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Revealing Pairs-Trading Opportunities with Long Short-Term

Memory Networks

Andrea Flori∗, Daniele Regoli†

Abstract

This work examines a deep learning approach to complement investors’ practices for the iden-
tification of pairs-trading opportunities among cointegrated stocks. We refer to the reversal effect,
consisting in the fact that temporarily market deviations are likely to correct and finally converge
again, to generate valuable pairs-trading signals based on the application of Long Short-Term Mem-
ory networks (LSTM). Specifically, we propose to use the LSTM to estimate the probability of a
stock to exhibit increasing market returns in the near future compared to its peers, and we compare
and combine these predictions with trading practices based on sorting stocks according to either
price or returns gaps. In so doing, we investigate the ability of our proposed approach to provide
valuable signals under different perspectives including variations in the investment horizons, trans-
action costs and weighting schemes. Our analysis shows that strategies including such predictions
can contribute to improve portfolio performances providing predictive signals whose information
content goes above and beyond the one embedded in both price and returns gaps.

Finance; Machine learning; Pairs-trading; Statistical arbitrage; Neural networks

1 Introduction

The reversal effect documented by Fama (1965), Jegadeesh (1990), Jegadeesh and Titman (1993),

and Lehmann (1990) states that stocks that have recently performed poorly will probably undergo a

larger market reversal in the future. Past market performances may, in fact, influence the investment

attitudes of the traders and losing stocks might experience higher reversals. For instance, this may

occur because stocks become more volatile, thus impacting on the provision of liquidity, or because

they might be affected by certain market behaviors such as fire sales, which cause excessive drops in

their market prices but foster their subsequent rebounds (see, e.g., Lasfer et al. 2003, Huang et al.

2009, Da and Gao 2010, Cheng et al. 2017).

More generally, three main explanations, not necessarily mutually exclusive, have been proposed to

motivate the emergence of the reversal effect: the influence of liquidity effects (Jegadeesh and Titman,

1995b, Chordia et al., 2002, Avramov et al., 2006), the non-synchronous trading of small vs. large

capitalized stocks (Lo and MacKinlay, 1990, Boudoukh et al., 1994, Richards, 1997), and the investors’

cognitive biases and reactions to new information or shocks (Lehmann, 1990, Jegadeesh and Titman,

1995a, Subrahmanyam, 2005). The first explanation refers to microstructural phenomena such as

inventory imbalances by market makers which determine reversal profits as a compensation for bearing

inventory risk. The second one relates to the market size and assumes that the reversal effect generates
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profits especially among small-cap stocks. Finally, the third explanation is based on a behavioral

sentiment-based perspective, in which market overreaction by impatient traders temporarily affects

stock demand. These aspects together provide support for the interpretation that past performances

influence traders’ behavior and liquidity provision, thus potentially contributing to the formation of

profits from contrarian strategies. However, within the framework of efficient markets, returns are

memoryless stochastic processes and prices react immediately as new information becomes available,

making it impossible for investors to exploit past information to predict future returns (Fama, 1970).

Therefore, the investigation of the reversal effect, as an analysis of detection of predictive signals, finds

its place in the literature on market anomalies, in contrast with the efficient market hypothesis. As a

consequence, the reversal effect has been investigated as a market anomaly that can be exploited to

build several types of allocation strategies (as outlined, e.g., in Chan et al. 1996, Coval and Stafford

2007, Blitz et al. 2013, Da et al. 2013, Hameed and Mian 2015, Blackburn and Cakici 2017).

Against this background, scholars and practitioners have struggled to challenge the efficiency of

financial markets applying different techniques in search of investment opportunities. In recent years,

with the rise of computation resources and their widespread availability, machine learning techniques

are gaining momentum within the finance community and several approaches have been proposed to

extract valuable information from financial data both to leverage statistical arbitrage opportunities

in financial markets (see, e.g. Andreou et al. 2008, Atsalakis and Valavanis 2009, Bekiros 2010, Huck

2009, 2010, Sermpinis et al. 2013, Patel et al. 2015, Heaton et al. 2017, Krauss et al. 2017, Fischer and

Krauss 2018, Gu et al. 2018, Huck 2019, Schnaubelt et al. 2020) and for more general finance-related

pursuits (see Kim et al. 2020, Kraus et al. 2020 and references therein).

Following a growing literature that exploits a large-scale use of deep learning concepts to spot

patterns in financial markets, in this paper we attempt to study the complex non-linear relationships

among and within financial time series by applying the technique of the Long Short-term Memory

Networks (LSTM) to predict the market performances of a large sample of stocks. LSTM networks

for financial applications are also considered, e.g., in Bao et al. (2017), Troiano et al. (2018), Fischer

and Krauss (2018), and Borovkova and Tsiamas (2019). Here, in line with previous studies (see,

e.g., Huck 2009, 2010, Krauss et al. 2017, Fischer and Krauss 2018), we refer to stocks composing

the S&P 500 index as our perimeter of analysis and we test the predictions of the LSTM within the

framework of investment strategies based on pairs-trading.

Pairs-trading relies, in fact, on the apparent profitability of a strategy in which stocks with similar

past performances start to exhibit opposite, possibly temporarily, market patterns. Practically, once

having identified stocks that tended to behave in a “similar” way in the past, traders try to exploit

potential short-term relative mispricings by buying the relatively underperforming stocks and taking

short positions in overperforming stocks. If the future performances resemble those of the past, then

the relative mispricing is a temporary deviation, and market prices are likely to correct and finally

converge again, thereby generating profits. Pairs-trading represents, therefore, a zero-cost framework

to investigate reversal effects by means of a (possibly) market neutral strategy simultaneously estab-

lishing both a long and short position in two stocks with each position having the same dollar amount.

When the underperforming stock regains value and the outperforming stock declines, then profits are

generated while controlling for risks by maintaining a low exposure to market dynamics. Considerable

effort has been spent, therefore, both by scholars and practitioners to detect and exploit this market

anomaly to build return-based pairwise relative value trading strategies (see, e.g., Vidyamurthy 2004,

Gatev et al. 2006, Chen et al. 2017, Do and Faff 2012, Blitz et al. 2013, Jacobs and Weber 2015).
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In our work, to better define the perimeter of those stocks whose temporarily market deviations

may signal pairs-trading opportunities, we first identify for each stock the existence of peers sharing

cointegrated market patterns. In fact, the spread between two cointegrated series follows a stationary

process, meaning that deviations from the mean are only temporary and eventually revert. Hence, since

pairs-trading opportunities are perceived as deviations from the equilibrium due to market reactions,

which are temporary and will be timely corrected, we rely only on those stocks having at least one

cointegrated peer as candidate stocks for pairs-trading strategies. We describe the application of an

LSTM architecture to quantify such emerging deviations. More specifically, we employ an LSTM based

on information from returns and trading volumes to generate predictions on the probability of a stock

exhibiting increasing market returns in the near future compared to its peers of cointegrated stocks.

Then, we extensively compare such predictions with common trading practices based on both price

and returns gaps. However, the goal of the study is not the design of a more performing indicator than

those typically employed to build pairs-trading strategies. Instead, with the inclusion of the outcomes

of the LSTM we aim to verify whether it is possible to extract valuable signals from financial time

series containing information that can “complement” the one already embedded in price or returns

gaps, thereby generating even better portfolio performances once jointly combined.

In so doing, we first construct strategies investing in portfolio of stocks grouped according to

sorting criteria based on either price or returns gaps (see, e.g., Gatev et al. 2006, Rad et al. 2016,

Chen et al. 2017, Krauss 2017), or our proposed outcomes from the LSTM. Effectively, pairs-trading

strategies can be constructed by buying the top and selling the bottom stocks with respect to the

given sorting criterion, i.e. ranked on either their price or returns gaps with respect to peers or their

LSTM outcomes. We show that such Top-Bottom strategies based on gaps in either prices or returns

generate over the whole period from January 2003 to June 2019 gross returns of about 15% and 19%

(Sharpe ratios: 1.03 and 1.17), respectively. These results are in line with the 18.3% raw performance

(Sharpe ratio: 1.23) of the Top-Bottom strategy based on the LSTM outcomes. Interestingly, we note

that such performances are economically significant even when we control for the volatility of returns

and that do not vanish once we take into account factor exposures.

Then, by applying double sorting procedures on such portfolios, we show that our proposed ap-

proach based on the LSTM outcomes is able to generate informative predictive signals that go above

and beyond the ones embedded in both price and returns sorting criteria, and that, once these sorting

criteria are jointly combined, the LSTM outcomes can contribute to improve portfolio performances.

For instance, conditional sorts show that, controlling for price gap, the annualized alpha performances

of the Top-Bottom strategies ranked by the LSTM outcomes range between about 7.7% and 22%

and that the average annualized alpha constructed by equally investing in each Top-Bottom portfolio

from the double sorting procedure is about 16%. These results thus support the use of the LSTM

outcomes to complement the information provided by the other sorting criteria and build portfolios

by jointly sorting stocks according to either price or returns gaps together with the LSTM outcomes

ranking. Specifically, the Top-Bottom strategy, which goes long in the top stocks and short in the

bottom ones according to the conditional sorting based on both price gaps and the LSTM outcomes

ranking, produces an extra-performance of about 23%. Similar findings are observed when returns

gaps and LSTM outcomes are jointly considered.

This double sorts analysis allows us to investigate our main claim about the importance of disen-

tangling whether an observed gap in market patterns, which is a typical criterion used by practitioners

to initialize a pairs-trading allocation, is going to increase or revert, for which therefore opposite buy
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or sell market signals should be provided. We show that the information jointly provided by the

LSTM with either price or returns gaps is able to better identify the buy or sell signals, thus improv-

ing portfolio performances. Hence, the outcomes of the LSTM contribute to reinforce the associated

buy or sell signals by identifying for each stock the likelihood of an enlarging or reducing market gap

with respect to its peers. For instance, our analysis reveals that when the price gap indicator signals

to purchase recently underperformed stocks, the outcomes of the LSTM contribute to reinforce such

signal by further indicating those stocks that have higher probability to increase in the near future

their market returns with respect to peers. By contrast, the joint information tells us to sell those

recently overperformed stocks that are also highly expected to show a substantial market reversal

behaviour in the near future with respect to peers. The double sorts procedure thus helps us to assess

such relationships by providing a synthetic representation of the joint distribution.

We then propose to relate these portfolio performances to factor exposures. We discuss how

strategies based on the joint information relate to exposures to the momentum or the short-term

reversal factors, which are basically at the ground level of an enlarging or reducing market gap. From

an operational point of view, our findings support the purpose of identifying investment strategies

specifically devoted to extract such market dynamics, suggesting that the outcomes of the LSTM

contribute to improve portfolio performance by indicating whether the observed market gap of a stock

with respect to its peers is going to increase or decrease, thereby generating opposite buy or sell

signals.

Finally, we present and discuss how such approach can be generalized to various holding periods

and investment settings as well as alternative machine learning methodologies. Although our analysis

shows that the LSTM outperforms other techniques, in this work we do not advocate its advantages

over other machine learning methodologies that can be applied for similar tasks. With this regard, the

choice of the LSTM algorithm is here only instrumental to extract signals for deviating market patterns

among peer stocks using time series information. This aspect is crucial in our framework, since we

are not proposing a certain machine learning architecture to maximize portfolio performance, but

instead we are using signals generated by the LSTM to perform a strategy in which the identification

of deviation from peers is of fundamental importance. Our analysis reveals that our proposed Top-

Bottom strategies, which in this context mimic the pairs-trading strategies, are able to generate

valuable portfolio performances, especially once information from both the LSTM and traditional

price or returns gaps indicators are jointly combined.

The rest of the paper is organized as follows. Section 2 describes the data sample and explains the

methodological aspects related to the LSTM architecture and the portfolio construction. Section 3

shows the empirical results, comparing different approaches for pairs-trading strategies and discussing

the contribution of the LSTM outcomes to portfolio performance and market factors exposures. Sec-

tion 4 presents several robustness analysis including the role of different investment horizons, trans-

action costs, sectorial composition, LSTM formulation and alternative machine learning techniques.

Section 5 is devoted to conclusions.

2 Data & Methodology

2.1 Data

We consider stocks approximately composing the S&P 500 index in the period from the beginning of

January 2000 to the end of June 2019. We collect these components on a yearly basis at the beginning
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of January, i.e. at the time of the year in which we are going to modify the pool of stocks we make

analysis on. Given a 3-year train window rolling yearly (more details in the next sections), and a

sample period from January 2000 to the end of June 2019, our out-of-sample analysis consists of 16.5

years. Finally, as factor exposures we refer to those reported in the Kenneth R. French website, while

stocks profile information are collected from Orbis Bureau van Dijk.1

2.2 Computing Software

All data analysis are performed via the open source software R (R Core Team, 2019). In particu-

lar, the LSTM network is built and trained using the R interface to Keras (Chollet et al., 2015),

while “standard” machine learning algorithms are trained via caret (Kuhn, 2020), an R wrapper

library for predictive modeling. For all portfolio analysis, we employ the PerformanceAnalytics R

package (Peterson and Carl, 2019).

The estimation time for the computation of cointegration groups (see subsection 2.3) is on average

about 3 hours per training block, while the LSTM training (see subsection 2.5.4) takes about 2 hours

per training block. This time refers to computations performed on common CPUs (Intel i7-7500U

2.70GHz×4, 16GB RAM).

2.3 Cointegration groups

Several competing approaches have been proposed in the literature to detect pairs-trading opportu-

nities. Krauss (2017) reviews some attempts which relate the identification of the candidate pairs to,

for instance, distance metric approaches, cointegration tests, the extent of mean-reverting spread in

time series, and stochastic control frameworks.

