

environmental and climate-related risks might propagate throughout the financial sys-53

tems and wider economy (see Battiston, Mandel, et al., 2017). For instance, Pollitt and54

Mercure (2018) discuss the role of the financial sector in the assessment of macroeconomic55

costs and benefits induced by climate and energy policies, while Stolbova et al. (2018)56

propose a network-based approach to trace feedback loops between the financial sector57

and the real economy and to assess how climate policy-induced shocks impact on virtuous58

or vicious cycles that arise in the climate-finance nexus.59

Against this background, commodity markets represent a relevant domain to study the60

nexus between financial systems and environmental and climate-related dimensions. In61

fact, commodities, besides being traded for speculative purposes, are exchanged because62

of their underlying role for nutrition needs or as inputs for production activities. Since63

the production of commodities is also affected by environmental factors, climate change64

may have a substantial impact on their prices and, ultimately, on the financial stability65

of the corresponding markets. Literature has already recognized the critical implications66

of climate change on agricultural commodities, in terms of production, availability and67

security (see Fischer et al., 1994; Parry et al., 1999; Brown and Funk, 2008; Wheeler and68

Von Braun, 2013; Springmann et al., 2017). In addition, these spillover effects appear69

mutually reinforced. For instance, greenhouse gas emissions from food-related activities70

limit the reduction of global warming, while increasing temperatures and declining precip-71

itation depress the production of corn, wheat, rice, and other primary crops. Even worse,72

at local levels, small farmers of food-insecure regions often rely on their own production73

to meet their food needs and are, therefore, more exposed to sudden climate variations74

and extreme natural events. These drops in agricultural production can therefore influ-75

ence the national fiscal balances of poorly developed countries that heavily depend on76

the agricultural sector, thus limiting their role in trade systems and, ultimately, their77

ability to meet domestic food needs through the capacity of import from other markets.78

Furthermore, globalization and interconnected financial markets contribute to the spread79

of the externalities from climate change and influence commodity prices globally. Hence,80

climate change could potentially slow down the efforts made for a world without hunger81

and reverse the converging trajectories for those regions that are more dependent on the82

agricultural production. By affecting both external and domestic imbalances, variations83

in commodity prices may have substantial effects on the stability of these economies.84

Several empirical studies investigate co-movements between climate change and com-85

modities, specifically among those related to food and agricultural materials. For instance,86

Hong et al. (2019) note that food stock prices underreact to climate change risks, while87

Piot-Lepetit and M’Barek (2011) argue that price volatility of agricultural commodities88

cannot be analyzed as financial price volatility. Interestingly, a stream of literature fo-89

cuses on the relationships between agricultural commodities and fuels, thus motivating90

the selection in our analysis of a wide set of commodities. For instance, Reboredo (2012)91

observes weak oil-food dependence and no extreme market dependence between oil and92

food prices. Lucotte (2016) finds strong positive co-movements between crude oil and93

food prices in the aftermath of the commodity boom that occurred in the last decade,94

and Baumeister and Kilian (2014) notice that co-movements between the prices of oil and95

agricultural products appear largely driven by common macroeconomic determinants. In-96

terestingly, complex systems techniques have begun to spread in these contexts to study97

co-movements across various types of environmental-related time series. For instance,98

Filip et al. (2016) propose a combination of minimum spanning trees correlation filtration99
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and wavelet analysis to analyze the interconnections between biofuels and financial fac-100

tors, while Kristoufek et al. (2012) apply a minimum spanning tree analysis on a similar101

sample and find that the average tree lengths suggest that ethanol and biodiesel are very102

weakly connected with other commodities in the short-term, and that in the medium-term103

the biofuels network becomes more structured and characterized by a group of fuels and104

another one of food commodities, and that after the global financial crisis of mid-2007105

connections became much stronger.106

In this work we investigate how climate-related variables can affect the stability of107

financial systems by impacting on commodity prices. To this aim, we develop a few108

synthetic indicators of co-movements among commodity time series that account for both109

the cross-section and temporal dimension of the series during either upward or downward110

phases, which we then relate to the study of the nexus with financial stability. Our aim111

is to provide a set of indicators that could be used to map the stability conditions of112

financial systems in line with a common perspective in the literature on systemic risk and113

financial stability that addresses other similar sources of risks combining both a micro114

and a system-wide perspective to extract signals of the transition in the behavior of the115

underlying system from directional and coordinated market patterns. Hence, we opt for116

a parsimonious representation of directional co-movements to map market dynamics that117

may lead to phases of instability, thus providing synthetic indicators useful for scrutinizing118

and monitoring market stability in a timely manner, consistently with other proposed119

indicators and perspectives entered in the risk dashboard for systemic risk in wider capital120

markets.121

In so doing, we first explore the temporal properties of individual commodity time122

series. Financial asset series, besides being typically non-stationary, are likely to present123

nonlinear structures, which may mask the presence of long-range temporal dependence, or124

time reversibility, i.e., the degree of dynamic invariance under time reversal (see Flanagan125

and Lacasa, 2016; Roldán and Parrondo, 2010; Roldán and Parrondo, 2012). Recently,126

several approaches have been proposed to convert time series into graphs that encode127

some features of the original time series into nodes and edges without assuming any128

specific functional form for the data generating processes. In particular, visibility graph129

methods have been shown to overcome some time series analysis limitations, especially130

when dealing with complex phenomena (see Lacasa et al., 2009; Lacasa et al., 2012; Lacasa131

et al., 2015).132

In fact, visibility methods create graphs which inherit relevant features of the original133

time series in both stationary and non-stationary systems (Lacasa and Flanagan, 2015).134

In particular, the method proposed in Lacasa et al. (2008) and Lacasa et al. (2009),135

namely the Natural Visibility Graph, transforms a time series into a graph according to136

a mapping algorithm linking points of the time series according to a convexity crite-137

rion. In the resulting graph, every node corresponds to a time-stamp data point and two138

nodes are connected if they are visible from each other, i.e., if there exists a straight line139

connecting them and not intersecting the height of any other intermediate time-stamps.140

Compared to other methods employed to transform times series into networks (see Xu141

et al., 2008; Strozzi et al., 2009; Donner, Small, et al., 2011), visibility graph algorithms142

have a straight-forward geometric interpretation of the original time series, thus making143

them suitable for quantitative analysis of financial market series.144

Specifically, by applying the visibility criterion of Lacasa et al. (2008), a periodic series145

is transformed into a regular graph, a random series into a random graph, while a fractal146

series is converted into a scale-free graph. Since the visibility graph of a fractal time series147

follows a power law degree distribution, the self-affine characteristic of a time series can be148

analyzed by means of the power-law exponent of the degree distribution of the associated149

4



graph rather than being investigated by means of statistical techniques like the Hurst150

exponent. Here, we employ this graph-embedded approach to study how phenomena,151

such as long-range dependence, may lead to phases of market instability.152

To discriminate between market upturns and downturns, we introduce a novel con-153

figuration of the visibility graph that results in a directed network, namely the Direct154

Visibility Algorithm. The Direct Visibility Algorithm produces a directed network for155

each commodity time series where the minima (maxima) of the time series are mapped156

into nodes with high values of the out- (in-) degree according to a predefined ordering157

criterion. Then, to characterize commonalities across multiple commodity prices time158

series, we introduce a probabilistic tensor decomposition (see Kolda et al., 2005; Avdjiev159

et al., 2019), which we apply on top of the visibility graph. In a nutshell, the probabilistic160

tensor decomposition produces centrality indicators, i.e. Hub and Authority scores1, for161

each time observation using the information embedded in the multilayer visibility network.162

Similarly to the in-(out-)degree, which reveals local maxima (minima) of a single time se-163

ries, the Authority (Hub) score provides information on coordinated maxima (minima) in164

a multivariate setting, such that the higher the Authority (Hub) score associated to a cer-165

tain node, the more the corresponding commodity time series show a coordinated behavior166

on positive (negative) trends. Additionally, Authority and Hub scores are characterized167

by a self-reinforcement mechanism, being feedback centralities. Authority scores are, in168

fact, higher for time stamps with significant links from nodes with high values of the Hub169

score, and similarly Hub values are higher for those nodes with significant connections to170

high-valued Authority time points. Thus, central nodes of the multilayer visibility net-171

work do not simply identify aligned maxima or minima on multiple series, but they also172

convey information on the return time distribution of the series, where the return time is173

defined as the shortest time required by the system to visit the same state from which it174

started to move (see Ding and Yang, 1995). This information is important, since it helps175

detecting the emergence of abrupt transitions between different market phases.176

Although time series analysis is a mature and solid field with well developed and un-177

derstood methods and associated theory, this type of analysis still has some limitations178

when it is applied to the study of more complex signals, e.g. when time series are non-179

linear or exhibit long-range memory, chaotic behaviors and intermittency. Our proposed180

approach is instead parameter free and does not require any assumption on the functional181

form of the data generating process. In particular, the study of nodes centrality allows182

us to investigate some relevant non linear properties of the multilayer network, such as183

system synchronization. Indeed, the presence of central nodes reveals an increased syn-184

chronisation of commodity prices, which occurs when the system is driven away from its185

equilibrium configuration. Conversely, nodes centrality results more evenly distributed186

during periods of market stability, when the system is close to equilibrium (see Lacasa187

et al., 2015). In other words, multilayer centrality scores uncover the emergence of syn-188

chronized patterns between commodity prices and can be used to measure the intensity189

of self-organizing processes arising from market co-movements and positive feedbacks (see190

Heemeijer et al., 2009; Flori et al., 2019; Spelta et al., 2020).191

Finally, we employ Granger causal connectivity analysis (Granger, 1969) for assessing192

the directional functional connectivity between climate-related series (namely, tempera-193

ture, air pressure, rainfall and wind directions), our proposed topological centrality scores194

and the FED Financial Stress Index (FSI), which is employed as a proxy for financial195

stability2. Our results reveal a synchronization between extreme values of the centrality196

1The words centrality, score and ranking are used as synonymous in this paper.
2St. Louis Fed Financial Stress Index, retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/STLFSI, February 21, 2019.
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measures and those of the climate-related variables. We also show the presence of a lead-197

lag effect between the FSI and the topological measures, highlighting a nexus between198

commodity price co-movements and capital markets. These findings are also supported199

by the application of the Toda and Yamamoto’s variant of the Granger causality test200

(see Toda and Yamamoto, 1995) and by the impulse-response analysis estimated by local201

projections (Jordà, 2005). From a macro-prudential perspective, our analysis thus aims202

to contribute to the debate on explainable forecasting approaches about the transmis-203

sion mechanisms behind the interlinkages between climate, macroeconomics and financial204

systems.205

Our work is also coherent with the recent perspective on disaster risk management206

provided in the Global Assessment Report on Disaster Risk Reduction (2019) of the UN207

Office for Disaster Risk Reduction (UNDRR), which explicitly refers to the presence of208

increasingly complex interactions among hazards and human relationships that should be209

addressed, monitored and mitigated using a complex systemic risk assessment (UNDRR,210

2019). The study of financial instability and the role played by natural risks and climate-211

related conditions in shaping market reactions urge, therefore, a new set of techniques212

and methodologies able to monitor in almost real-time the stability conditions of financial213

systems against natural shocks and climate-related threats.214

The paper is organized as follows. In Section 2 we discuss the data set used in the215

analysis. We then introduce the methodology employed to convert the commodity price216

time series into visibility graphs and we present the tensor decomposition, which we use217

to synthesize, through centrality measures, the importance of each period in terms of218

co-movements among commodity time series. Section 3 reports the results of the study219

and the econometric investigation concerning the relationships among the co-movement220

indicators, climate-related variables and financial stability. Section 4 concludes our study221

and discusses some limitations of our analysis.222

2 Data and Methodology223

2.1 Data224

Our analysis considers relationships among three different layers of analysis referring to225

the environmental, financial and commodity dimensions, the latter that links the first two.226

The three dimensions are represented by various types of data: i) price times series for227

a broad range of commodities, ii) environmental-related variables, and iii) an aggregate228

financial index for overall stability conditions in capital markets. As regards the first set229

of variables, we employ monthly price time series of 42 commodities along the period from230

January 1980 to June 2017. Data are retrieved from FRED and are expressed in USD.231

These series are intended to cover a wide spectrum of commodity markets in order to232

explicitly verify the extent of co-movements in different economic contexts. Specifically,233

the series can be referred to the following broad categories3:234

• Agriculture and Food: Bananas, Barley, Beef, Cocoa, Coffe Arabica, Coffe Robustas,235

Corn, Fish, Fish Meal, Groundnuts, Lamb, Olive Oil, Oranges, Palm Oil, Poultry,236

Rapeseed Oil, Rice, Shrimp, Soybeans Oil, Soybeans, Sugar, Sunflower Oil, Swine,237

Tea, Wheat;238

• Fuels and Oil: Brent Crude, Dubai Crude, WTI Crude, Coal;239

3Some series have specific geographical connections, which is the case, for instance, of: Coal (Aus-
tralia), Oil (Europe, Dubai), Rice (Thailand) or Tea (Kenya).
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• Metals: Aluminium, Copper, Iron Ore, Lead, Nickel, Tin, Zinc;240

• Other: Cotton, Hides, Rubber, Soft Logs, Wool Coarse, Wool Fine.241

As environmental variables, we include monthly data on rainfall, temperature, atmo-242

spheric pressure and wind strength, which although far from providing a granular repre-243

sentation of climate and environmental phenomena still provide a reasonable framework244

for relevant dimensions that may impact on the selected list of commodities. In particu-245

lar, average rainfall rate values refer to five satellite estimates (namely, GPI, OPI, SSM/I246

scattering, SSM/I emission and MSU). As temperature we consider global land surface247

temperatures from the Global Historical Climatology Network and the Climate Anomaly248

Monitoring System (GHCN + CAMS). From NCEP/NCAR Reanalysis we retrieve the249

atmospheric pressure at the sea level and the direction and strength of the wind (for de-250

tailed information on climate series, see Xie and Arkin, 1997; Jones, Osborn, et al., 2001;251

Brohan et al., 2006; Fan and Van den Dool, 2008; Jones, Lister, et al., 2012). For each252

climate variable, we use a grid of monthly observations formed by latitude and longitude253

coordinates. For the scope of the paper, we construct proxies for the related dimension by254

averaging across the grid points the time records. Finally, since climate processes can be255

influenced by seasonal factors, we apply curve fitting on sine/cosine waves to purge data256

from cyclical components4. This procedure allows us to extract the global trends of the257

time series, free from the effect of known seasonality with fixed and known periodicity.258

Thus, by removing a nuisance periodic component we produce de-seasonalized time series259

useful for exploring the trend and any remaining irregular component.260

We address the overall financial stability conditions by comparing our topological261

indicators with the FED Financial Stress Index (FSI), which measures the degree of262

financial stress in capital markets. The indicator combines seven interest rate series,263

six yield spreads and five other indicators (e.g., for bonds issued in emerging markets,264

for inflation dynamics or market volatility such as the VIX indicator), without directly265

including commodity price series. Overall, FSI is intended to provide a comprehensive266

picture of stability conditions across multiple financial systems. Accordingly, when the267

level of financial stress in the markets varies, these data series are likely to co-move. In268

practice, values of the indicator below zero indicate below-average financial stress, while269

values above zero stand for above-average financial market stress (Kliesen, Smith, et al.,270

2010; Kliesen, Owyang, et al., 2012).271

Figure 1 shows the behavior of the de-seasonalized climate series along with the Fi-272

nancial Stress Index. Average rainfall, for instance, exhibits a sharp increase after 2011,273

while the average temperature shows a growing pattern in the last decades; by contrast,274

the average pressure and wind directions are almost stable in the sample period, although275

the latter show a few remarkable variations at the end of the sample period. Overall, these276

series seem to point to changes in environmental conditions especially in the last period.277

Finally, we report the time series for the FSI that peaks during the global financial crisis278

of mid-2007, while it indicates below-average financial stress for more recent observations279

in the sample.280

4We have applied a seasonal filter to deseasonalize time series using a multiplicative decomposition,
meaning that before estimating the seasonal component we have removed the linear trend applying a
12-term symmetric moving average. This allows us to divide the original series by the smoothed series
to detrend the data. Then, we have employed a seasonal curve fitting on sine/cosine waves to the
desesonalize series.
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Figure 1: De-seasonalized climate series and the Financial Stress Index. The figure shows the temporal patterns
of the climate-related time series after removing the seasonality components (blue lines), together with the FSI of the
Federal Reserve Bank of St. Louis (red line).