In our work we opt for the cointegration approach as a theoretical framework for identifying

pairs-trading opportunities as temporarily deviations of mean reverting processes between stocks that

have shown to follow equilibrium relationships (see, e.g., Vidyamurthy 2004, Dunis and Ho 2005,

Puspaningrum et al. 2010, Huck and Afawubo 2015, Rad et al. 2016, Krauss 2017). Our approach to

find cointegrated time series thus proceeds with the following 4 steps: 1) at the beginning of each year

t we collect the historical adjusted close price for the past 3 years, namely in the interval [t− 3, t− 1],

for each stock Sit present in the S&P 500 index at t; 2) for each possible couple (Sit , S
j
t ), we test

for cointegration using two different testing approaches: the Engle-Granger two-step method (Engle

and Granger, 1987), and the Johansen test (Johansen, 1991). 3) In order to avoid false positives, we

deem cointegrated – in formula Sit
ci∼ Sjt – couples that are cointegrated according to both tests with

a significance level of 1%. 4) For each stock i and year t, we define its contegration group CGit as the

set of all stocks cointegrated to i at that time:

CGit =
{
Sjt : Sit

ci∼ Sjt
}
. (1)

Note that the symmetry of the cointegration relation
ci∼ (which is in principle true) is imposed

whenever the cointegration test outputs an asymmetric result: namely, if the couple (Sit , S
j
t ) gives a

positive result for both tests but (Sjt , S
i
t) does not, then Sit

ci∼ Sjt is considered true anyway. Finally,

once the cointegration groups CGit are defined for each stock i at the beginning of year t, the set of

groups {CGit}i is held true for the whole year t, and all pair relations are computed with respect to

1See: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ and https://orbis.bvdinfo.com/.
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this set.

Table 1 shows some summary statistics of the set of cointegration groups for each year t: on

average, around 200 stocks (out of the ∼500 of S&P 500) results in at least one cointegration group

and, typically, half of the cointegration groups has less than 5 stocks. In addition, we observe a

quite erratic behaviour of the stocks belonging to the cointegration groups, with a consistent in-out

dynamics of their respective members.2 For instance, the “turnover” of stocks between two subsequent

years, computed by the Jaccard similarity index among the sets of all stocks present in at least one

cointegration group at year t− 1 and at year t, indicates that on average only one third of stocks are

persistent from one year to the next with an oscillating behavior, above 40% in 2004, 2005 and in

2011, 2012 and below 30% during the years of the global financial crisis, in 2013, 2014, and at the end

of the sample period.

Table 1: Summary statistics of cointegration groups. The table shows, for each year under study and on average, the total
number of stocks present in at least one cointegration group; the median of the group sizes; the Jaccard similarity index and the
overlap coefficient between the stocks in the corresponding year and in the preceding one.

average 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

total number of
cointegrated stocks 196 191 219 234 143 135 126 190 211 332 214 146 225 190 214 167 158 238

median
size 4.7 5 10 7 3 3 3 4 4 9.5 5 3 5 4 4 4 3 4

Jaccard
similarity (%) 33 - 45 49 36 29 26 26 37 47 44 29 25 33 30 29 25 25

overlap
similarity (%) 57 - 66 68 70 46 43 52 57 82 79 56 51 54 50 51 41 50

2.4 Pairs-trading approaches

Since the deviation of two cointegrated series should follow a stationary process, then deviations from

its long-run mean should be absorbed and revert to the mean. Similarly, pairs-trading opportunities

are perceived as deviations from the equilibrium due to market reaction on, for instance, some news

or changes in the market structure, which are temporary and will be timely corrected. Hence, once

candidate groups have been identified by cointegration, we introduce some criteria to distinguish

observed deviations by relying on a very generalized framework which reflects, consistently with the

cointegration stocks filtering, the most common approaches proposed by scholars and practitioners.

For instance, the idea of pairs-trading opportunities based on deviations in terms of prices goes

back to the seminal paper of Gatev et al. (2006), where authors provide argumentation based on the

description of how traders select pairs. Instead, gaps in terms of returns are investigated for instance

in Chen et al. (2017) to assess to which extent stocks that significantly under-perform (over-perform)

their peers are able to experience abnormally higher (lower) returns in the future. Indeed, our work

tests pairs-trading opportunities by employing criteria based on these two main paradigms, referring

to the identification of gaps in either prices or returns between pairs of stocks that are previously

identified as being cointegrated (see subsection 2.3).

Specifically, we compute the following variables to be used as gap-ranking criteria:

2Given two sets A and B, the overlap similarity is |A∩B|
min(|A|,|B|) , namely the fraction of the smaller set contained in the

larger. The Jaccard similarity is instead defined as |A∩B||A∪B| , and is much more sensitive to the size difference among the
two sets.
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price gap

{
∆pit = pit − pCG,it ,

∆βpit = pit − βp,ipCG,it

(2a)

returns gap

{
∆rit = rit − rCG,it ,

∆βrit = rit − βr,irCG,it ,
(2b)

where: pit and rit are the normalized3 adjusted close price of stock i on day t and its (daily) simple

return, respectively; pCG,it and rCG,it are the average normalized adjusted close price and return of

the peers of stock i (i.e., its cointegration group); βp,i and βr,i are defined via the following OLS

regressions for each stock i, estimated on the previous 3-year interval:

pit = βp,ipCG,it + εit, εit
iid∼ N (0, σ2

ε);

rit = βr,irCG,it + ηit, ηit
iid∼ N (0, σ2

η).

In words, we construct the price gap for each stock i first by normalizing all the prices in order for

them to be on the same scale, and then by taking the difference between its normalized price at time

t and the average normalized price of its peers. We label this criterion ∆p. We also provide a variant

of this indicator: following Rad et al. (2016), we consider the residuals of an OLS model where we

regress the stock price versus its peers average price. This case is indicated as ∆βp. Similarly, for gaps

in terms of returns we consider the difference of the returns between each stock i and its peers for

each time t (namely, ∆r). As for the case of price gaps, we also take the variant in which we extract

the residuals from an OLS regression, namely ∆βr.

For all the four variables in (2), we build standardized variants as well, where we normalize each in-

dicator with its standard deviation computed over the preceding 3-year training interval. We represent

these variants with an overset tilde, namely ∆̃p, ∆̃βp, ∆̃r, ∆̃βr. According to Gutierrez and Prinsky

(2007), standardization favors a representation of the residuals that better differentiates information

versus noise.

Blitz et al. (2013) find that short-term reversal strategies based on residual stock returns that

do not exhibit dynamic exposures to factors generate substantially higher performances than conven-

tional short-term reversal strategies. Hence, this motivated our decision to include also this approach

to provide a more comprehensive picture of the methodologies that have been proposed so far to

investigate reversal effects. Besides the variables defined in (2) and their standardized variants, we

thus rely on an indicator in line with the one proposed by Blitz et al. (2013), where a conditional

factor model is applied to measure the residuals in the following sense: for each stock i we fit a factor

model on the previous 3-year window, rolling daily; we then take the last value of the residuals ε of

this model, thus having a residual value for each day. The resulting series of residuals for each stock is

then used as indicator. We consider both the three factor model (Fama and French, 1993) and a seven

factor model that includes the momentum (Carhart, 1997) and the short-term reversal (Jegadeesh and

Titman, 1993) factors into the five factors of Fama and French (2015). These indicators are labeled

as ε3 and ε7, respectively. These additional ranking criteria should therefore capture the presence of

additional information not embedded in the typical market factors and that could be exploited to

extract meaningful signals from stocks time series. It should be noted, however, that the core of our

3Each price is rescaled to be 1 in the first day of the 3-year training window to get values on the same scale.
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analysis mainly relates to the contribution of our proposed indicator from the LSTM outcomes to

signals provided by traditional gaps in terms of prices or returns.

Finally, we propose a new indicator to capture the gap between a stock and its peers: the prob-

ability that the return difference ∆r will increase in the near future. We indicate this variable as

P(∆r ↗) throughout next sections. We compute P(∆r ↗) via an LSTM network as described in

subsection 2.5, where the target variable yτ is the up-down movement of ∆r within a h-day horizon:

{
yτ = 1 when ∆r increases in h days,

yτ = 0 when ∆r decreases in h days.
(3)

Thus, the LSTM output ŷτ is precisely the probability of ∆r increasing in a h-day horizon. Differently

from the indicators ∆p and ∆r and their variants, the proposed indicator P(∆r ↗) is based not only

on the information available at the day when the investment decision is taken, but it also takes into

account the market history of the involved time series in order to enrich the prediction. Moreover, this

indicator is not a mere snapshot or collection of past information, but learns from past (and present)

data the useful patterns for making a prediction on future movements, weighting appropriately the

different time contributions.

The idea inspiring this indicator is that, in determining the presence of a gap among series of

peers, an important piece of information is whether the gap is in an expanding or in a closing phase.

If the gap is going to disappear in the short term, then a reversal approach is to be taken, as in the

pairs-trading framework discussed up to now; instead if the gap is expanding, then profit is to be

searched in a momentum-like strategy. This issue will be specifically addressed in subsection 3.4.

2.5 LSTM networks

Long Short-Term Memory networks are an instance of the broader class of Recurrent Neural Net-

works (RNN), specifically designed to deal with sequential data. LSTM networks, first introduced

in Hochreiter and Schmidhuber (1997), aim to solve some specific drawbacks of RNN, namely the

vanishing/exploding gradient issue that prevents recurrent networks to learn long-term dependencies

within sequences, as pointed out e.g. in Bengio et al. (1994). Below, we briefly introduce the structure

and main ingredients of RNN and LSTM networks, while we refer to Graves (2012) and Goodfellow

et al. (2016) for a more comprehensive review.

The structure of RNN, from which LSTM derives, is composed by an input layer, in which a

sequence of data (x1, . . . ,xτ ) (in general a multivariate time series) enters the network one step at a

time, one or more hidden layers for each time step (h1, . . . ,hτ ), and an output layer that is chosen

appropriately with respect to the problem.4 Our study considers a single classification output yτ at

the end of the sequence, but in general RNN can deal with sequence-to-sequence predictions as well.

Thus, for the present case, the RNN is trying to model the following relation:

yτ = f(x1, . . . ,xτ ). (4)

The key feature of RNN, as opposed to others Artificial Neural Networks, is that the hidden layers

have an autoregressive nature, namely

ht = φ(ht−1,xt;θ), (5)

4We use bold letters to indicate vectors and uppercase bold for matrices.
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where the vector θ summarizes the parameters defining the family of functions φ. For the “vanilla”

RNN with one hidden layer and classification output, the model can be summarized by the following

system of equations:

ht = tanh
(
Wht−1 +Uxt + bh

)
, t = 1, . . . , τ (6a)

ŷτ = softmax (V hτ + by) ; (6b)

where (W ,U ,V , bh, by) are the parameters to be calibrated from data, “tanh” is the hidden layer

activation function (that is intended to be applied, as usual, component-wise), and

softmax(z)i =
ezi∑
j e

zj
(7)

is needed to output probabilities in the classification case, effectively reducing to a logit in the binary

case.

The LSTM model is slightly more involved than (6), introducing three gated units: a forget gate f ,

an external input gate g and an output gate o, together with another internal state s (see Figure 1):

ft = σ
(
W fht−1 +U fxt + bf

)
, t = 1, . . . , τ (8a)

gt = σ (W ght−1 +U gxt + bg) , t = 1, . . . , τ (8b)

ot = σ (W oht−1 +U oxt + bo) , t = 1, . . . , τ (8c)

st = ft ⊗ st−1 + gt ⊗ tanh (W sht−1 +U sxt + bs) , t = 1, . . . , τ (8d)

ht = tanh (st)⊗ ot, t = 1, . . . , τ (8e)

ŷτ = softmax (V hτ + by) ; (8f)

where ⊗ denotes the element-wise multiplication operator and σ the sigmoid activation function:

σ(x) =
1

1 + e−x
. (9)

The idea behind LSTM networks is to use gated units to control the flow of information coming from

past states in order to avoid the well known problem of standard RNN in learning from long sequences

due to the vanishing/exploding gradient problem (Bengio et al., 1994). The key point in this respect is

the (conditional) self-loop in the internal state (8d), where the information from step t− 1 is directly

pushed to step t, conditionally only on the activation of the forget gate f . Specifically, the forget

gate f determines how much of the past state st−1 is evolved directly to st; the external input gate g

determines the way in which the past hidden layer contributes to s; while the output gate o accounts

for the on/off state of the current hidden layer ht. Thus, the information is easily propagated back

in time along the sequence from state st to st−1 through gate f , without the issue of “losing the

memory” by successive multiplication of small gradients5.

The number of parameters of LSTM is much greater than that of a “vanilla” RNN. Specifically,

for a single LSTM layer with m input features and n hidden nodes, the number of parameters is

4(n(m + 1) + n2), since we have 4 “copies” of the triplet (W ,U , b). The output layer accounts for

other K(n + 1) parameters, where K is the number of classes. Notice that the length of the time

5Models with direct memory self loops and gated units controlling the flow of information through time steps are
called gated RNN. Another state-of-the art gated RNN is the Gated Recurrent Unit network (Cho et al., 2014).
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Figure 1: LSTM. Schematic visualization of an LSTM cell described by equation (8).
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sequence τ does not impact the complexity of the model, since parameters are time-invariant in all

RNN networks; the time dependence is entirely accounted for by the autoregressive nature of the

hidden states.