2.2 Directed Visibility Graph281

Graph-theoretical tools are key solutions to convey general information on the dynamics282

of a system when its precise mathematical description is not possible (see Pammolli and283

Riccaboni, 2002; Spelta et al., 2019). The analysis of a system by means of a graph-284

theoretical approach at different time points can be exploited to detect regime shifts (see285

Orsenigo et al., 2001). In other words, these graph-theoretical techniques can be applied to286

extract relevant information about the evolution of a system in a simple and parsimonious287

way (see also Lacasa et al., 2008; Xu et al., 2008; Strozzi et al., 2009; Donner, Small, et al.,288

2011).289

From a risk assessment perspective, we propose and test a few synthetic indicators able290

to map how co-movements among commodity time series can signal market instability.291

In so doing, the use of visibility graph has to be seen as instrumental for constructing292

adjacency matrices which are then used to build the tensor and extract centrality scores293

from its decomposition as proxies for co-movements toward market trends. In order to294

do so, visibility graph algorithms are considered as the bridge between time series and295

the complex system literature, in which the values assumed by a time series are plotted296

as vertical bars, and two bars (time stamps) are connected if they can “see” each other.297

Importantly, the structure of time series conserves when it is converted to graph (see298

Lacasa et al., 2008; Lacasa et al., 2009) and the topological properties of the resulting299

graph allow to study emerging phenomena, such as the long-range dependence, which are300

at the ground level of many phases of market instability.301

The visibility approach has been shown, in fact, to be a simple, computationally302

efficient and analytically tractable technique, which can be used to extract relevant infor-303

mation about the original signals of a series. The process generating the time series can304

be characterized by using a graph theoretical measure that inherits several key structural305

properties of the original series. In particular, Lacasa et al. (2009) show that nonstation-306

ary time series with long-range dependence, such as a fractional Brownian motion, can be307

depicted as a scale-free visibility graph with degree distribution depending on the Hurst308
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exponent of the series, while in Lacasa et al. (2012) they combine visibility graph with309

the Kullback-Leibler divergence to both convert a time series into a network based on a310

geometric criterion and correctly distinguish between reversible and irreversible station-311

ary time series. Moreover, visibility graphs have been shown to be invariant under several312

transformations of the time series, such as translation, re-scaling and addition of a linear313

trend to the data (see Lacasa et al., 2008).314

Recently, many different methods and applications of visibility graph algorithms have315

been proposed in many fields, such as economics (see, e.g., Qian et al., 2010; Wang et316

al., 2012), geology (see, e.g., Donner and Donges, 2012), biology (see, e.g., Ahmadlou317

et al., 2010; Hou et al., 2016), transportation (see, e.g., Tang et al., 2016). From a318

technical perspective, several modifications of the traditional visibility graph approach319

have been proposed so far, such as the horizontal visibility graph (HVG) (Lacasa et320

al., 2009), and the multi-scale limited penetrable visibility graph (LPVG) (Gao et al.,321

2016), which mainly focus on different ways of building visibility graphs. In our work,322

we propose a variant of the Natural Visibility algorithm of Lacasa and coauthors to take323

into account the direction of the links. This step is instrumental to assess co-movements324

during either upward or downward phases, which we then relate to the study of the nexus325

with financial stability. In fact, despite the fact that the Natural Visibility algorithm326

produces a graph in which the most connected nodes correspond to the extreme events of327

the series, the topological features of the resulting undirected graph cannot discriminate328

between extreme and positive w.r.t. extreme and negative events. For this purpose, we329

have decided to introduce a novel configuration of visibility graph that results in a directed330

network. Indeed, the Direct Visibility variant of the algorithm produces a directed network331

where the maxima (minima) of the series are mapped into nodes with a high value of the332

in-(out-)degree according to a predefined ordering criterion.333

More specifically, suppose to define an (arbitrary) ordering criterion of the series such334

that in the resulting graph the links will be directed from the time stamps (nodes) in335

which the series have lower values to the time stamps that have higher values5, if and336

only if there are no intermediate points with higher values between them (as in the Natural337

Visibility case). Such Direct Visibility variant allows us to map local maxima and minima338

of commodity prices series into nodes with high values of the in-degrees or out-degrees,339

respectively. The degree distribution is thus instrumental for discriminating between340

periods approaching market downturns and upturns.6 Formally, the following visibility341

criteria provide a way to draw edges connecting pairs of time stamps, thus forming the342

backbone structure of the visibility graph. In formulae, two arbitrary time points ta and343

tb with values ya and yb are connected with a directed link A(a, b) = 1 if, for every other344

point tc ∈ (ta, tb), they satisfy:345

A(a, b) = 1 if ya < yb and yc < yb + (ya − yb)
tb − tc
tb − ta

(1)

Figure 2 shows, through simulations, that the proposed algorithm is effectively able346

to map those time stamps where the corresponding series present high (low) values into347

nodes with high in- (out-) degrees. Since asset prices have been shown to display statistical348

features inherited from power law distribution (see, e.g., Gabaix et al., 2003; Plerou et al.,349

2004), we generate data from such distribution. We extract series of 1000 values, repeating350

the experiment 1000 times, and for each repetition we build the adjacency matrix related351

to formula (1). Then, the in- and out-degree of each node was reported against the height352

5The ordering criteria is arbitrary and can also be reverted.
6In Appendix A, Figure A.1 graphically shows the mapping between the values of a simulated series

and the resulting network topology.
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of the corresponding point in the series. Figure 2 shows that high values of the simulated353

series, i.e., maxima, are mapped into nodes with a high in-degree and, conversely, low354

values of the series, i.e., minima, are mapped into nodes with a high out-degree.355

Figure 2: In- and out-degree versus time point height. The figure reports the results of the simulation analysis on
the functioning of the Direct Visibility algorithm by showing its ability to map high (low) time point values into nodes with
high in-(out) degree values. The figure displays the in- and out-degree of each node against the height of the time point.
Time stamps with high values are mapped into nodes with a high in-degree and, conversely, time stamps associated with
low values of the series are mapped into nodes with a high out-degree.

Despite their wide applications in different fields, visibility graphs have been almost356

entirely devoted to the analysis of univariate time series (an exception is Lacasa et al.,357

2015). In order to cope with this gap, we propose a tensorial approach that produces358

centrality measures in a multidimensional setting, simultaneously addressing the cross-359

sectional and the time dimensions of the commodity price time series by jointly considering360

all the visibility graphs together in a single multidimensional object (see Kolda and Bader,361

2009; Avdjiev et al., 2019).362

2.3 Probabilistic Tensor Decomposition363

In this Section we show how a probabilistic tensor decomposition applied to a visibil-364

ity multilayer network can be used to extract relevant features about price relationships365

encoded in the network through centrality measures. In particular, we show that these366

structural descriptors of the corresponding multilayer network reveal the transition be-367

tween different dynamical phases and the onset of system synchronization stages.368

In our analysis, for each commodity time series k of length T we apply the aforemen-369

tioned formula (1) to build a directed visibility graph described by an adjacency matrix Vk370

of size T × T . The resulting matrices are then stacked into a single mathematical object,371

namely a three-way tensor V ∈ RT×T×K . Formally, following Kolda and Bader (2009)372

and Spelta et al. (2018), the 3-rd order tensor is an element of the tensor product of three373

vector spaces, each of which has its own coordinate system. The multilayer network in374

which each layer represents the visibility graph associated with a single commodity series375

can thus be mapped into a 3-rd order tensor V ∈ RT×T×K , as we have a 2-dimensional376

visibility graph for each commodity series k, the latter representing the third dimension.377
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The tensor decomposition of V produces three scores that represent the Hub and the378

Authority scores associated to each node, as well as a Type score related to each layer k379

(Kleinberg, 1999; Kolda et al., 2005; Kolda and Bader, 2009). Specifically, nodes with high380

Hub scores represent points in time in which commodity prices co-move on a downward381

trend, while nodes with high values of the Authority score represent time points where382

commodity prices co-move upwards. The Type score of each layer contains information on383

the probability that high scoring time stamps are connected in such layer, i.e., it reveals384

information on whether time points with high Hub and Authority values connect to each385

other in that particular commodity time series.386

The TOPHITS algorithm developed by Kolda et al. (2005), a generalization of the387

HITS algorithm (see Kleinberg, 1999) for multidimensional arrays, provides a global cen-388

trality measure for nodes and layers by producing one score for each dimension of the389

tensor under analysis. To obtain centrality measures with a probabilistic interpretation,390

we modify the TOPHITS algorithm in line with Ng et al. (2011). We propose to com-391

pute such centrality scores from the transition probabilities of a Markov chain applied392

to the tensor, whose joint stationary distributions will be the product of Hub, Authority393

and Type scores. This has the advantage of a better interpretation of the results, as394

probabilities are normalized by definition (Avdjiev et al., 2019).395

For computing centrality measures, the starting point of the construction of the de-396

composition is the computation of the (bivariate) conditional frequencies H, A and R for397

Hub, Authority and Type scores, respectively. Let V ∈ RT×T×K be the 3-rd order tensor398

obtained by stacking the adjacency matrices of the visibility graphs Vk for k = 1, ..., K.399

Each element of the tensor vijk takes value 1 if nodes i and j are connected in the k-th400

layer and zeros otherwise or, in other words, it assumes value 1 if time point j is visible401

from time point i in the k-th time series. Conditional frequencies can thus be obtained402

by normalizing the entries of the tensor V as follows:403

hi|jk =
vijk∑T
i=1 vijk

i = 1, ..., T

aj|ik =
vijk∑T
j=1 vijk

j = 1, ..., T

rk|ij =
vijk∑K

k=1 vijk
k = 1, ..., K

(2)

being hi|jk the conditional frequency of visiting the i-th node as a Hub, aj|ik the conditional404

frequency of visiting the j-th node as an Authority, and rk|ij the conditional frequency of405

using the k-th commodity layer, given that nodes j and i are currently connected.406

To account for the so called dead end nodes, when vijk = 0 the values of hi|jk and aj|ik407

are set to 1/T , while the value of rk|ij is put to 1/K.408

From the above quantities we can estimate the conditional probabilities as:409

Pr[Xη = i|Yη = j, Zη = k]
Pr[Yη = j|Xη = i, Zη = k]
Pr[Zη = k|Xη = i, Yη = j]

(3)

where Xη, Yη and Zη are random variables referring to the probability that a random410

walker visits any node as a Hub or as an Authority at step η of the Markov chain, using411

every type of commodity time series. Such conditional frequencies are then employed to412

derive the stationary marginal probabilities:413

Pr[Xη = i] =
∑T

j=1

∑K
k=1 hi|jkPr[Yη = j, Zη = k]

Pr[Yη = j] =
∑T

i=1

∑K
k=1 aj|ikPr[Xη = i, Zη = k]

Pr[Zη = k] =
∑T

i=1

∑T
j=1 rk|ijPr[Xη = i, Yη = j]

(4)
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In other words, for any Hub node i we assign a non-zero probability of jumping to414

the Authority node j; this probability is inversely proportional to the number of directed415

edges exiting from node i multiplied by the probability of using layer type k as transition416

matrix. Similarly, for any Authority node j we assign a non-zero probability of jumping417

to a Hub node i that is inversely proportional to the number of directed edges pointing to418

node j times the probability of using layer type k as transition matrix. Instead, for any419

layer type k we assign a non-zero probability of being utilized as transition matrix; such420

probability is inversely proportional to the flow between nodes i and j in all the layers421

multiplied by the probabilities that nodes i and j are connected in layer k as Hub and422

Authority, respectively.423

Finally, limiting distributions of system (4) can be used as Hub, Authority and Type424

scores, which are then defined as:425

ωi = limη→∞ Pr[Xη = i]
θj = limη→∞ Pr[Yη = j]
γk = limη→∞ Pr[Zη = k]

(5)

In line with the TOPHITS algorithm, the three scores can be obtained by solving426

iteratively the following system of equations:427

ωi =
∑T

j=1

∑K
k=1 hi|jkθjγk i = 1, ..., T

θj =
∑T

i=1

∑K
k=1 aj|ikωiγk j = 1, ..., T

γk =
∑T

i=1

∑T
j=1 rk|ijωiθj k = 1, ..., K

(6)

until the converge criterion |ωη − ωη−1|+ |θη − θη−1|+ |γη − γη−1| < ε is met.428

In other words, let K denote the total number of commodity price series for which a429

visibility graph Vk is computed and let γk be the score corresponding to the importance430

of the k-th series, i.e., the contribution of the k-th series to the importance of the nodes in431

the visibility tensor. Moreover, let ωi and θj be the scores corresponding to the importance432

of the i-th and j-th nodes, i.e., the importance of the i-th and j-th time points across433

multiple series in terms of out-going and in-coming links, respectively. These two scores434

represent the Hub and Authority importance associated to the time nodes.435

The proposed algorithm can be also related to Correspondence Analysis, which is436

a standard multivariate statistical technique aiming to analyse frequency tables (see437

Greenacre, 2017; Lebart et al., 1995). In Correspondence Analysis, a table of frequencies438

represents the number of cases having both values x for the row variable and y for the439

column variable. Correspondence Analysis associates a score to the values of each of these440

variables. These scores relate the two variables with a reciprocal averaging relation. In441

our case, for each layer, the records are the directed edges and the system of equations (6)442

defines the reciprocal averaging relation. Indeed, the Hub score ωi, related to the impor-443

tance of the i-th node (or time point), is computed as the weighted sum of the Authority444

scores θj of the nodes j that are “visible” from i along all the commodity series. The445

weight associated with each visible node j is the product of the element of the transition446

probability tensor H between nodes i and j times the Type score γk of the layer in which447

the link is present. The Authority score θj of node j is, instead, the weighted sum of the448

Hub scores ωi of the time points i that “see” node j. The weight associated with each449

node i is the product of the element aj|ik times the Type score γk of the layer in which450

the link is present. Finally, the Type score of commodity layer k is the sum, over all pairs451

of nodes (i, j) connected in layer k, of the product between the Hub score ωi with the452

Authority score θj and with the element of the transition probability tensor R between453

nodes i and j.454

12



This approach allows us to study through the use of topological measures even non-455

stationary time series which may present phenomena like long-range memory and which456

are likely to lead to phases of market instability. Here, the tensor decomposition is457

instrumental when we work with multiple networks. The resulting centralities associated458

to time stamps recognize, in fact, increasing synchronisation phases of the system since459

Authority and Hub scores reveal not only whether commodity price co-move but also460

the direction of the co-movement towards maxima or minima, thus signaling potential461

abrupt transitions in the behavior of the underlying system. Indeed, the presence of a462

link between two nodes is a function of both the return time distribution, defined as463

the time required by the system to visit the same state from which it started without464

visiting it in between epochs, and of the roughness of the series in the basin defined465

by the two time stamps. In other words, the higher the return time and the lower the466

standard deviation of the series, the higher the probability that two time stamps distant467

in time will be connected by a link. Hence, time periods associated with highly connected468

nodes in the multilayer networks will be those representing spikes in most of the series,469

surrounded by observations with a low standard deviation. Moreover, to show how a470

different synthetic indicator would have performed to the same task, we have provided an471

additional comparison analysis in the Appendix (see Figure A.2) which takes into account472

the largest eigenvalues of the correlation matrix of the commodity price series.473

Figure 3 shows the work-flow of the analysis. Univariate time series (see panel A)474

are transformed into binary directed networks through the direct visibility algorithm475

presented in Equation (1) (see panel B). Such adjacency matrices are then stacked into476

a tensor V ∈ RT×T×K (see panel C), which is decomposed as the outer product of three477

vectors representing Hub, Authority and Type scores, respectively (see panel D), using478