2.5.1 Training and test sets

We organize the predictive framework in the following way: in line with what discussed for cointe-

gration groups (see subsection 2.3) we take blocks of 4 years [t − 3, t] where we use the first 3 years

[t − 3, t − 1] as training set and the last year t as test set or live set, and we roll the block yearly,

effectively producing a continuous time interval of non-overlapping live sets. The training set is used

to calibrate parameters6, while the live set is the out-of-sample period where we make predictions

using the (trained) LSTM, actually computing the P(∆r ↗) indicator for each stock. Since our data

span an interval from January 2000 to June 2019, we actually implement 17 blocks, with the last

live set lasting for half year only. In each 3-year training window, we reserve the last 10% of data as

validation set (see subsection 2.5.4 for more details). The entire backtest procedure is summarized by

Algorithm 2.5.1.
[h!]
InputinputOutputoutput price time series in the period 2000-01-01//2019-06-31 for stocks in S&P500. P(∆r ↗) in

all days in the (out-of-sample) period 2003-01-01//2019-06-30 for all cointegrated stocks.

loop over years year t in the period 2003-01-01//2019-06-30

yearly cointegration groups

stocks Si present in S&P500 at t stocks Sj with j 6= i present in S&P500 at t Engle-Granger two-step test and

Johansen test for the (normalized) daily price series {pis} and {pjs} with s ∈ [t− 3, t− 1] build the cointegrated group

CGit =
{
Sjt : Sit

ci∼ Sjt
}

Cointegration groups for the year t for all stocks.

LSTM yearly training stocks Si ∈
⋃
j CG

j
t compute ∆ris = ris− r

CGi
t

s for day s ∈ [t− 3, t− 1] build the LSTM input

τ -sequences as by eq. (10) employing ∆ris, r
i
s, V

i
s for day s ∈ [t − 3, t − 1] build the LSTM output labels with h-day

horizon yis = sign(∆rs+h −∆rs)

train the LSTM on all the computed τ -sequences of all stocks a model LSTMt trained with data up to t with which

make out-of-sample predictions for year t.

out-of-sample predictions days θ ∈ t stocks Si ∈
⋃
j CG

j
t build the LSTM input τ -sequence with (∆riθ−τ+1, . . . ,∆r

i
θ),

6The parameters of the LSTM in this case, but in general all the needed parameters, are calibrated in the 3-year
training set, such as the OLS betas in eq. (2), or the standard deviations for the standardized versions of the indicators.
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(riθ−τ+1, . . . , r
i
θ), (V iθ−τ+1, . . . , V

i
θ ) use the model LSTMt with the just computed input τ -sequence to get ŷiθ = P

(
∆ri ↗

)
Out-of-sample predictions for all days in year t for all stocks belonging to at least one cointegration group.

2.5.2 Input features

The input features for the LSTM are multivariate time series. Following Fischer and Krauss (2018),

for each stock i we take sequences with a lookback period roughly 1-year long, τ = 240 days, with:

past values of the ∆ri gap with respect to its peers, past trading volume (V i), past returns (ri). We

compute these features for every stock present in at least one cointegration group, and we slide each

sequence daily. Hence, for each stock in the 3-year training window, we collect about 750− 240 input

sequences, since for each training period of 3 solar years the first τ = 240 days are used to form the

first sequence. Then, by sliding forward of one day at a time, we get roughly 750− 240 sequences per

stock. The input sequences are thus of the form:




∆riθ ∆riθ−1 . . . ∆riθ−τ+1

V i
θ V i

θ−1 . . . V i
θ−τ+1

riθ riθ−1 . . . riθ−τ+1


 , (10)

with day θ varying along the 3-year training window. More precisely, if we are in year t, thus in the

training years [t− 3, t− 1], indicating by t0 the first day of year t, then θ ∈ [t0 − 3years + τ, t0 − h].

Given that the number of considered stocks is, on average, roughly 200 (see Table 1), we get ap-

proximately 100,000 training sequences for each training round. The same structure of input sequences

is then computed for the out-of-sample year as well.

Each of the three input variables is standardized with the overall mean and standard deviation

computed on the training set, which is known to ensure a more rapid learning (see, e.g., Bishop 2006).

2.5.3 LSTM architecture

The architecture of the LSTM we train is the following: an input layer with 3 features and 240

lookback time dimension, a single hidden layer with 35 nodes, and a 2-node dense output layer with

softmax activation.

Between the LSTM layer and the output layer Batch Normalization is applied, which rescales the

LSTM layer outputs with 2 additional (trainable) parameters for each node: one scale and one shift

parameter. Batch normalization, first introduced in Ioffe and Szegedy (2015) as a powerful tool for

stabilizing the learning process, was discovered to provide regularization against overfitting similar to

Dropout, even if the actual reasons for this are yet not fully understood (Goodfellow et al., 2016), but

are likely due to extra-randomness injected during the training process.

This structure was decided by trial and error, and then held fixed throughout the entire time

interval, without any automatic hyperparameter tuning. The total number of parameters amounts to

5602: 5460 for the LSTM hidden layer, 35× 2 + 2 = 72 for the output layer and 35× 2 for the batch

normalization layer.

2.5.4 LSTM training

The fitting of the LSTM weights to the training sequences is a (highly non-convex) minimization

problem, where we set the crossentropy as the target loss function. We employ RMSprop stochastic

descent learning algorithm (introduced in Tieleman and Hinton 2012), with learning rate 0.001 and

11



decay factor 0.9. Moreover, we make use of early stopping in order to choose the optimal out-of-

sample number of epochs: we retain the last 10% of each training sequence as a validation set, and we

stop training when the validation crossentropy does not decrease for 10 consecutive epochs (known as

patience interval), with a cap of 50.7

2.5.5 LSTM prediction performance

Here we discuss the out-of-sample performance of the LSTM network above introduced. As previously

stated, the out-of-sample period consists of 16.5 years, each of which is the test set of a different model.
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Figure 2: LSTM performance. Yearly out-of-sample prediction performance of the LSTM network discussed in subsection 2.5
for investment horizon h = 1 (left panel, in gray), h = 5 (middle panel, in red) and h = 10 (right panel, in blue). Top panel refers
to the entire distribution of stocks, while bottom panel to the signals related to stocks composing the Top-Bottom strategies. We
report the accuracy (with a 0.50 threshold), the area under the ROC curve and the logloss for each out-of-sample year over the
period from January 2003 to June 2019.

Figure 2 reports three different classification metrics, namely: accuracy, area under the ROC

curve, and logloss (or crossentropy) for three investment horizons (h = 1, 5, 10).8 As a reference,

7In the case of stopping, the optimal parameters are the ones referring to the beginning of the patience period.
8Accuracy is the only threshold dependent metric. We display accuracy with a 0.50 probability threshold, namely

we predict an up movement whenever the estimated probability P(∆r ↗) is greater or equal to 50%. Both ROC and
logloss are based on the estimated probability P(∆r ↗).
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recall that when the number of up and down movements is roughly the same, as in this case, the

area under the ROC for a random classifier is about 0.5, while the accuracy and logloss are about

0.5 and log(2) ' 0.693, respectively. Top panel of Figure 2 reports the performances related to the

entire distribution of stocks. Note how the LSTM shows a good performance in terms of all the

three displayed metrics. Performances result quite stable over the years, with some fluctuations in the

years of the financial crisis of 2007-08, and show a slight deterioration and more erraticity for longer

investment horizons h. More interestingly, the prediction performance is even higher (see bottom

panel of Figure 2) if we consider those stocks related to the pairs-trading framework and constituting

the top and bottom deciles of the P(∆r ↗) distribution.

2.6 Portfolio construction

To analyze the role of our proposed indicators, we consider illustrative investment strategies which

equally invest in stocks grouped in percentiles according to a selected ranking measure among those

discussed in subsection 2.4. In subsection 4.3, for the LSTM case we also propose a linear weighting

scheme as a function of the value of the sorting variable for each stock.

More practically, we construct portfolios either separately for each ranking criterion or jointly by

combining information of pairs of ranking measures. For each ranking indicator, we employ the same

procedure of rebalancing portfolio on a daily basis using information available up to the previous day.

We assume a holding period of one day (i.e., h = 1) and the corresponding returns are linked in

time to form series for every portfolio. In subsection 4.1, we also discuss longer investment horizons

(namely, h = 5, 10 business days). For each year t, the sample of stocks that is considered for the

analysis is composed by the stocks included in the S&P 500 index at the beginning of the year and

that have found to be cointegrated at least with one other series at the end of the previous year using

a look back period of three years (i.e., on the interval [t− 3, t− 1]). This sample is maintained for the

entire year t. In the main results of the manuscript we neglect transactions costs, which are instead

introduced in subsection 4.1.

3 Empirical Analysis

3.1 Comparing different approaches for pairs-trading opportunities

We investigate the predictive capacity of the indicators introduced in subsection 2.4 by relying on

one-way procedures which invest in decile portfolios over an investment horizon of 1 day. We also

report in Table 2 the Top-Bottom strategies which buy the top and sell the bottom decile portfolios

with respect to a given sorting criterion, thus constituting zero-cost investment strategies.

The ranking criterion based on ∆p and its normalized variant ∆̃p indicates an almost monotonic

pattern of the annualized returns, with the first deciles portfolios that systematically overperform the

last ones. As a consequence, the Top-Bottom strategy is able to generate a consistent and statistically

significant performance (i.e., 11.09% − 14.56%). These results are qualitatively similar to the ones

obtained by the indicators ∆βp and ∆̃βp (i.e., 8.08% − 10.94%). Hence, sorting stocks by means

of the price gap with respect to peers seems to support previous empirical findings that detected

pairs-trading opportunities based on temporary deviations of the price dynamics.

We run the same comparisons but considering as sorting criterion, instead of price gaps, differences

in returns. Note how also the indicators ∆r and ∆̃r present clear monotonic patterns which contribute
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Table 2: One-Way Sorts. The table shows the raw returns (in percentage) obtained by equally investing in stocks composing
decile portfolios defined using as sorting criteria those discussed in subsection 2.4. The holding period is h = 1 day. Newey-West
t-statistics are reported in parenthesis. Data are annualized and refer to the period from January 2003 to June 2019.

1 2 3 4 5 6 7 8 9 10 Top-Bottom

∆p 21.79 15.27 13.37 16.60 13.41 12.27 10.06 8.81 10.84 9.55 11.09

(3.48) (3.36) (3.10) (3.84) (3.47) (3.40) (2.84) (2.65) (3.02) (2.37) (2.47)

∆̃p 21.66 16.66 15.06 12.18 15.20 10.76 13.41 12.14 9.11 6.32 14.56

(3.90) (3.30) (3.48) (2.89) (3.68) (2.91) (3.41) (3.36) (2.65) (1.84) (3.83)

∆βp 17.70 17.19 19.41 15.15 14.41 12.18 12.49 8.20 7.74 8.75 8.08

(3.49) (3.68) (4.20) (3.62) (3.61) (3.17) (3.34) (2.45) (2.12) (2.27) (2.48)

∆̃βp 20.15 16.80 16.64 14.82 16.63 12.25 12.18 9.96 5.61 8.25 10.94

(4.08) (3.52) (3.74) (3.50) (4.03) (2.90) (3.23) (2.77) (1.71) (2.28) (3.38)

∆r 25.50 19.83 17.20 15.55 14.11 10.59 9.27 6.91 7.95 6.40 16.42

(4.58) (4.31) (4.15) (4.01) (3.56) (2.74) (2.49) (2.00) (2.05) (1.62) (4.04)

∆̃r 26.85 19.00 17.56 15.31 14.20 10.66 8.47 7.41 8.72 5.47 18.96

(5.21) (4.05) (4.28) (3.78) (3.46) (2.66) (2.18) (2.07) (2.23) (1.59) (4.88)

∆βr 26.62 18.08 21.72 13.94 13.61 10.91 8.89 5.88 10.80 3.27 20.86

(4.57) (4.21) (5.10) (3.69) (3.28) (2.89) (2.55) (1.72) (2.54) (1.16) (4.53)

∆̃βr 24.15 22.14 20.14 13.50 16.13 11.68 9.05 6.79 7.43 3.14 18.86

(4.54) (5.07) (4.57) (3.27) (3.75) (2.93) (2.32) (1.90) (2.09) (1.13) (4.54)

ε3 22.45 23.07 22.10 14.92 12.93 14.43 8.14 6.26 4.86 4.89 15.26

(4.53) (4.94) (4.82) (3.64) (3.11) (3.45) (2.05) (1.82) (1.44) (1.44) (3.75)

ε7 23.26 19.12 18.94 15.56 14.97 11.49 8.84 8.41 6.65 6.36 14.74

(4.73) (4.20) (4.40) (3.68) (3.72) (2.82) (2.19) (2.16) (1.87) (1.69) (3.74)

P(∆r ↗) 4.04 7.12 8.58 9.25 10.91 16.24 13.32 21.85 18.31 24.57 18.32

(1.27) (1.91) (2.24) (2.37) (2.83) (3.98) (3.31) (4.81) (4.04) (5.14) (4.98)

to determine even higher Top-Bottom strategy performances (i.e., 16.42%− 18.96%) than the analog

in terms of price gaps. Interestingly, these performances are also very similar to the ones obtained by

ranking stocks according to the residuals of the fitted OLS models (namely, ∆βr and ∆̃βr, respectively).

More generally, those stocks with larger positive differences in returns with respect to their peers are

thus more likely to underperform the latter in the near future.