Equations (6).479

Figure 3: Work-flow of the analysis. The figure shows the steps introduced for creating our commonality index
which account for both the temporal and cross-sectional patterns. The commodity time series (panel A) are transformed
into graphs by means of the Directed Visibility algorithm (panel B). Then, the 3-order tensor is obtained by staking the
adjacency matrices of each commodity layer (panel C). Finally, tensor decomposition is applied to extract relevant features
of its relationships and build the Authority, Hub and Type centrality scores (panel D).
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2.3.1 Inspecting the TOPHITS Algorithm480

To inspect the functioning of the probabilistic TOPHITS algorithm, we propose an ex-481

ample based on simulated time series. First, we illustrate the difference between the482

centrality measures obtained from the two dimensional probabilistic HITS algorithm, in483

which we exclude the commodity layer dimension, and the simple in-(out-) degree val-484

ues. Secondly, we show how the Hub and Authority scores obtained from the TOPHITS485

algorithm vary as long as the time series co-move.486

Suppose that we have a single time series transformed into a visibility graph according487

to Equation (1). We aim to summarize the information contained into its adjacency matrix488

with two scores, namely the Hub and Authority scores obtained from the transition prob-489

abilities of the Markov chain among time stamps. For this visibility single-layer network490

we compute the (bivariate) conditional frequencies H and A for Hubs and Authorities by491

normalizing the entries of the matrix V as follows:492

hi|j =
vij∑T
i=1 vij

i = 1, ..., T

aj|i =
vij∑T
j=1 vij

j = 1, ..., T
(7)

where hi|j and aj|i are set to 1/T when vij = 0.493

We then derive the marginal probability distributions in analogy to Equations (4-5)494

and, as in the TOPHITS algorithm, we compute iteratively the Hub and Authority scores495

as:496

ωi =
∑T

j=1 hi|jθj i = 1, ..., T

θj =
∑T

i=1 aj|iωi j = 1, ..., T
(8)

Notice that the HITS algorithm produces rankings that rely on a larger amount of497

information than the ones obtained using only the in-(out-) degree values which account498

only for the number of first order neighbors. In fact, solving Equations (8) requires the499

use of iterative methods in which node i will be considered as an important Hub if it is500

a neighbor of a node j which is important in terms of Authority, and vice versa. This501

feedback feature of the HITS algorithm makes it a tool capable of assigning a ranking to502

each node according to first order information (as the degree centrality does), as well as503

higher order- or system- wide interdependencies. Thus, in the visibility context, the self-504

reinforcement mechanism (see Battiston, Puliga, et al., 2012; Flori et al., 2019) between505

Hub and Authority centralities can reveal the transition between different dynamic phases506

since the more a maximum (minimum) of a time series is visible from (see) other minima507

(maxima), the higher is its Authority (Hub) score and, therefore, its influence on the508

intensity of the transition of the system.509

Then, in order to compare the rankings produced by the normalized in-(out) degree510

against the Hub and Authority scores, we report in Figure 4 the dynamics of a simulated511

time series with 15 time stamps along with the associated centrality scores. Links between512

nodes are reported as arrows. First, notice that node t = 10 has the highest values of513

both in-degree and Authority and it is also the global maximum in the sample. Secondly,514

while t = 6 and t = 12 display the same in-degree values (dark red bars), the former has a515

higher Authority score (light red bars), which is due to fact that such node is, on average,516

connected with time nodes that have higher Hub scores (light blue bars), as reported517

in the insert plot of Figure 4. Hence, quite high values of Hub scores followed by high518

values of Authority scores suggest the beginning of an upward trend in the underlying519

time series, which is thus emphasized by the mutual reinforcement of these centrality520

measures.521

Next, we assess how the Hub and Authority scores behave when multiple time series522

co-move. This example aims to shed light on the ability of the proposed technique to523
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Figure 4: In- and out-degree versus Hub and Authority scores. The figure shows the normalized in- and out-degree
measures for each node compared with the Hub and Authority scores computed through the HITS algorithm. The figure
reports the simulated time series as a red dashed line, while black arrows represent the links obtained with the visibility
graph. Blue bars represent the out-degree (darker) and the Hub ranking (lighter). Red bars represent the in-degree (darker)
and the Authority ranking (lighter). The insert plot shows the average Hub values of the neighbours of nodes 6 and 12,
respectively.

catch co-movements in the time series by producing higher scores in the case in which524

series follow a similar dynamics. Specifically, Figure 5 shows, in the left panel, two anti-525

correlated time series (red lines) and the corresponding Hub and Authority values (blue526

and orange bars, respectively). Instead, the right panel reports Hub and Authority scores527

when the series co-move in the same direction. For instance, note how the Authority528

scores, for series that co-move with opposite directions, are typically lower than those529

in the case of aligned co-movements, since the dynamics of such scores are reinforced530

when multiple series have coordinated behaviors. Moreover, for anti-correlated series, the531

difference between the Hub and Authority scores in each time stamp is smaller with respect532

to the case of positively correlated series since there is not a clear common trend reinforcing533

the topological properties of the time nodes. This example suggests that by applying a534

tensorial approach, the characteristics of multiple time series can be summarized by the535

Hub and Authority scores, which reveal, in a multivariate space, how such series behave536

not only with respect to their own dynamics, but also with regards to cross-patterns537

among the series.538

2.4 Granger Causality Analysis539

A key challenge of this paper is to reconstruct the relationships between climate-related540

and financial dimensions. We rely on Granger causality (Granger, 1969) to estimate the541

intensity of lead-lag effects between the dynamics of financial systems proxied by the FSI,542

the topological indicators of commodity co-movements and climate-related variables.543

More formally, let xt = x1,t, x2,t, .., xZ,t, with t = 1, ..., T , a Z-dimensional stationary544

time series of length T . The definition of the conditional Granger causality index (CGCI)545

from a driving variable xi to a response variable xj involves two vector autoregressive546
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Figure 5: TOPHITS Hub and Authority scores for correlated and anti-correlated series. The figure shows the
rankings produced by the probabilistic TOPHITS algorithm in the case when time series are anti-correlated (left panel) or
in the case when they are positively correlated (right panel).

(VAR) models for xj. The first model is the unrestricted model (U-model), given as:547

xj,t =
Z∑
z=1

(ajz,1xz,t−1 + ...+ ajz,pxz,t−p) + uj,t (9)

where p is the model order and ajz,l (z = 1, .., Z and l = 1, .., p) are the U-model co-548

efficients. The second model is the restricted one (R-model) derived from the U-model549

by excluding the lags of xi. The Granger causality index (CGCI) can then be computed550

by the estimates of the residual variances σ̂2
U and σ̂2

R of the unrestricted (U-model) and551

restricted model (R-model) as follows:552

CGCIxi→xj = ln
σ̂2
R

σ̂2
U

(10)

Moreover, we consider the Granger causality framework which provides a measure553

of the level of “autonomy” of a variable, where by autonomy we mean the degree of554

self-determination or “self-causation” exhibited by a variable (Seth, 2010a; Seth, 2010b).555

Hence, instead of testing whether the prediction error of xj is reduced by including past556

observations of xi, the Granger autonomy (GA) determines whether the prediction error557

of xj is reduced by the inclusion of its own past values, given a set of external variables xi558

with i 6= j. Basically, a variable xj is Granger autonomous if its own past states allow the559

prediction of its future states over and above predictions based on past states of a set of560

other external variables. In other words, a variable is Granger autonomous to the extent561

that it is dependent on its own history and that these dependencies are not accounted for562

by external factors.563

Formally, xj is Granger autonomous if the coefficients ajz,l (z = 1, .., Z and l = 1, .., p)564

are jointly significantly different from zero. As with Granger causality, Granger autonomy565

can be tested by performing an F-test on the null hypothesis that ajz,l = 0, given the566

assumptions of covariance stationarity on the set of variables. Finally, the GA of xj with567

respect to xi is given by:568

GAxj |xi = ln
σ̂2
R2

σ̂2
U

(11)
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where σ̂2
R2 is the estimate of the residual variance of the restricted model, in which we569

exclude the lags of xj.570

3 Results571

3.1 Climate-related Variables, Commodities Co-Movements and572

Financial Stability573

The Direct Visibility algorithm conveys a network representation for each commodity time574

series. Nodes, i.e., monthly observations, may present heterogeneous in-(out-) degrees,575

meaning that their visibility of the rest of the system may actually differ according to the576

underlying market dynamics which we attempt to capture with the proposed topological577

indicators. Figure 6 shows the aggregate network representation of the visibility graphs578

obtained from the commodity time series. Node color refers to the Hub centrality (see579

Kleinberg, 1999), while node size is proportional to the Authority centrality. In our sam-580

ple, nodes representing periods around the global financial crisis are the most important581

in terms of the Authority score, while nodes with high Hub centrality values represent582

months prior to the crisis. Generally speaking, this finding means that in such intervals583

the commodity market experiences a discontinuity point, which affects most of the price584

series. In other words, for each time series a few nodes along the sample period reach585

a very high visibility. These nodes are monthly observations that stand for substantial586

deviations from their neighborhood, thus representing periods of utmost importance for587

scrutinizing market dynamics and instability.588

Figure 7 exhibits the temporal evolution of the Hub and Authority scores, namely ω589

and θ along with the behavior of the FSI, which describes the stability of the financial590

system. The first part of the sample, from mid-1990 to the beginning of the new millen-591

nium, shows an almost stable behavior of all three indicators. From 2005, instead, we592

observe an increasing pattern for ω and θ that culminates around the outbreak of the593

global financial crisis, indicated by the peak of the FSI. Hence, the market euphoria char-594

acterizing the boom period prior to the global financial crisis translated into higher levels595

of co-movements between commodity price series, represented by the increase of both the596

Hub and Authority scores. Then, the eruption of the global financial crisis in 2008-2009597

coincides with a sharp decrease in the level of the Authority, while the level of the Hub598

remains high approximately until 2011 when the crisis effects are absorbed by the markets599

and the FSI drops to negative values. This trajectory seems, therefore, to support the600

ability of the proposed topological indicators to correctly map market dynamics in terms601

of Hub and Authority scores, whose mutual reinforcement thus appears to contribute to602

a better identification of periods of financial instability.603

As a further step we perform a cross-correlation analysis to investigate if the centrality604

measures embed some information on the dynamics of the FSI. In particular, we first605

compute the deviation of the FSI, Hub and Authority scores from their long-run behavior606

using a moving window of three years. Thus, the cross-correlation analysis reveals if the607

Hub and Authority deviation from their long-run trend have a lagged or a leading role608

on the deviation of the FSI. Hence, we apply the cross-correlation function (ccf) between609

pairs of time series computed as the product-moment correlation of lags between the610

series:611

rω̃(θ̃), (p) =
cω̃(θ̃),F̃ SI (p)√

cω̃(θ̃),ω̃(θ̃) (0) cF̃ SI,F̃SI (0)
(12)
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Figure 6: Aggregate network visualization of commodity visibility graphs. Each node represents a time period
labeled with the corresponding time ticker, while links represent visibility between nodes. Node size is proportional to
Authority centrality, while the color intensity is proportional to the Hub centrality. All measures are computed on the
aggregate network. Link size is proportional to the average number of links connecting adjacent nodes in different series.
Visualization is obtained by employing the Fruchterman-Reingold algorithm. Node labels represent time stamps and are
proportional to node size.

where c (p) is the cross-covariance function at lag p defined as:612

cω̃(θ̃),F̃ SI (p) =
1

N

N−p∑
t=1

(
ω̃(θ̃)t−ω̃(θ̃)

)(
F̃SIt+p−F̃SI

)
; p ≥ 0 (13)

613

cω̃(θ̃),F̃ SI (p) =
1

N

N+p∑
t=1

(
ω̃(θ̃)t−ω̃(θ̃)

)(
F̃SIt−p−F̃SI

)
; p < 0 (14)

and the term ω̃(θ̃) indicates that we perform cross-correlation between the difference of614

the Hub score (ω̃) from its three year moving window and the difference of the FSI from its615

long-run behavior (F̃SI) and between the Authority difference (θ̃) and the FSI difference,616

separately. Variables with upper bars stand for average values.617

Figure 8 (left panel) shows the cross-correlation coefficients between the Hub score618

deviation from its long-run trend and the FSI deviation, while Figure 8 (right panel) refers619

to the cross-correlation between the Authority score deviation and the FSI deviation.620

Notice that the cross-correlation between the Hub score and the FSI is positive and621

statistically significant for negative lags of the latter variable, meaning that an above622

average value of the FSI deviation form its long-run trend is likely to lead an above623
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Figure 7: Hub and Authority scores along with the FSI. The figure shows the Authority score (top panel) and the
Hub score (bottom panel) indicated by the black lines together with the FSI, which is reported in red.

average value of the Hub score deviation and, symmetrically, a below average value of624

the FSI deviation is associated with a probable below average value of the Hub score625

up to 6 months of delay. On the other hand, a positive value of the Hub score will626

influence negatively the dynamics of the FSI from 8 to 18 months in advance. The627

cross-cross correlation coefficient between the Authority deviation and the FSI deviation,628

which reaches a value higher than 0.5, shows that an increasing deviation of this centrality629

measure from its long-run behavior anticipates and increasing deviation of the FSI, which630

occurs approximately with a delay of three months. All in all, this analysis suggests that631

an increase of the Authority deviation or a decrease in the Hub deviation anticipate an632

increasing distance of FSI values from its long-run trend, thus signaling an unstable phase633

for financial markets.634

3.2 Transmission Mechanisms within the Climate-Finance Nexus635

In order to shed light on the causality nexus between climate-related variables, commod-636

ity co-movements and financial stability we perform Granger causality analysis, which637

allows the investigation of the causality mechanisms among the variables by inferring the638

functional connectivity in the underlying system.639

A meaningful application of Granger causality analysis requires that the variables640

present covariance stationarity and that the model describes the data in a statistically641

satisfactory manner. Covariance stationarity requires that the first and second statistical642

moments (mean and variance) of each variable do not vary with time, otherwise the643

econometric model may contain so-called “spurious regression” results. Therefore, we644

assess deviations from the covariance stationary hypothesis by testing for unit roots within645

the data employing the augmented Dickey-Fuller (ADF) test. The intuition behind this646

test is that if a variable is covariance stationary it will exhibit a tendency to return to647

a constant mean (or deterministically trending). Basically, large values will tend to be648

followed by smaller values, and small values by larger values. We find that our variables are649

non-stationary, therefore we first differentiate all the variables obtaining x′i,t = xi,t−xi,t−1.650

This step allows us to study the causality relationships among changes in variables rather651

19



Figure 8: Hub and Authority scores cross-correlations with FSI. The figure shows the Hub score cross-correlation
with the FSI (left panel) and the Authority score cross-correlation with the FSI (right panel). Blue lines indicate the upper
and lower cross-correlation confidence bounds assuming uncorrelated series. All the variables have been detrended from
their long-run behavior using a three year moving window. Lags represent months.

than among the variables per se. Secondly, the estimation of these econometric models652

requires the inclusion of a parameter representing the number of time-lags (p), i.e., the653

model order. Too few lags can lead to a poor representation of the data, whereas too654

many can lead to problems of model estimation in finite samples. To specify the model655

order, we rely on the Akaike information criterion (AIC = ln(det(Σ)) + 2pZ2

T
), where Σ656

is the variance-covariance matrix. In this way, we balance the variance accounted for by657

the model against the number of coefficients to be estimated. We compute the AIC per658

p = 1, ..., 24 and we find that the best model in our sample is the one with p = 4 lags. In659

the Appendix we also report the Granger causality coefficients for p = 2, 3, 5 lags.660

Table 1 shows the values of the Granger causality index (CGCI) along with their P-661

values in parenthesis. The influence direction is from columns to rows. Moreover, the table662

also reports some measures of the regression validity, such as the adjusted sum square error663

and the Durbin-Watson test on the regression residuals. Finally, in the last row of Table 1,664

we show the Granger autonomy of each variable. Figure 9, instead, exhibits the Granger665

causality network obtained by fixing a significance level for the P-value at 0.10 along666

with the Granger autonomy coefficients. Figure 9 shows that changes in climate-related667

variables, such as the wind directions (V-wind and U-wind) along with the atmospheric668

pressure (Press.) Granger cause changes in Hub and Authority scores, which are mutually669

linked with changes in FSI. In parallel, the P-values reported in Table 1 and associated670

with the Granger causality of Hub, Authority and FSI on the climate-related series are,671

on average, the highest. As expected, while the Hub and Authority scores obtained from672

commodity time series are influenced by climate-related variables, the opposite is not673

true and, obviously, for FSI this is even more evident. For instance, this result can be674

interpreted in the light of the El-nino-Southern Oscillation (ENSO), which periodically675

causes anomalous shifts in the atmospheric pressure. Although ENSO events arise in the676
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Pacific Ocean, their effects have global impacts and influence commodity productions (see677