The one-way performances for the sorting criterion based on the residuals of the three or seven

factor models appear largely in line with the previous ones and able to effectively distinguish across

decile portfolios. More importantly, it is worth noticing that using a more or less parsimonious factor

model does not really seem to matter in the evaluation, being the resulting performances generally

quite similar across the decile portfolios of the two factor models. Hence, the inclusion of many

drivers of factor risks does not seem to substantially vary the ranking performances, thus questioning

the neutralization extent of controlling for factors such as short-term reversal and momentum. Blitz

et al. (2013) find that ranking stocks according to residuals from a 3-factor model generates profitable

results that do not exhibit dynamic exposures to the Fama and French (1993) factors. In our study,

we extend the residuals computation by including a wider list of exposures to risks (namely, the 7-

factor residuals ε7) and, even controlling for factors such as short-term reversal and momentum, we

still observe profitable opportunities in the Top-Bottom strategy. It seems, therefore, that there exist

other reasons than these factor exposures behind the emergence of valuable investment opportunities,

which can be thus captured by systematically investing in stocks according to the ranking positioning

of the corresponding residuals.

Finally, we observe that our proposed metric P(∆r ↗) is able to sort the annualized returns of

the decile portfolios and obtain an economically and statistically significant performance in the Top-
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Bottom strategy9 in line with the highest performing cases of Table 2. It is worth noting that the

LSTM prediction does not refer to a simple quantification of market returns, but it represents instead

the probability of a stock to get increasing market returns in the near future with respect to the

average value of its peers only, thus not in relation to the overall sample. As an example, those stocks

placed in the top decile portfolio in a given time period according to P(∆r ↗) do not necessarily

refer to the set of stocks in the sample with the highest predicted market appreciation in the near

future: they stand for the set of stocks with the highest probability of showing a market increase with

respect to the average market returns of their corresponding cointegrated peers. Hence, the top decile

portfolio is not indicating the predicted top performer stocks in the sample (and, similarly, the bottom

decile portfolio is not referring to the worst stocks), but it stands for those stocks with the highest

probability to deviate from their peers reaching higher market returns over an investment horizon h.

Then, in order to select a few appropriate alternatives for our proposed sorting indicator P(∆r ↗)

to be used to further investigate to which extent the outcomes of the LSTM can complement the

information already embedded in either price or returns gaps, we decide to include a risk-adjusted

assessment of portfolio performances. We report different formulations of Sharpe ratios using as

measures of risk the standard deviation, the modified Cornish-Fisher VaR and the Expected Shortfall.

Table 3 reports for each sorting criterion the corresponding risk-adjusted indicators. Overall the

monotonic patterns observed in Table 2 appear less pronounced, thus suggesting less clear relationships

between the decile portfolios’ performances and their corresponding levels of returns dispersion. We

note that Top-Bottom strategies based on normalized variants provide in general better results, thus

suggesting that controlling for historical dispersion can favor the out-of-sample stability of the risk-

adjusted performances, and are also in line with performances including the residuals of OLS models.

To assess the statistical significance of the reported Sharpe ratios, we perform an analysis with two

different benchmarks. The first benchmark is inspired by the well known Malkiel’s monkeys strategy

(Malkiel, 1973): we simulate 10,000 investors that each day in the period under study select randomly

two tenths of the stocks present in at least one cointegration group and then go long in one tenth and

short in the other. These investors thus pick stocks among those passing the “cointegration filter”,

but then they do not use any particular indicator to select the top and bottom deciles. The resulting

Sharpe ratios for the whole sample period of all the 10,000 “monkeys” are summarized in Figure 3:

the median value is slightly negative (-4.6%), the 99% percentile is 54.3%, i.e. lower than the Sharpe

ratio reached by all Top-Bottom strategies here considered (Table 3), and even the best performing

monkey, reaching 94.8%, is well below the value reached by the Top-Bottom decile strategy based

on P(∆r ↗) (∼ 123%), and also below the value reached by well-performing Top-Bottom strategies

based on other ranking indicators (e.g., ∆̃r ∼ 117% and ∆̃p ∼ 103%).

The second benchmark is the S&P 500 index, against which we perform a studentized bootstrap

test following Ledoit and Wolf (2008). Namely, a circular block resampling with optimal block size is

computed on the return time series of each Top-Bottom strategy and on the S&P 500 daily returns

series. An asymmetric two-sample t-test is then performed with the alternative hypothesis that the

pairs-trading strategy has a higher Sharpe ratio than a simple buy&hold strategy on the S&P 500

index. Results are as follows: the Top-Bottom strategy based on our proposed indicator P(∆r ↗) has

the lowest p-value (0.030), showing a significant difference with respect to the S&P 500, while ∆̃r and

9Note that while for price and returns gaps the pairs-trading approach suggests that high positive (negative) value
of the gap corresponds to subsequent low (high) performance, for our indicator the natural interpretation suggests that
high (low) value of the indicator corresponds to subsequent high (low) performance. This is indeed confirmed by results
shown in Table 5.
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Table 3: One-Way Sorts Risk-adjusted Performances. The table shows the Sharpe ratios obtained by equally investing in
stocks composing decile portfolios defined using as sorting criteria those discussed in subsection 2.4. Ratios are computed using as
measure of risk the standard deviation (SR), the Modified Cornish-Fisher VaR (Mod SR) or the Expected Shortfall (ES). Values
are expressed in percentage. The holding period is h = 1 day. Data are annualized and refer to the period from January 2003 to
June 2019.

1 2 3 4 5 6 7 8 9 10 Top-Bottom

∆p

SR 76.82 64.85 62.10 77.72 63.13 59.26 48.99 44.39 54.65 43.22 61.13

Mod SR 78.77 66.22 54.32 63.88 53.51 53.01 42.38 35.28 40.40 31.84 76.32

ES 41.61 35.74 34.20 41.09 34.63 32.79 28.11 25.87 30.56 25.81 33.15

∆̃p

SR 86.28 70.19 67.02 55.45 68.23 49.19 63.89 60.03 46.82 31.50 102.54

Mod SR 75.86 63.76 64.62 48.14 62.25 42.38 48.55 46.70 34.83 25.13 108.62

ES 45.20 38.12 36.53 31.31 37.05 28.48 34.93 33.06 26.91 19.95 51.46

∆βp

SR 70.09 70.52 88.12 70.36 70.21 58.82 60.26 40.19 37.85 40.60 56.93

Mod SR 65.21 69.25 71.05 58.53 57.17 49.74 48.74 32.17 30.04 31.20 69.03

ES 38.32 38.36 45.67 37.87 37.66 32.59 33.25 24.06 22.98 24.49 30.54

∆̃βp

SR 85.81 72.89 72.19 67.09 76.93 56.53 56.28 48.61 27.92 41.10 87.33

Mod SR 80.69 63.44 68.20 53.76 64.81 46.74 43.49 38.98 23.30 31.56 132.64

ES 44.82 39.21 38.89 36.53 40.77 31.74 31.63 27.93 18.28 24.40 44.41

∆r

SR 97.01 87.21 80.91 77.19 69.07 53.04 46.36 33.34 37.10 25.07 94.98

Mod SR 90.82 73.37 63.84 57.71 57.76 44.15 37.73 30.27 31.21 26.99 77.02

ES 49.77 45.35 42.47 40.70 37.13 29.84 26.80 20.94 22.85 18.19 48.26

∆̃r

SR 109.95 84.86 80.91 73.17 66.95 51.13 40.46 35.48 40.52 23.30 117.21

Mod SR 100.84 70.08 66.58 53.83 57.16 42.34 34.83 29.94 35.22 23.89 92.55

ES 54.98 44.30 42.52 39.03 36.31 29.14 24.28 21.99 24.44 16.89 58.02

∆βr

SR 95.40 77.76 104.44 69.97 68.71 56.78 45.45 28.95 49.09 12.36 110.27

Mod SR 89.04 78.04 78.96 55.57 54.08 41.94 37.35 25.94 41.02 18.09 88.64

ES 49.24 41.33 52.57 37.46 36.89 31.41 26.29 18.80 28.45 12.43 54.99

∆̃βr

SR 96.11 98.12 93.07 64.05 77.63 56.60 43.60 32.48 34.47 13.18 106.86

Mod SR 89.65 90.77 80.05 50.32 58.49 43.03 35.25 28.05 30.66 18.42 86.16

ES 49.31 49.97 47.75 35.01 40.98 31.59 25.69 20.59 21.66 12.17 53.50

ε3

SR 91.88 104.70 101.94 69.42 61.20 68.65 38.66 29.82 22.25 20.74 88.71

Mod SR 83.24 86.88 85.63 54.60 51.13 54.36 31.42 28.71 21.95 23.70 71.87

ES 47.49 52.72 51.54 37.46 33.73 37.04 23.50 19.35 16.01 15.70 45.47

ε7

SR 93.82 85.87 88.12 73.08 71.89 55.05 42.47 39.57 30.70 27.29 90.49

Mod SR 108.10 76.71 69.53 54.66 54.98 44.78 33.85 34.78 27.84 27.99 79.48

ES 48.31 44.72 45.62 39.05 38.46 30.93 25.19 23.94 19.92 18.71 46.18

P(∆r ↗)

SR 17.33 33.07 40.26 43.87 52.23 76.25 61.91 99.99 81.90 106.59 122.74

Mod SR 20.50 28.57 35.16 36.49 44.38 64.80 51.32 78.85 69.71 83.48 92.61

ES 14.03 21.00 24.28 25.89 29.65 40.42 34.12 50.72 43.02 53.56 60.50

∆̃p follow closely (p-values 0.048 and 0.058, respectively), and ∆βr and ∆̃βr are weakly significant

with p-values equal to 0.054 and 0.064, respectively. ∆p and ∆βp show the lowest significance levels

(p-values 0.503 and 0.647, respectively).

In order to investigate whether and to which extent P(∆r ↗) contributes to provide additional

predictive signals, from the combined information reported by Tables 2-3, summarized also in Figure 4,

we thus propose to select two main ranking metrics alternative to P(∆r ↗), one referring to a sorting

criterion based on a dynamic gap in prices and the other based on a dynamic gap in returns. For

the sake of simplicity, we also decide to select for both price and returns gaps the same version along

those proposed in subsection 2.4. For these reasons, the aforementioned evidences on the risk-adjusted

performances suggest us to rely on ∆̃p and ∆̃r as illustrative indicators against which compare the

strategies based on P(∆r ↗).
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Figure 3: Sharpe ratios distribution (in percentage) of 10,000 investors who daily pick 2/10 of all stocks belonging to at least one
cointegration group, going long in 1/10 and short in the remaining 1/10 in the period under study. Red vertical lines denotes the
median (-4.6%) and the 99% percentile (54.3%). The highest reached Sharpe ratio is 94.8%.

Figure 4: One-Way Sort Top-Bottom Performances. Compounded gross returns (blu bars, right axis) and Sharpe ratios (red
bars, left axis) for Top-Bottom decile portfolios as reported in Tables 2-3. The holding period is h = 1 day. Data are annualized
and refer to the period from January 2003 to June 2019. Highlighted bars point out the 3 indicators chosen for detailed comparison.
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Table 4: Profit & Loss Analysis. Gross returns, standard deviation of returns (σ), Sharpe ratio (SR), Modified Cornish-Fisher VaR (Mod SR), Expected Shortfall (ES), maximum draw-down

(DD), Conditional Value at Risk at level 99% (CVaR99%), Omega ratio (Ω), and Pain Index (PI) for the Top-Bottom strategies based on ∆̃p, ∆̃r, and P(∆r ↗). The holding period is h = 1.
Newey-West t-statistics are reported in parentheses. The reference period is from January 2003 to June 2019.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019-Q1-2

∆̃p

return 10.76 8.69 6.70 7.45 -6.82 120.28 108.45 20.37 1.25 6.87 -3.02 1.28 6.50 5.31 -0.51 2.35 17.93
(0.90) (1.04) (0.67) (0.90) (-0.60) (2.50) (2.21) (2.19) (0.23) (1.07) (-0.36) (0.19) (0.71) (0.50) (0.00) (0.32) (1.77)

σ 11.54 10.42 9.91 8.10 10.84 26.55 33.05 8.44 13.74 7.54 8.27 8.76 9.36 12.66 10.70 10.85 7.52

SR 93.28 83.38 67.61 92.02 -62.95 453.01 328.18 241.22 9.07 91.04 -36.47 14.62 69.41 41.93 -4.78 21.69 238.45

Mod SR 60.37 55.94 47.86 57.23 -34.98 251.84 188.49 136.19 10.07 64.81 -20.29 13.97 44.88 30.16 0.36 16.24 171.43

ES 46.34 43.92 38.82 42.46 -26.76 199.73 155.00 97.59 7.52 49.88 -16.61 13.16 33.55 22.74 0.30 12.49 139.27

DD 8.44 6.70 11.50 5.21 13.66 12.24 20.83 3.52 13.15 5.75 7.05 9.05 7.03 8.90 12.89 5.81 2.58

CVaR99% -2.05 -1.73 -1.37 -1.57 -2.09 -5.37 -9.79 -1.82 -2.94 -2.17 -1.30 -3.18 -1.81 -2.52 -1.43 -1.99 -0.93

Ω 1.16 1.15 1.12 1.16 0.91 1.81 1.63 1.44 1.03 1.17 0.95 1.03 1.13 1.08 1.00 1.04 1.45

PI 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.01 0.04 0.01 0.04 0.02 0.02 0.03 0.07 0.03 0.01

∆̃r

return -0.16 -0.07 4.57 11.94 7.79 128.46 84.15 18.66 29.60 13.45 15.84 11.38 6.38 8.29 0.95 28.53 -4.26
(0.04) (0.05) (0.60) (1.19) (0.76) (3.15) (2.16) (1.85) (2.09) (1.45) (1.86) (0.90) (0.79) (0.57) (0.12) (1.97) (-0.23)

σ 11.89 10.89 10.41 10.68 13.32 35.52 32.12 10.40 12.21 8.42 7.65 12.36 8.95 20.77 9.18 11.58 11.50

SR -1.34 -0.68 43.95 111.73 58.47 361.65 262.01 179.51 242.38 159.70 207.07 92.07 71.28 39.92 10.32 246.35 -37.05

Mod SR 2.68 2.70 28.59 74.71 43.41 160.35 157.71 115.98 164.70 100.05 132.84 58.05 45.27 30.75 9.01 163.20 -17.43

ES 1.96 1.94 18.98 55.46 31.39 88.70 127.12 78.11 123.46 76.50 93.17 22.43 32.35 17.13 6.21 128.16 -11.72

DD 14.15 10.94 8.48 8.23 14.82 12.48 14.19 7.03 8.96 6.95 4.07 8.32 8.53 13.35 13.24 6.53 13.33

CVaR99% -2.48 -2.42 -2.27 -2.38 -3.07 -7.37 -8.06 -2.47 -3.19 -1.47 -1.71 -4.32 -1.88 -4.93 -2.05 -1.85 -2.82

Ω 1.01 1.01 1.08 1.21 1.12 1.55 1.45 1.34 1.47 1.28 1.38 1.19 1.13 1.10 1.03 1.46 0.95

PI 0.05 0.05 0.03 0.02 0.04 0.03 0.05 0.02 0.02 0.02 0.01 0.03 0.02 0.04 0.06 0.02 0.07

P(∆r ↗)

return 6.93 7.42 4.72 24.62 12.40 85.51 61.67 20.79 26.54 15.00 15.75 14.89 6.57 6.50 -5.65 19.49 11.80
(0.57) (0.70) (0.57) (2.29) (1.14) (2.30) (1.91) (2.18) (1.81) (1.62) (1.94) (1.34) (0.76) (0.43) (-0.51) (1.43) (0.79)

σ 12.54 11.16 9.84 10.14 12.36 29.37 30.39 10.24 12.19 8.81 7.32 10.38 9.07 19.61 9.41 11.64 10.89

SR 55.30 66.45 47.93 242.84 100.32 291.19 202.94 202.96 217.75 170.36 215.09 143.43 72.47 33.13 -60.00 167.49 108.33

Mod SR 35.20 41.67 30.28 156.28 73.33 138.03 132.03 123.29 146.59 105.80 140.90 88.81 45.25 26.51 -35.04 109.57 63.71

ES 25.81 29.22 19.72 113.54 58.64 80.63 108.72 77.33 106.06 78.14 103.12 37.63 32.00 14.84 -28.28 87.41 46.17

DD 8.14 7.43 10.62 7.41 7.31 15.57 14.61 6.07 8.06 5.27 5.23 6.71 8.92 13.04 13.93 11.47 9.18

CVaR99% -2.59 -2.39 -2.14 -2.24 -3.25 -5.88 -9.47 -2.11 -3.04 -1.68 -1.55 -3.24 -1.92 -4.71 -1.53 -1.70 -2.32

Ω 1.10 1.12 1.09 1.46 1.20 1.48 1.38 1.38 1.41 1.31 1.39 1.29 1.13 1.08 0.91 1.30 1.20

PI 0.02 0.03 0.04 0.02 0.02 0.03 0.05 0.02 0.02 0.01 0.01 0.02 0.02 0.04 0.07 0.04 0.04



3.2 Risk-adjusted evaluation of the strategies

Before exploring how ∆̃p, ∆̃r and P(∆r ↗) provide complementary predictive signals, in this sub-

section we further investigate the performance and risk characteristics of the Top-Bottom strategies

based on such indicators. As performance measure, we follow previous subsections and we rely on the

compounded returns gross of trading costs and fees. We then employ the standard deviation of the

returns (σ), the Sharpe ratio (SR), the Modified Cornish-Fisher VaR (Mod SR), the Expected Short-

fall (ES), the maximum draw-down (DD), the Conditional Value at Risk at level 99% (CVaR99%), the

Omega ratio (Ω), and the Pain Index (PI) to assess the risk levels of the strategies. Table 4 shows the

estimates, reported on annual basis, for the Top-Bottom strategies based on the reference criteria ∆̃p,

∆̃r and P(∆r ↗), while Figure 5 shows the corresponding market patterns in time.

Figure 5: Top-Bottom Performances. Daily compounded returns gross of trading costs and fees. The holding period is h = 1.

Color lines refer to the Top-Bottom strategies for: ∆̃p (grey), ∆̃r (blue) and P(∆r ↗) (red); the dark line stands for the market
compounded returns in the same period.
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Table 4 reveals some interesting findings. Firstly, in the years of the global financial crisis each

strategy generates consistent returns which are only in part nuanced by higher levels of volatility

(see, e.g., rows for σ), as also supported by values of SR, Mod SR and ES that are consistently

higher in that interval. These results are also confirmed by the gain-loss ratio Ω (see Keating and

Shadwick 2002, Kazemi et al. 2004), which helps enforcing the risk-adjusted performance assessment,

when returns are not symmetrically distributed, by including higher moments of the distribution.

It seems, therefore, that the extent of profitable investment decisions based on short-term reversal

appears more pronounced during phases of market instability and that each of these indicators is

able to promptly capture such temporarily deviations. Our findings thus indicate that long-short

strategies perform particularly well during phases of market distress, as already detected in other

similar empirical studies (see, e.g., Do and Faff 2010, Bogomolov 2013, Huck and Afawubo 2015 and

Krauss et al. 2017).

Secondly, we observe remarkable differences in the stream of annual performances across strategies

both prior and post the crisis; both ∆̃p and ∆̃r have three time observations with negative perfor-

mances (namely, ∆̃p: 2007, 2013 and 2017; ∆̃r: 2003, 2004 and 2019-Q1-2), while for P(∆r ↗) is only

one (2017). Excluding negative performances, the worst annual result for ∆̃p corresponds to about

1.3% (2011 and 2014), for ∆̃r is 0.95% (2017), while it is much higher for P(∆r ↗) (4.7% in 2005). By

contrast, the latter has a maximum corresponding to about 85% (2008), while the other two strate-

gies obtain performances of more than 120% in the same period. Strategy based on P(∆r ↗) seems
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to provide, therefore, a more stable stream of positive annual performances, although in a narrower

range. This is also confirmed in terms of the risk-adjusted performances measured by SR, its variants

Mod SR and ES, and the Omega ratio.

Thirdly, the volatility of returns is very similar across the strategies, ranging in general around 8−
12% while reaching more than 30% in the years 2008-2009. A significant exception is year 2016, when

the volatility of the corresponding strategies increased substantially with respect to the neighborhood

period (in particular for ∆r and P(∆r ↗)). More in general, these volatility patterns suggest that

the three investment criteria do not seem to systematically differ between each other in the selection

of more or less volatile stocks during this sample period.

Lastly, both DD and CVaR99% seem to follow the dynamics of the financial cycle, with a sharp

rise (in absolute value) in the years of the crisis and lower values during tranquil phases. DD indicates

the maximum loss accrued in each year with respect to the peak value recorded in that period, thus

representing the maximum loss suffered due to the trading activity. Over the entire sample period,

strategies based on ∆̃p and ∆̃r are respectively the less and most risky in such framework, which is

also confirmed by the annual mean values of the drawdowns (see PI). Instead, CVaR99% quantifies

the amount of tail risk a portfolio has by computing the average of the extreme losses beyond a cutoff

equal to 99% of the distribution of returns. CVaR99% is thus the expected loss due to the returns that

cross the threshold of 99%. From Table 4, CVaR99% is typically around 2 − 3% of the investment,

with significant peaks in the period 2008-2009. Notwithstanding maximum losses reported by the DD

in the range around 7− 13% and conditional values at risk of about 2− 3%, still every strategy is able

to get consistent positive cumulative returns in most of the annual observations.

3.3 Detecting P(∆r ↗) contribution to portfolio performance

Table 5 reports the empirical results obtained by equally investing in decile portfolios formed by

sorting stocks according to either ∆̃p (in Panel A), ∆̃r (in Panel B) or P(∆r ↗) (in Panel C).

Raw annualized returns discussed in subsection 3.1 clearly show monotonic patterns for these sorting

criteria. Portfolios formed by stocks with lower values of ∆̃p or ∆̃r and those with higher values of

P(∆r ↗) are therefore typically associated with better performances in the near future, while the

opposite occurs for those portfolios in the bottom side of these rankings. Interestingly, as exhibited

in Table 5, these patterns are confirmed even when portfolios are evaluated in terms of the alphas

from factor models. We consider two specifications: the 5-factor model proposed by Fama and French

(2015) and a 7-factor model which includes the momentum (Carhart, 1997) and the short-term reversal

(Jegadeesh and Titman, 1993) factors. Both measures of alphas are very coherent and support the

interpretation that top decile portfolios are not only able to get on average better raw returns, but

also that extra-market performances do not vanish when controlling for dynamic factor exposures.

Indeed, both ∆̃p and ∆̃r seem to contain information regarding future returns. The persistence

of these extra performances emerges even more clearly when we consider the Top-Bottom strategy

investing long in the top performer decile and short in the worst decile portfolio. These findings are

in line with those reported in Panel C, where the sorting criterion is based on P(∆r ↗). Even in this

case, the Top-Bottom strategy is able to generate a profitable result, comparable with the ∆̃r and

higher than ∆̃p (e.g., the 7-factor alphas are about 17.55% vs. 18.02% and 13.69% respectively). The

performances of the Top-Bottom strategies based on P(∆r ↗) are significant not only economically

but also statistically, with t-statistics equal to about 4.9 and 4.4 in the 5-factor and 7-factor models,

respectively.
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Table 5: One-Way Sort with respect to ∆̃p, ∆̃r and P(∆r ↗). Performances (in percentage) of decile portfolios composed

by equally investing in stocks sorted according to ∆̃p in Panel A, ∆̃r in Panel B and P(∆r ↗) in Panel C. Each panel reports
in the last column the performances of the corresponding Top-Bottom strategy. We report as measure of performance the alpha
generated by both the 5-factor model (Fama and French 2015) and the 7-factor model which includes the momentum (Carhart
1997) and the short-term reversal (Jegadeesh and Titman 1993) factors into the 5-factors model. The holding period is h = 1 day.
Newey-West t-statistics are reported in parenthesis. Data are annualized and refer to the period from January 2003 to June 2019.

Panel A

deciles of ∆̃p

1 2 3 4 5 6 7 8 9 10 Top-Bottom

annualized 5-factor α 12.49 6.88 5.34 2.52 5.00 1.18 3.54 2.58 0.30 -2.05 14.84
(3.49) (2.73) (2.39) (1.43) (3.20) (0.69) (1.93) (1.61) (0.17) (-1.15) (3.39)

annualized 7-factor α 12.16 6.74 4.96 2.33 4.53 1.08 3.85 2.94 0.82 -1.35 13.69
(3.93) (2.96) (2.58) (1.39) (2.93) (0.60) (2.11) (1.83) (0.49) (-0.78) (3.82)

Panel B

deciles of ∆̃r

1 2 3 4 5 6 7 8 9 10 Top-Bottom

annualized 5-factor α 15.95 8.92 7.68 5.73 4.58 1.44 -0.60 -1.52 -0.29 -2.90 19.41
(5.46) (3.86) (3.98) (3.31) (2.63) (0.84) (-0.35) (-0.86) (-0.15) (-1.32) (4.61)

annualized 7-factor α 15.32 8.67 7.59 5.88 4.48 1.42 -0.27 -1.51 -0.11 -2.29 18.02
(5.37) (3.79) (4.88) (3.38) (2.56) (0.85) (-0.16) (-0.85) (-0.05) (-0.94) (4.26)

Panel C

deciles of P(∆r ↗)

1 2 3 4 5 6 7 8 9 10 Top-Bottom

annualized 5-factor α -4.21 -1.39 -0.54 -0.20 1.48 6.49 3.64 11.70 8.19 14.25 19.27
(-1.90) (-0.69) (-0.28) (-0.12) (0.99) (3.39) (1.85) (5.59) (3.86) (6.00) (4.91)

annualized 7-factor α -3.31 -0.97 -0.68 0.17 1.39 6.33 3.50 11.71 7.76 13.67 17.55
(-1.39) (-0.49) (-0.35) (0.11) (0.91) (3.49) (1.81) (5.06) (3.78) (5.45) (4.45)

Since each of the three indicators is able to generate extra-profits not captured by standard mar-

ket drivers of risk, it seems interesting to ask whether they contain portions of mutually exclusive

information useful to forecast stock returns. In line with a wide extant literature in finance (see, e.g.,

Fama and French 1996, Cohen et al. 2005, Whited and Wu 2006, Adrian and Franzoni 2009, Flori

et al. 2019, among others), we employ a joint sorting of the stocks in our sample to investigate the

contribution of these indicators to the creation of extra performances. In particular, Table 6 shows

the alphas from the 7-factor model related to double sorting procedures in which stocks are sorted

in quintiles based on one indicator and then, conditionally on this sort, they are further sorted in

quintiles according to a second indicator, thus generating 5×5 portfolios as well as five Top-Bottom

portfolios in each double sort specification. In particular, in Panel A of Table 6 we use as the first

sorting dimension either ∆̃p (on the left side of the panel) or ∆̃r (on the right side of the panel), while

the second sorting dimension is P(∆r ↗). Conversely, in Panel B the first sorting criterion is always

P(∆r ↗), while the second sorting dimension is either ∆̃p (on the left of the panel) or ∆̃r (on the

right of the panel).