Brunner, 2002), directly (as for crops) and undirectly (as for mining firms, energy supply678

and waterway transportation).679

Hub Authority FSI Rainfall Temp. Press. V-wind U-wind

Hub
0.058
(0.006)

0.066
(0.003)

0.021
(0.270)

0.009
(0.679)

0.048
(0.018)

0.036
(0.064)

0.023
(0.235)

Authority
0.080
(0.001)

0.035
(0.072)

0.014
(0.476)

0.011
(0.602)

0.056
(0.008)

0.004
(0.927)

0.034
(0.079)

FSI
0.040
(0.043)

0.070
(0.002)

0.023
(0.218)

0.005
(0.853)

0.010
(0.643)

0.004
(0.899)

0.010
(0.640)

Rainfall
0.009
(0.717)

0.027
(0.157)

0.006
(0.819)

0.019
(0.316)

0.011
(0.623)

0.028
(0.140)

0.011
(0.598)

Temp.
0.003
(0.947)

0.012
(0.550)

0.023
(0.233)

0.017
(0.366)

0.013
(0.537)

0.005
(0.882)

0.006
(0.842)

Press.
0.008
(0.749)

0.010
(0.637)

0.010
(0.633)

0.010
(0.647)

0.006
(0.813)

0.015
(0.461)

0.003
(0.955)

V-wind
0.016
(0.413)

0.000
(1.000)

0.008
(0.732)

0.015
(0.732)

0.001
(0.465)

0.022
(0.246)

0.028
(0.142)

U-wind
0.025
(0.188)

0.008
(0.731)

0.010
(0.660)

0.007
(0.785)

0.013
(0.509)

0.012
(0.564)

0.015
(0.443)

Adj Rˆ2 0.318 0.237 0.050 0.194 0.222 0.185 0.242 0.244
D-W test 0.584 0.248 0.922 0.453 0.549 0.552 0.426 0.760

G-Auton.
0.212
(0.000)

0.160
(0.000)

0.051
(0.014)

0.238
(0.000)

0.263
(0.000)

0.091
(0.000)

0.313
(0.000)

0.162
(0.000)

Table 1: Granger causality values. The table reports the results of the Granger causality analysis along with the
P-values (in parenthesis) associated with the coefficients. Causality direction is from column variables to row variables.
The last row represents the Granger autonomy.

Moreover, from Table 1 we notice that a change in the values of the FSI has a stronger680

effect on Hub rather than on Authority changes, while changes in the Authority impact681

more on changes of the FSI than on changes in the Hub score. We can interpret these682

results in the following way: a positive change in the FSI value which indicates a growing683

market instability induces a positive change in the Hub score which signals that com-684

modity prices are co-moving on a downward trend, while a change in the Authority value685

which signals commodity co-movement on an upward trend induces a subsequent positive686

change in the FSI since it increases the likelihood of market distress when price levels687

are no longer sustainable. The Granger autonomy analysis reinforces these findings, since688

the most autonomous variables are the climate-related ones, while the FSI is the less689

autonomous as it has the lowest degree of self-determination in this system.690

Finally, we enrich the analysis on the nexus between FSI and the topological indicators691

by analyzing the direction of causality, i.e., mean spillover effects, through the variant692

of the Granger causality test introduced by Toda and Yamamoto (1995). This testing693

does not require for cointegration and it is robust even in the presence of a unit root in694

the time series, thus implying that there is no need to transform the original series to695

obtain stationarity and therefore any loss of information due to differencing is avoided.696

More generally, this approach could be interpreted as a long-run causality test (see, e.g.,697

Nazlioglu and Soytas, 2011; Nazlioglu, Soytas, and Gupta, 2015). Specifically, we run a698

VAR (p+ dmax) model with p as the optimal lag and dmax as the maximum integration699

degree of the series; then, standard Wald tests for the null of non-Grange causality is700

performed by imposing zero restrictions on the first p lags. Results indicate that the701

Lagrange Multiplier statistics (p-values in parenthesis) for causality of Hub and Authority702

to FSI are significant and equal to 5.4 (0.02) and 6.4 (0.09) respectively, while the reverse703

relationships are 0.37 (0.54) and 16.9 (0.00075) respectively, with the latter being very704

strong and significant. The mean spillover test provides therefore supporting evidences of705
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Figure 9: Granger causality and Granger autonomy. The figure shows the Granger causality network with links
present if below a P-value of 0.10 (left panel) and the Granger autonomy (right panel). Green arrows report the direction
of the Granger causality, while red edges refer to Granger causality in both directions.

information flow from FSI and the topological measures, and vice versa.706

As regards financial stability and systemic risk assessment, we thus support the impor-707

tance of an evaluation based on panel observations, as suggested by the Macroprudential708

Policy Framework which contributed to motivate our investigation framework. As pointed709

out by Borio (2011), indeed, macroprudential is an orientation or perspective of regulatory710

and supervisory arrangements which calibrate supervision from a systemwide or systemic711

perspective, rather than from that of the safety and soundness of single institutions on a712

stand-alone basis. Therefore, regulators can benefit from the provision of few synthetic in-713

dicators of instability, such as those proposed in our work, that could help them to design714

appropriate policy actions to timely respond against climate-related challenges that may715

impact on the stability conditions of financial systems. Our approach is able to map the716

panel dimension of commodity time series and extract meaningful information on com-717

modity price co-movements, which we show to be influenced by climate-related variables718

and, more interestingly, to be mutually related with FSI, hence with an indicator of finan-719

cial stability in capital markets. In particular, major variations in climate-related variables720

are promptly captured by the topological indicators of price co-movements, which can be721

employed to synthesize this information and then include it in an econometric setup for722

assessing financial stability in wider financial markets.723

3.3 Short-run dynamics via impulse response analysis724

Finally, to assess how our variables of interest react to short-run shocks, we perform an725

impulse-response analysis on Hub, Authority and FSI. We rely on the procedure proposed726

by Jordà (2005) to generate the estimation of the local projections at each period rather727

than the entire forecast horizon. This approach has been shown to be more robust to728

misspecification of the unknown data generative process and allows appropriate joint729

and point-wise inference based on standard errors from traditional heteroskedastic and730

autocorrelation consistent regressions.731

Figure 10 shows the impulse response related to the financial stability conditions (i.e.,732

FSI) and our proposed topological measures mapping commodities price co-movements733

(i.e., Hub and Authority). Note how each variable significantly reacts to shocks occurring734
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Figure 10: Impulse response analysis. The response is calculated with a local-linear projection with 4 lags. The
analysis considers an impulse of one standard deviation shock of the variable of interest (i.e., Hub, Authority and FSI). The
gray area refers to a confidence interval of 95%.