Conditional sorts reported in Panel A indicate that, controlling for ∆̃p, the annualized alpha

performances of the Top-Bottom strategies ranked by P(∆r ↗) range between about 7.7% and 22%.

Moreover, the average annualized alpha, which is constructed by equally investing in the five Top-

Bottom portfolios and that represents our cleanest measure of whether the second dimension of the

double sorting provides information beyond the first sorting criterion (see Avg), is about 16%. These

performances appear significant not only economically but also statistically, with the t-statistics of

the average performance of the Top-Bottom portfolios equal to 6. Findings from this double sort

procedure also suggest that stocks with a lower probability to increase their ∆r in the near future

tend to perform worse than those belonging to the highest quintiles of the P(∆r ↗) distribution

(see the average values by row), thus confirming the monotonic pattern already observed in Table 5.
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Furthermore, the double sort procedure ranked by ∆̃r and then by P(∆r ↗) indicates that the Top-

Bottom strategies provide valuable extra-performances, although lower than those reported for the

case which involves ∆̃p. Nevertheless, the average annualized alpha of the Top-Bottom portfolios is

economically consistent and equal to 3.79% (t-statistics of 1.87). More generally, both double sorting

procedures indicate that P(∆r ↗) provide additional information to both ∆̃p and ∆̃r that can be

exploited to construct profitable investment strategies.

Table 6: Double Sorts by either ∆̃p or ∆̃r, and P(∆r ↗). Performances (in percentage) of 25 quintiles portfolios, as well as
the performance of the Top-Bottom strategies in the last row of each block, obtained by firstly sorting stocks in quintiles according
to the indicator reported by column and then, conditionally on this sort, further sorting in quintiles constructed in terms of the

indicator reported by row. Panel A considers sorting stocks firstly by ∆̃p (on the left) or ∆̃r (on the right) and then, within these

quintiles, by further sorting based on P(∆r ↗), while Panel B considers sorting stocks by P(∆r ↗) and then by ∆̃p (on the left

of the panel) or ∆̃r (on the right of the panel). For each panel and double-sort specification, we report as measure of performance
the alpha generated by a 7-factor model which includes the momentum (Carhart 1997) and the short-term reversal (Jegadeesh and
Titman 1993) factors into the 5-factor model (Fama and French 2015). The holding period is h = 1. Newey-West t-statistics are
reported in parenthesis. Data are annualized and refer to the period from January 2003 to June 2019.

Panel A: sorting stocks by ∆̃p or ∆̃r and then by P(∆r ↗)

quintiles of
P(∆r ↗)

quintiles of ∆̃p quintiles of ∆̃r
quintiles of

P(∆r ↗)1 2 3 4 5 Avg 1 2 3 4 5 Avg

annualized 7-factor α annualized 7-factor α

1 6.49 -5.41 -3.01 -4.38 -8.60 -3.11 7.71 7.16 2.88 -4.63 -0.04 2.51 1
(1.92) (-1.88) (-1.03) (-1.59) (-3.07) (-1.87) (1.86) (2.47) (1.19) (-1.55) (-0.01) (1.42)

2 2.58 5.00 -3.85 -1.76 -4.90 -0.66 13.52 3.94 -1.67 -1.03 -5.66 1.62 2
(0.82) (1.71) (-1.41) (-0.69) (-1.93) (-0.55) (4.23) (1.75) (-0.70) (-0.41) (-1.79) (1.36)

3 12.75 5.16 4.39 3.99 -3.02 4.54 9.37 6.83 2.42 0.46 -4.44 2.81 3
(3.67) (1.84) (1.68) (1.57) (-1.25) (3.20) (2.90) (2.69) (0.99) (0.20) (-1.46) (2.34)

4 11.48 4.51 4.53 6.01 4.42 6.16 16.10 6.57 6.03 -1.39 1.25 5.55 4
(2.64) (1.56) (1.65) (2.54) (1.57) (4.07) (5.05) (2.39) (1.88) (-0.59) (0.41) (4.57)

5 14.65 9.83 12.16 13.93 11.53 12.41 13.56 8.81 5.22 1.91 2.91 6.40 5
(4.36) (2.91) (4.15) (4.87) (3.96) (7.10) (3.61) (3.06) (2.06) (0.72) (1.00) (4.84)

Top-Bottom 7.67 16.11 15.63 19.14 22.02 16.01 5.43 1.54 2.27 6.86 2.95 3.79 Top-Bottom
(1.59) (3.11) (3.57) (4.39) (4.82) (6.00) (1.02) (0.41) (0.64) (1.62) (0.57) (1.87)

Panel B : sorting stocks by P(∆r ↗) and then by ∆̃p or ∆̃r

quintiles of

∆̃p

quintiles of P(∆r ↗) quintiles of P(∆r ↗)
quintiles of

∆̃r1 2 3 4 5 Avg 1 2 3 4 5 Avg

annualized 7-factor α annualized 7-factor α

1 6.47 0.10 10.27 9.24 12.61 7.65 -1.98 -0.87 6.46 14.44 14.09 6.20 1
(1.77) (0.03) (3.31) (2.66) (3.56) (3.88) (-0.64) (-0.31) (2.28) (3.22) (3.50) (3.83)

2 -2.14 0.90 5.29 7.42 11.39 7.02 1.31 0.60 5.38 7.97 11.98 4.09 2
(-0.65) (0.29) (1.91) (2.64) (2.98) (2.92) (0.48) (0.22) (2.17) (2.72) (3.80) (2.00)

3 -2.79 1.18 2.90 9.77 9.07 4.47 -4.54 -0.92 3.91 8.29 16.91 5.36 3
(-0.86) (0.43) (1.14) (3.46) (2.89) (3.12) (-1.60) (-0.34) (1.50) (3.38) (5.38) (3.84)

4 -2.90 -0.70 1.91 5.65 8.15 3.92 -5.81 -1.45 0.02 4.01 9.24 4.47 4
(-1.02) (-0.31) (0.78) (2.11) (2.80) (2.85) (-2.02) (-0.62) (0.01) (1.60) (3.30) (3.42)

5 -10.85 -2.97 -0.84 5.64 13.64 2.34 0.32 1.67 3.25 2.57 2.36 1.07 5
(-4.12) (-1.24) (-0.31) (2.09) (4.61) (1.74) (0.07) (0.60) (1.48) (1.02) (0.87) (0.88)

Top-Bottom 19.42 3.16 11.20 3.41 -0.91 7.02 -2.30 -2.49 3.11 11.57 11.46 4.09 Top-Bottom
(3.89) (0.74) (2.56) (0.89) (-0.23) (2.92) (-0.52) (-0.70) (0.86) (2.32) (2.43) (2.00)

We next examine how much information is provided by both ∆̃p and ∆̃r that is not already

contained in P(∆r ↗). Hence, we sort stocks in reverse, firstly by P(∆r ↗) and then, separately,

by ∆̃p and ∆̃r (see Panel B of Table 6). Notice how the annualized average alphas of the Top-

Bottom portfolios are about 7% and 4% between the two specifications (t-statistics are around 3 and

2, respectively), thus significant both economically and statistically. However, when sorting by ∆̃p

within P(∆r ↗) quintiles, we observe that extra-performances decrease substantially with respect to

the opposite double sorting procedure, while when double sorting by ∆̃r it seems that incremental

information about future performances over (and above) P(∆r ↗) is concentrated especially in the
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highest quintiles of the latter indicator and that high heterogeneity is present in these Top-Bottom

strategies. In general, we confirm that for both double sorting procedures, low quintiles of ∆̃p and ∆̃r

are also in this setting typically associated with better average results (see column Avg).

Interestingly, from these double sorts procedures we can argue that the information provided by

P(∆r ↗) is likely to enrich the one embedded in both ∆̃p and ∆̃r. However, as expected, since

P(∆r ↗) refers to a different layer of analysis than ∆̃p, it seems to better complement the infor-

mation embedded in price gaps than the one present in ∆̃r. Specifically, the three indicators seem

to provide complementary information that can be utilized to build profitable investment strategies.

More importantly, the inclusion of P(∆r ↗) to build portfolios can thus contribute to improve the

performances based on the other two criteria. For instance, as regards the contribution of P(∆r ↗)

to ∆̃p, the strategy which buys the portfolio (1-5) and sells (5-1) in Panel A of Table 6 can produce

an extra-performance of about 23%, much higher than the corresponding Top-Bottom one-way perfor-

mances of Table 5, while the strategy that goes long in (5-1) and short in (1-5) in the reverse sorting of

Panel B of Table 6 generates an extra-performance of about 23.5%, again much higher than the ones

provided by the one-way Top-Bottom strategies. In a similar way, profitable illustrative portfolios can

be constructed based on the combined information provided by P(∆r ↗) and ∆̃r. Notice in particular

how better results than those reported in the analog one-way strategies of Table 5 can be obtained by

strategies selecting those portfolios of Table 6 with performances statistically different from zero, for

which therefore a much clearer contribution emerge from the double sorting procedure.

Overall, these results support the use of these sources of information to provide investment signals

which more effectively select those stocks to be bought or sold depending not only on current gaps

compared to their peers (as approximated by observing ∆̃p or ∆̃r), but also on predicted deviations

of the corresponding market performances (as estimated here by P(∆r ↗)).

3.4 Extracting exposures to factor sources of risk

Findings of subsection 3.3 point to the presence of profitable investment opportunities based on in-

tegrated information provided by ∆̃p, ∆̃r and P(∆r ↗). In this subsection, we address this aspect

by focusing specifically on those pairs of portfolios that better provide indication for deviating or,

alternatively, converging market trajectories. This information is relevant for constructing profitable

investment strategies. In fact, at each trading day, practitioners may observe, for instance, a gap in

price levels of stock i with respect to its peers and may wonder whether this divergence is likely to

increase or decrease in the next days. From an operational perspective, this information is thus crucial

for distinguishing whether to buy or sell stock i. If the trader believes that this gap is still widening,

then he/she could be induced to buy stock i, while if he/she estimates that this gap has already

reached its maximum and will therefore reverse in the near future, then he/she could opt to sell stock

i. Basically, the trader may want to find a way to distinguish, therefore, between momentum and

short-term reversal effects once a price gap is observed for stock i, on the basis of which an opposite

signal of buy vs. sell should be provided.

Against this background, the double sort framework provides helpful indications for disentangling

such scenarios which we relate to the provision of investment signals based on the joint contribution

of ∆̃p and P(∆r ↗). Once again, we consider as illustrative portfolios those placed in the extremes

of the diagonals of the blocks reported in Panel A of Table 6 (left table). Hence, portfolio (5-1) is

interpreted as composed by stocks with large price gaps with respect to their peers and for which the

LSTM approach detects a strong contraction of the corresponding delta returns in the next trading
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day. For these stocks, the suggested investment signal is to sell, since a reversal is highly expected.

Conversely, traders should buy stocks belonging to portfolio (1-5). These stocks are, in fact, market

under-valued with respect to their peers, thus having very low price gaps, but are expected to show

a consistent appreciation in terms of returns compared to peers. Since these stocks are considered as

those more likely to get high market performances in the next trading day, then they should enter in

the strategy with a long position. Overall, the zero-cost investment strategy that goes long on portfolio

(1-5) and short on portfolio (5-1) should contribute to emphasize the impact of the short-term reversal

effect, since in so doing we sell those stocks that, besides having higher (absolute value of) gaps in

price levels, they are also highly expected to show a substantial reversal of their market behaviour in

the near future, while buying those stocks with opposite patterns.

In addition, we also consider the opposite scenario which, instead, favors momentum market dy-

namics. This is the case of portfolios placed in the extremes of the main diagonal of Panel A in Table 6

(left table). Portfolio (1-1) represents stocks with poor market performances compared to peers and

for which LSTM expectations confirm a depressing market trend for the next trading day. For these

stocks, the investment signal is therefore to be short. Conversely, traders could opt to buy stocks

in portfolio (5-5) since not only these stocks are performing better than their peers, but they are

expected to maintain such market dynamics in the near future. More generally, this indication refers

to a market momentum dynamics that we aim to capture by combining the information provided by

∆̃p and P(∆r ↗).

To investigate the market exposures of these competitive investment perspectives, Table 7 Panel A

shows the application of the 7-factor model to the aforementioned zero-cost investment strategies for

different investment horizons: 1 day (h = 1), 5 days (h = 5), and 10 days (h = 10). Notice how these

strategies are in general neutral to factor exposures with the exception of momentum (Mom) and

short-term reversal (ST Rev) effects, for which instead consistent and statistically significant effects

are observed. In particular, for the strategy involving portfolios (5-5) - (1-1) (referring to portfolios

reported in the left table of Panel A of Table 6) we observe a relevant role for the Mom factor, while

for the strategy investing in portfolios (1-5) - (5-1) the dominant effect refers to ST Rev, at least for

shorter investment horizons. These findings are thus coherent with our purpose to identify investment

strategies specifically devoted to extract such market dynamics by combining the joint information

from ∆̃p and P(∆r ↗). In particular, by referring to stocks in the extreme portfolios of the main

diagonal or the anti-diagonal we are basically isolating stronger signals with respect to market phases

related to momentum or short-term reversal, thus exploiting current and past information to better

identify those stocks that are more likely to persist in their market behaviour or those that instead

are highly expected to revert. Importantly, these effects are largely confirmed even in parsimonious

models restricted to only the momentum and short-term reversal factors (see Table 7 Panels B, C, D).

Finally, we observe that momentum and short-term reversal effects may coexist, which is a result

in line with the literature that already detected the interplay between momentum and reversal in

various trading settings (see, e.g., Bloomfield et al. 2009, Da et al. 2013, Cremers and Pareek 2014,

Zhu and Yung 2016, among others). Nevertheless, from Table 7 it is clear that each strategy is

capable to extract the targeted effect and that the corresponding magnitude overwhelms the other

factor exposures. A relevant exception seems to be the coefficient of ST Rev, strongly decreasing for

longer horizons as h = 10, thus suggesting a more decisive impact in the short-term for such factor.

However, different investment horizons seem to have only a marginal role, being the relevant exposures

substantially confirmed across model specifications.
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Table 7: Exposures to Factor Sources of Risk. Results of the factor regression models for the investment strategies referring
to portfolios (1-5) - (5-1) and (5-5) - (1-1) in the anti-diagonal and main diagonal of the left table of Panel A of Table 6, respectively.
The holding periods are h = 1, 5, 10 days. Newey-West t-statistics are reported in parenthesis. Panel A refers to the 7-factor model,
Panel B displays coefficients for a 2-factor model with respect to momentum and short-term reversal, while Panels C and D show
result for single factor models with respect to momentum and short-term reversal factor, respectively. Regression coefficients are
in percentage and refer to the period from January 2003 to June 2019. ∗p-value < 0.1; ∗∗p-value < 0.05; ∗∗∗p-value < 0.01.

anti-diagonal: (1-5) - (5-1) main diagonal: (5-5) - (1-1)

holding days h = 1 h = 5 h = 10 h = 1 h = 5 h = 10

Panel A

Intercept 0.09∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.02 -0.00 −0.02∗

(5.00) (4.32) (3.93) (1.09) (-0.26) (-1.86)

Mkt - Rf 4.02 0.65 0.39 -0.93 -0.48 -0.74
(1.31) (0.23) (0.17) (-0.34) (-0.22) (-0.33)

SMB 5.10 6.11 5.29∗ -1.77 -6.20∗∗ -4.15
(1.08) (1.38) (1.68) (-0.38) (-2.11) (-1.54)

HML 10.03 10.92 6.19 -7.34 -6.74 -3.12
(1.37) (1.36) (1.00) (-0.58) (-0.73) (-0.30)

RMW -6.05 -6.89 -9.11∗ -11.71 -1.63 -0.31
(-0.70) (-1.21) (-1.79) (-1.39) (-0.25) (-0.05)

CMA -1.26 3.63 4.73 -13.53 -5.26 -10.37
(-0.12) (0.43) (0.62) (-1.06) (-0.50) (-1.02)

Mom -28.49∗∗∗ -37.83∗∗∗ -41.04∗∗∗ 50.22∗∗∗ 48.86∗∗∗ 46.83∗∗∗

(-6.37) (-8.49) (-10.40) (10.61) (12.10) (13.24)

ST Rev 40.96∗∗∗ 39.78∗∗∗ 30.62∗∗∗ -16.69∗∗∗ -10.76∗∗ -4.45
(5.91) (7.82) (5.29) (-2.57) (-2.10) (-0.83)

adjusted-R2 0.16 0.36 0.36 0.16 0.30 0.31

Panel B

Intercept 0.09∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.02 -0.00 −0.02∗

(4.64) (4.22) (3.68) (0.97) (-0.34) (-1.92)

Mom −34.00∗∗∗ −42.60∗∗∗ −44.26∗∗∗ 52.06∗∗∗ 51.38∗∗∗ 48.24∗∗∗

(-4.67) (-5.94) (-7.16) (8.15) (7.95) (7.80)

ST Rev 43.18∗∗∗ 40.38∗∗∗ 31.16∗∗∗ −15.69∗∗∗ −10.68∗∗ -4.26
(5.40) (7.58) (5.73) (-2.65) (-2.24) (-0.88)

adjusted-R2 0.16 0.35 0.35 0.16 0.30 0.31

Panel C

Intercept 0.10∗∗∗ 0.07∗∗∗ 0.06∗∗∗ 0.01 -0.01 −0.02∗∗

(5.41) (4.84) (4.51) (0.72) (-0.64) (-2.17)

Mom −38.55∗∗∗ −46.85∗∗∗ −47.54∗∗∗ 53.71∗∗∗ 52.50∗∗∗ 48.68∗∗∗

(-6.60) (-6.39) (-9.39) (7.56) (8.23) (8.20)

adjusted-R2 0.08 0.23 0.27 0.15 0.29 0.31

Panel D

Intercept 0.09∗∗∗ 0.06∗∗∗ 0.04∗∗∗ 0.02 0.00 -0.02
(4.00) (3.15) (2.52) (1.08) (0.05) (-1.05)

ST Rev 47.87∗∗∗ 46.25∗∗∗ 37.27∗∗∗ −22.87∗∗ −17.77∗ -10.91
(4.86) (5.09) (3.80) (-2.09) (-1.65) (-1.08)

adjusted-R2 0.10 0.17 0.13 0.02 0.02 0.02

4 Robustness analysis

4.1 Transaction costs

Literature has investigated the profitability of reversal strategies net of transaction costs. For instance,

Jegadeesh (1990) documents profits of about 2% per month over the interval 1934-1987 for a reversal

strategy, buying and selling stocks on the basis of prior-month returns and with a monthly holding

period, which are not explainable by direct trading costs. By contrast, several empirical studies have

shown that profits from short-term reversal strategies are indistinguishable from zero or even negative

once transaction costs, such as commissions, short-selling fees, bid-ask spreads, and price impact costs,

are taken into account. Therefore, whether significant profits net of transaction costs are consistent

with the notion of reversal effects appears still questioned (see, e.g., Conrad et al. 1997, Avramov

et al. 2006, De Groot et al. 2012, Do and Faff 2012, Blitz et al. 2013 to name a few).
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The dynamics of net performances relates to the turnover of the assets held in the portfolio, which

can be consistent and deteriorate portfolio net results. Hence, in order to assess the impact of portfolio

rebalancing, we compute daily turnover at t for each stock as the daily weight difference between the

beginning of period weight at t and the end of period weight at t− 1, namely as the weight difference

due to an actual rebalancing, net with respect to market movements; the portfolio turnover is then

computed as the sum of stock turnover and it goes from 0 (no rebalancing) to 200% (complete sell of

stocks and buy of a new set of stocks). We find that, over the entire sample period, portfolio turnover

of P(∆r ↗) for h = 1 is consistent, reaching a value on average of 175% on a daily basis. This, in

turn, translates into negative net performances by assuming a typical level of trading costs equal to 5

basis points (see, e.g., Avellaneda and Lee 2010, Fischer and Krauss 2018). Similar levels of turnover

are reached also by signals provided by ∆̃r. By contrast, the average turnover of ∆̃p is only 17% on a

daily basis, thus portfolios based on this ranking criterion are much more able to contain the impact

of trading costs on their net performances.

In fact, like any long-short strategy, pairs-trading involves trading the same stocks twice, i.e.,

ideally when the initial divergence is detected and when a subsequent convergence is identified. This

means that two roundtrips of costs should be considered. To analyze the impact of trading costs on

the net performances of the Top-Bottom strategies, we thus provide in Figure 6 a scenario analysis

employing a grid of values ranging from zero to 10 basis point per half-turn operation. Hence, we

avoid to rely on a single arbitrary trading cost level, but we opt for a sufficiently large range of values

that reasonably represent breakeven transaction costs for several statistical arbitrage mean-reverting

strategies encompassing stocks belonging to the S&P 500 (Focardi et al., 2016). In particular, we refer

to such costs as those required to both buy and sell the Top side of the strategy or for closing the

Bottom position. Moreover, we take into account possible higher costs for the short selling initialization

of the Bottom position by assuming a multiplier factor reaching value 2, with steps equal to 0.25. We

assume, therefore, that short-selling can reach a level of costs double to that of buy/sell operations.

Finally, Figure 6 takes into account the role of portfolio turnover by considering investment horizons

h = 5, 10 days, for which therefore a lower portfolio rebalancing is required.

Figure 6: Top-Bottom Net Performance for Different Trading Costs. Returns (in percentage) of Top-Bottom decile

strategies defined using as sorting criteria ∆̃p, ∆̃r and P(∆r ↗). The holding periods are h = 5, 10 days. Trading costs are
0, 2, 4, 6, 8, 10 basis points. Short-sell costs are taken to be 1, 1.25, 1.5, 1.75, 2 times the buy/sell cost. Returns are annualized and
refer to the period from January 2003 to June 2019.
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Note how by enlarging the investment horizon to h = 5, 10 days, the Top-Bottom strategies based

on P(∆r ↗) (similarly to ∆̃r) can generate positive net performances if low values of trading costs are
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assumed, while regardless the investment horizon we confirm that the Top-Bottom strategies based

on ∆̃p are much less affected by costs thanks to low levels of portfolio rebalancing. Furthermore, our

findings for h = 5, 10 indicate that the turning point between positive and negative net performances

of Top-Bottom strategies based on P(∆r ↗) occur for trading costs around 4-6 basis points, hence

for values in line with the half-turn costs applied in several studies in pairs-trading research (see, e.g.,

Liu et al. 2017, Clegg and Krauss 2018, Stübinger et al. 2018, Stübinger and Endres 2018). From

an operational point of view, it seems that for the Top-Bottom strategies based on P(∆r ↗), an

investment horizon of about 5 days is therefore sufficient to limit portfolio rebalances and determine

positive net performances once reasonable trading costs are considered, while a longer investment

horizon confirms similar patterns but at lower yields (in absolute terms). More in general, it is worth

noticing that we present results that extend the original investment horizon h = 1 to slightly longer

periods h = 5, 10 as illustrative cases to show how by enlarging the investment horizon it is possible

to balance the accuracy of the model with the impact of operational costs.

4.2 Investment horizons

When working with holding period h longer than 1 day, following Jegadeesh and Titman (1993) and

Fischer and Krauss (2018) we perform the following procedure in order to avoid specific weekday

effects: we compute h overlapping portfolios with holding period h, each one starting in subsequent

days in the first 1, . . . , h investment days; we then compute daily returns for each of the h portfolios

and consider their daily average as the representative h-horizon portfolio.

For the three benchmark investing criteria ∆̃p, ∆̃r and P(∆r ↗), Table 8 reports statistically

and economically significant Top-Bottom strategies even for investment horizons equal to 5 or 10 days

(namely, h = 5, 10). In addition, the table supports previous findings discussed in subsection 3.1 about

the presence of almost monotonic patterns in the raw performances of decile portfolios.

Table 8: One-Way Sorts for Different Investment Horizons. Raw returns (in percentage) obtained by equally investing in

stocks composing decile portfolios defined using as sorting criteria ∆̃p, ∆̃r and P(∆r ↗). The holding periods are h = 5, 10 days.
Newey-West t-statistics are reported in parenthesis. Data are annualized and refer to the period from January 2003 to June 2019.

1 2 3 4 5 6 7 8 9 10 Top-Bottom

∆̃p; h = 5 20.84 15.62 12.54 11.61 14.57 12.16 13.50 12.51 9.57 7.77 12.31

(3.72) (3.17) (3.04) (2.90) (3.57) (3.27) (3.58) (3.41) (2.76) (2.24) (3.30)

∆̃p; h = 10 19.46 15.34 11.75 12.65 14.29 11.71 13.60 13.19 9.07 8.40 10.39

(3.57) (3.16) (2.86) (3.15) (3.54) (3.14) (3.67) (3.62) (2.59) (2.40) (2.93)

∆̃r; h = 5 19.75 16.60 14.24 14.09 12.95 13.90 11.46 10.70 10.16 8.99 9.82

(4.52) (3.87) (3.45) (3.58) (3.31) (3.44) (3.04) (2.92) (2.76) (2.44) (5.44)

∆̃r; h = 10 16.69 14.79 13.65 13.65 13.40 13.42 12.12 11.82 11.05 10.83 5.36

(3.98) (3.62) (3.41) (3.50) (3.43) (3.41) (3.18) (3.14) (2.87) (2.81) (4.57)

P(∆r ↗); h = 5 8.95 10.16 11.23 11.36 12.97 13.82 13.57 13.74 17.90 19.44 9.59

(2.38) (2.69) (3.06) (2.97) (3.42) (3.51) (3.48) (3.41) (4.31) (4.18) (5.22)

P(∆r ↗); h = 10 10.20 11.40 12.14 12.11 12.88 13.39 13.44 13.43 15.49 17.05 6.24

(2.65) (2.96) (3.21) (3.18) (3.31) (3.43) (3.41) (3.35) (3.83) (4.05) (4.87)

Subsection 4.1 indicates how widening the investment horizon limits the portfolio turnover costs

and enables positive net returns. Hence, there is a trade-off between the financial viability of these

investment strategies and the capacity of generating profitable investment opportunities. Such variants

for longer values of h thus make explicit the need for balance between the accuracy of the model, which

deteriorates once we move towards longer investment horizons, and the associated transaction costs

due to portfolio turnover, which instead are substantial in shorter investment horizons. Our findings

indicate that the proposed approach is not heavily affected by the choice of the investment horizons,
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with longer h confirming similar patterns but at lower yields, while slightly enlarging h appears

sufficient to limit portfolio rebalancing and facilitate the formation of positive net performances.