in one of the other variables only in the short-run (about 1-2 months). Capital and com-735

modity markets result to be connected and prone to spillover effects from and to price736

movements occurring in the underlying financial instruments, although, as expected, these737

effects are short-lived. More specifically, both Hub and FSI present a positive response to738

an impulse in the other dimension, while a negative reaction occurs for impulses within739

the pair of Authority and FSI, meaning that an impulse that increases Hub centrality740

implies that also the overall level of instability rises, while an increase in the Authority741

centrality reduces FSI but only in the short-run. Hence, by interpreting Hub and Au-742

thority centralities as time-stamps in which commodity price series co-move respectively743

into minima and maxima in terms of market prices, the impulse response analysis seems744

to suggest that shocks favoring synchronized market downturns of commodity prices are745

likely to coexist with immediately subsequent periods of overall market instability, while746

the opposite occurs for an impulse affecting commodity co-movements during the initial747

stages of positive market price phases. In line with these findings, an impulse that in-748

creases the FSI generates a rise in the Hub centrality and a drop in the Authority during749

subsequent periods, thus supporting the nexus between capital market stability conditions750

and commodity price co-movements. However, this nexus is statistically significant only751

in the short run and is absorbed quickly by financial markets.752

4 Conclusion753

This work aims at defining the nexus between climate-related variables, commodities price754

co-movements and financial stability which can help policymakers to design appropriate755

policy actions to timely respond to climate-related challenges. To disentangle transient756

phases of critical states leading to financial instability, we propose a multidimensional757

graph-theoretical approach that maps commodity price co-movements into network cen-758

trality indicators and that takes into account both the presence of correlated behaviors and759

the directionality of these co-movements. In so doing, we exploit information contained760

into centrality measures computed through a tensor approach applied on a multilayer761

visibility network. This step is instrumental for obtaining synthetic scores that charac-762
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terize the role of different nodes (time stamps) during phases of market downturns or763

upturns, unveiling therefore the onset of financial instability. We thus combine a visibil-764

ity graph algorithm, which has been proven to maintain relevant time series information765

in a consistent way, with a tensor decomposition, which is instrumental to extract a few766

synthetic indicators of directional co-movements that can then be employed to analyze767

market stability conditions over time observations.768

Specifically, we rely on the visibility graph framework to develop an algorithm that769

converts a commodity price time series into a directed graph that inherits some structural770

properties of the original data. Then, we build a multilayer network formed by stacking771

together each commodity visibility graph and we apply tensor decomposition to extract772

information from it. We then propose to synthesize the extent of co-movements with a few773

synthetic indicators of network centrality, which we show to be able to identify periods of774

market instability. We notice that relevant price changes affecting several commodity time775

series correspond to nodes with high scores of the proposed centrality measures. These776

indicators convey information on the return time distribution of the multivariate time777

series and reveal the extent of upwards and downwards co-movements among commodity778

prices.779

Then, we include these centrality measures into an econometric model to study the780

relationships between such topological measures, the stability conditions of financial sys-781

tems and climate-related dimensions. Our approach reveals that the proposed topological782

indicators react to variations in climate-related conditions and supports the existence of a783

nexus with financial stability. Hence, this econometric investigation can contribute to an784

explainable forecasting and critical analysis of the transmission mechanisms that connect785

climate conditions, macroeconomics and financial systems.786

Despite the merits of our approach to unveil the nexus between climate-related vari-787

ables and financial stability through the impact the former have on commodity prices,788

we are aware of its main limitations. First, to show the functioning of a very general789

framework for investigating the relationships between climate-related conditions, com-790

modities and financial systems, we opt for a broad representation of climate conditions,791

which does not appropriately take into account all climate and environmental dimensions792

specifically affecting certain commodities. Second, due to the level of aggregation of our793

data, we have been forced to average all climate-related variables across coordinate grid794

points, thus ignoring cross sectional and geographical aspects of the impact of climate-795

related phenomena on local commodity markets. Third, our paper relies on monthly796

observations of commodity prices. Also for this reason, we do not study phases of market797

instability that occur at higher frequencies. Finally, the construction of a visibility graph798

is intended to provide a binary adjacency matrix of the links connecting time stamps.799

Since links are not weighted by the differential value assumed by the connected pairs of800

nodes in the series, our approach does not directly inherit information on price jumps to801

be used, for instance, for the analysis of extreme events.802

Our approach does not assume any specific functional form for the data generating803

processes, therefore it can be potentially applied to any source of data. This comes at804

the cost of a lack of statistical test for assessing the robustness of the links, which may805

be influenced by the presence of noise in the series. To mitigate this issue, future works806

may address statistical significance by carrying out bootstrapping and permutation tests807

based on null models for network configurations ensembles.808
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A Appendix1043

Supplementary Figures1044

Figure A.1: Visibility Graph representation of a time series. The figure shows in the upper panel the visibility
graph mapping of the simulated time series (reported in the lower panel). Node color is associated with the in-degree
(reported in the colorbar), while node size is proportional to the out-degree. Local maxima of the simulated series are
mapped into high in-degree nodes with yellow color (e.g., t = 2 or t = 24), while local minima are mapped into high
out-degree nodes with larger size (e.g., t = 10 or t = 15).
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Figure A.2: Correlation matrix eigenvector dynamics.The figure shows in the upper panel the value of the largest eigen-
vector of the correlation matrix obtained from commodity price series (in black color) against the FSI (in red). To compute
Eig we use a moving window of 25 weeks. The bottom left panel reports the Granger causality network where the economic
dimension of the data is given by the FSI and Eig only. The bottom right panel shows the Granger causality network
in which together with Hub and Authority, also Eig is included. Notice how while both Eig and FSI peak synchronously
during the outburst of 2007-08 financial crisis, Eig presents other peaks not aligned with the FSI jumps. From the bottom
left panel, notice also how the link from Eig to V-wind represents an evident spurious relationship (at significance level of
P-value of 0.10, green arrows report the direction of the Granger causality, while red edges refer to Granger causality in
both directions). From the right bottom panel, notice how only the Authority and Hub scores show statistically significant
Granger causality links towards FSI.

Supplementary Tables1045

In this Appendix we report the results of the sensitivity analysis of the Granger causality1046

coefficients as long as the lag order p varies. Tables A.1, A.2 and A.3 in particular show1047

the Granger causality coefficients obtained for p = 2, 3, 5 lags, respectively. Estimated1048

coefficients display statistical robustness against different values of p, thus reinforcing the1049

causality relationships found among variables.1050

Hub Authority FSI Rainfall Temp. Press. V-wind U-wind
Hub 0.012 0.031 0.014 0.009 0.007 0.012 0.003
Authority 0.028 0.037 0.013 0.009 0.031 0.001 0.018
FSI 0.033 0.042 0.014 0.003 0.002 0.001 0.000
Rainfall 0.009 0.015 0.006 0.009 0.015 0.012 0.016
Temp. 0.001 0.013 0.012 0.014 0.002 0.000 0.004
Press. 0.008 0.002 0.003 0.004 0.003 0.001 0.000
V-wind 0.006 0.006 0.003 0.004 0.002 0.017 0.021
U-wind 0.020 0.004 0.004 0.000 0.003 0.014 0.000

Table A.1: Granger causality coefficients: the table reports the results of the Granger causality analysis for p = 2
lags. Causality direction is from column variables to row variables.
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Hub Authority FSI Rainfall Temp. Press. V-wind U-wind
Hub 0.031 0.053 0.015 0.006 0.019 0.013 0.008
Authority 0.092 0.039 0.011 0.011 0.048 0.002 0.027
FSI 0.037 0.059 0.016 0.005 0.010 0.004 0.010
Rainfall 0.008 0.023 0.006 0.007 0.014 0.012 0.014
Temp. 0.004 0.014 0.016 0.014 0.010 0.004 0.003
Press. 0.005 0.013 0.012 0.009 0.003 0.002 0.000
V-wind 0.002 0.004 0.005 0.011 0.001 0.016 0.021
U-wind 0.020 0.009 0.013 0.000 0.008 0.011 0.001

Table A.2: Granger causality coefficients: the table reports the results of the Granger causality analysis for p = 3
lags. Causality direction is from column variables to row variables.

Hub Authority FSI Rainfall Temp. Press. V-wind U-wind
Hub 0.060 0.083 0.025 0.010 0.051 0.038 0.024
Authority 0.104 0.051 0.018 0.014 0.052 0.015 0.032
FSI 0.066 0.105 0.050 0.019 0.009 0.007 0.019
Rainfall 0.014 0.027 0.008 0.027 0.012 0.028 0.013
Temp. 0.002 0.012 0.037 0.023 0.013 0.008 0.011
Press. 0.007 0.021 0.013 0.013 0.009 0.011 0.006
V-wind 0.021 0.001 0.016 0.022 0.004 0.029 0.035
U-wind 0.025 0.032 0.016 0.012 0.014 0.017 0.013

Table A.3: Granger causality coefficients: the table reports the results of the Granger causality analysis for p = 5
lags. Causality direction is from column variables to row variables.
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