4.3 Different weighting scheme

As an alternative to the decile portfolio scheme described in subsection 3.1, we build portfolios with

a weighting linear in the pairs-trading indicator of interest. Namely, calling x the sorting variable, we

set the weight:

wit ∝ xit − x̄t, (11)

where x̄t stands for the cross-median of that indicator on day t. Effectively, we build a long/short

portfolio analogous in spirit to the decile Top-Bottom, but investing in all stocks available that day,

and with weights proportional to the variable of interest. As in subsection 3.1, we stick to a daily

investment horizon and we do not consider transaction costs.

Taking the case x = P (∆r ↗), the resulting portfolio has an annualized Sharpe ratio of 146.34%

and an annualized return of 12.58%, which can be compared to 122.74% and 18.32% of the decile Top-

Bottom portfolio discussed in subsection 3.1 (see Tables 2-3), respectively. Thus, the linear weighting

scheme has a lower annualized return but an even lower volatility, resulting in a higher Sharpe ratio.

The case x = ∆̃r, which is the one with performances in line with the indicator P(∆r ↗), when used

to build a linear weighting scheme10 results in a Sharpe ratio of 101.89% and an annualized return

of 13.18%, to be confronted with 117.21% and 18.96%, respectively. Thus, in this case, the linear

weighting scheme has a worse risk-adjusted performance with respect to the decile portfolio scheme.

This is true also for the other competing indicator: ∆̃p. These considerations do not impact the

results discussed insofar, and moreover seem to further indicate that the indicator P(∆r ↗) is better

in capturing useful information for pairs-trading portfolio investing.

4.4 The role of sectors

In order to investigate the role of sectors we compute the entropy of portfolios with respect to sectors.

Namely, indicating with sit the sector11 of stock i at time t, and with the sequence (s1
t , . . . , s

n
t ) the

collection of sectors at time t in the portfolio, we compute its normalized entropy as:

H(t) =
−∑S

α=1 pα(t) log2 pα(t)

log2 min(n, S)
; (12)

where S is the total number of possible sectors and pα(t) = #{sit = α}/n is the frequency of stocks

belonging to sector α in the portfolio at time t. Normalized entropy of a sequence measures the

concentration of that sequence with respect to a certain variable, in this case sector membership:

when all the stocks in the portfolio belong to the same sector then H(t) = 0, while when each stock

belongs to a different sector H(t) = 1.

Figure 7 shows the concentration of sectors in the Top-Bottom portfolios built with deciles of

P(∆r ↗): both the daily distribution and the (average) monthly evolution of the entropy suggest

a very small concentration both in the long and in the short part of the strategy, with the largest

contribution coming from H ∼ 0.8. Consider, for reference, that the median number of stocks in the

strategy (long or short) is 20 and that the median number of sectors represented in the portfolios is 13:

10Note that in this case, as for all other indicators except P(∆r ↗), one actually has wt ∝ −(xt − x̄t).
11We employ the NACE Rev.2 classification at level 2.
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Figure 7: Sector concentration. Distribution of sectorial daily entropy as by equation (12) for the Top-Bottom decile portfolio
with respect to the indicator P(∆r ↗). The time evolution of the monthly average of the entropy is displayed in the inset.
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this, by itself, indicates that the concentration cannot be too high. Moreover, the maximum possible

(normalized) entropy given n = 20 and a number of sectors equal to 13 is H = log2(13)/ log2(20) '
0.86. This corresponds to the case in which pα = 1/13, i.e. all represented sectors are equally likely,

without any source of concentration. Thus, sectors in the portfolios are, on average, only slightly

more concentrated than uniform probability. Hence, our proposed approach does not seem to be

confounded by any specific sectorial portfolio exposure, being able to spread the allocation evenly over

a sufficiently large number of sectors in both the long and short sides of the strategy.

4.5 A different LSTM framework

We also investigate a different LSTM framework whose output variable simply refers to the prediction

of an increase of stocks’ returns at t+1 without any cointegration peer group assignment. This scenario

is in line with the one proposed by Fischer and Krauss (2018) for predicting out-of-sample directional

market performances for the stocks composing the S&P 500. Hence, under this framework, we are

omitting the role of the cointegration filtering step. Table 9 shows that the Top-Bottom strategy is able

to generate a positive and sizeable result in terms of alpha performances and raw returns even once

adjusted for risk. However, these results are considerably lower than those generated by P(∆r ↗),

thus supporting the use of our proposed framework to exploit pairs-trading opportunities.

Table 9: Performance measures for P(rt+1 > 0). Different performance measures (in percentage) obtained by equally investing
in stocks composing decile portfolios defined using as sorting criteria P(rt+1 > 0). The measures reported by row are: the alphas
from a 5-factor and a 7-factor models, the raw returns, the Sharpe ratios (SR). The holding period is h = 1 day. Newey-West
t-statistics are reported in parenthesis. Data are annualized and refer to the period from January 2003 to June 2019.

1 2 3 4 5 6 7 8 9 10 Top-Bottom

annualized 5-factor α -3.26 -2.26 -0.43 2.50 2.47 3.99 3.76 6.13 8.03 11.78 15.55

(-1.31) (-1.26) (-0.27) (1.98) (2.18) (3.30) (3.29) (4.65) (5.14) (3.23) (3.17)

annualized 7-factor α -2.01 -1.27 0.07 3.01 2.79 4.02 3.51 5.43 7.09 9.95 12.21

(-0.83) (-0.69) (0.05) (2.44) (2.51) (3.48) (3.21) (4.22) (4.65) (2.93) (2.38)

raw returns 5.13 6.99 8.78 11.89 11.74 13.46 13.25 15.63 17.77 20.86 12.40

(1.59) (1.91) (2.06) (2.45) (3.11) (3.23) (3.55) (3.51) (3.94) (4.23) (3.27)

SR 18.92 30.90 42.06 59.99 62.10 71.08 70.23 82.16 89.55 83.69 68.31
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4.6 A comparison against other machine learning approaches

In this subsection we compare the predictions of our proposed LSTM framework against other common

machine learning approaches, namely the Logistic regression, the Gradient boosting machine and the

Feedforward Neural Network.

The crucial difference between models with temporal structure (such as RNN and thus LSTM

networks) and “standard” machine learning models lays in the fact that the former naturally deals

with time series data, while the latter do not. In order to summarize the temporal nature of the

inputs to be fed into standard machine learning methods, we employ the following strategy: we take

as predictors the same 3 variables as in the LSTM case, namely ∆r, returns and volumes, and we

compute an Exponentially Weighted Moving Average of each of them with 4 different time windows

in the past: 1 month, 2 months, 6 months, 1 year. This is done on a daily basis for the entire training

period of 3 years, resulting in approximately 750 - 240 training observations per stock, as in the LSTM

case. Finally, data are standardized as in the LSTM case.

Logistic regression is used as the simplest approach. An L1 regularization is included (LASSO),

with hyperparameter fixed by 10-fold cross-validation maximizing the Area Under the ROC. As in

Fischer and Krauss (2018), we use the Logistic regression to gauge the incremental contribution of a

much more complex approach such as the LSTM.

Gradient boosting machine generates predictions by means of an ensemble of weak prediction mod-

els, usually decision trees, as in random forests. Differently from random forests, Gradient boosting

machines train the ensemble of trees sequentially, each time fitting the new tree to the residuals of

the previous step. The number of trees and the interaction depth are chosen by 5-fold cross-validation

maximizing the Area Under the ROC: the average value of the optimal number of trees is 150, the

average value of interaction depth is 3. The minimum number of observations per node is instead

fixed at 10 and the value of shrinkage at 0.1.

Finally, we employ Feedforward Neural Network as a form of artificial neural network in which

inputs are processed irrespective of their (time) order. A Neural Network with at most 3 hidden layers

is employed, whose number of nodes per layer is fixed by 5-fold cross-validation maximizing the Area

Under the ROC, resulting on average in 13 nodes for layer 1, 10 in layer 2 and 9 in layer 3. In 6 out

of 17 years a 2-layer Network is chosen, while a 3-layer one results optimal for the other 11 cases.

Table 10 shows the market performances of decile portfolios selected on the basis of P(∆r ↗) com-

puted via these alternative machine learning approaches compared to those of the LSTM approach.

Interestingly, we observe that in general performances of Top-Bottom strategies are significant not only

economically but also statistically. However, the Top-Bottom strategies associated with the Logistic

regression presents weaker performances both in terms of raw returns and alphas, while on the con-

trary Gradient boosting machine and Feedforward Neural Network show very similar market results,

with Gradient boosting machine more able to generate valuable extra-performances. Although this

work is not intended to compare and select the most performing algorithm, still we can notice that the

Top-Bottom strategy based on LSTM reaches the highest levels of market performance with respect

to the other approaches, especially once we control for dynamic exposures to factors which represents

a pillar of our investigation strategy. Finally, by employing the Diebold and Mariano (2002)’s com-

parison test, we find strong supporting evidence for the H0 that the LSTM has superior forecasting

performances than the other alternative techniques (p-values ≈ 1): indeed, these 3 alternative machine

learning models reach very similar prediction performances of about 60% accuracy on average, to be

compared to ∼ 75% of LSTM. This comparison analysis seems to support the fact that choosing a

30



recurrent model, which is inherently suitable for time series data, allows to outperform very simple

statistical models, as the Logistic regression, as well as more refined machine learning techniques, such

as Feedforward Neural Networks, that could be employed for tasks similar to those that in this work

are performed by the LSTM.

Table 10: Comparison with other ML approaches. The table shows the performances of our proposed LSTM framework
along with those related to the Logistic regression, the Gradient Boosting Machine and the FeedForward Neural Network. The
holding period is h = 1 day. Newey-West t-statistics are reported in parenthesis. Data are annualized and refer to the period from
January 2003 to June 2019.

1 2 3 4 5 6 7 8 9 10 Top-Bottom

LSTM

raw returns 4.04 7.12 8.58 9.25 10.91 16.24 13.32 21.85 18.31 24.57 18.32
(1.27) (1.91) (2.24) (2.37) (2.83) (3.98) (3.31) (4.81) (4.04) (5.14) (4.98)

annualized 5-factor α -4.21 -1.39 -0.54 -0.20 1.48 6.49 3.64 11.70 8.19 14.25 19.27
(-1.90) (-0.69) (-0.28) (-0.12) (0.99) (3.39) (1.85) (5.59) (3.86) (6.00) (4.91)

annualized 7-factor α -3.31 -0.97 -0.68 0.17 1.39 6.33 3.50 11.71 7.76 13.67 17.55
(-1.39) (-0.49) (-0.35) (0.11) (0.91) (3.49) (1.81) (5.06) (3.78) (5.45) (4.45)

Logistic regression

raw returns 4.52 8.66 9.09 11.72 11.85 12.35 15.33 17.95 20.76 21.15 14.74
(1.34) (2.25) (2.34) (3.04) (3.27) (3.24) (4.06) (4.63) (4.93) (4.02) (4.09)

annualized 5-factor α -3.75 -0.45 0.13 2.58 2.41 2.75 5.62 8.04 10.56 11.16 15.49
(-1.40) (-0.24) (0.08) (1.71) (1.55) (1.71) (3.30) (4.76) (5.24) (4.05) (3.82)

annualized 7-factor α -1.78 0.65 0.86 2.86 2.57 2.64 5.32 7.41 9.50 8.95 10.93
(-0.68) (0.35) (0.53) (1.91) (1.73) (1.64) (3.06) (4.54) (4.69) (3.42) (2.76)

Gradient Boosting

raw returns 2.51 8.98 8.75 13.35 11.43 14.65 14.24 17.69 21.12 21.05 17.02
(1.05) (2.36) (2.23) (3.31) (3.13) (3.83) (3.38) (4.36) (4.66) (4.44) (5.11)

annualized 5-factor α -5.92 0.00 -0.14 3.89 2.20 4.70 4.36 7.64 10.86 11.66 18.68
(-2.67) (0.00) (-0.08) (2.55) (1.39) (2.88) (2.39) (4.29) (4.77) (4.62) (4.92)

annualized 7-factor α -4.46 1.45 1.14 4.71 2.51 4.52 3.90 6.74 9.00 9.58 14.70
(-1.96) (0.77) (0.65) (3.06) (1.46) (2.75) (2.17) (3.90) (4.11) (3.98) (4.00)

FeedForward NN

raw returns 2.67 8.66 10.25 11.41 12.79 16.11 14.45 18.56 17.30 21.31 17.10
(1.01) (2.31) (2.65) (2.94) (3.10) (4.11) (3.51) (4.39) (3.97) (4.54) (4.32)

annualized 5-factor α -5.61 -0.38 1.14 2.28 3.37 6.10 4.73 8.73 7.25 11.33 17.95
(-2.01) (-0.21) (0.67) (1.30) (1.77) (3.52) (2.51) (4.91) (3.78) (4.33) (3.99)

annualized 7-factor α -3.84 0.77 1.99 3.10 3.63 5.76 4.09 7.74 6.15 9.45 13.82
(-1.47) (0.42) (1.19) (1.84) (1.90) (3.39) (2.23) (4.52) (3.14) (3.95) (3.49)

5 Conclusions

Reversal effect consists in the fact that temporarily market deviations are likely to correct and finally

converge again. We investigate such effects through the lens of the detection of market anomalies.

Deep learning techniques have been widely applied to detect patterns in financial markets. Here, we

aim at investigating these complex non-linear relationships among financial time series by proposing a

Long Short-Term Memory (LSTM) network framework to study the market patterns of a large sample

of stocks and test its predictive performance within the context of pairs-trading strategies.

Pairs-trading opportunities are, in fact, perceived as deviations from the equilibrium due to market

reactions, which are temporary and will be timely corrected by reverting their market patterns. To

highlight the role of reversal effect, we also decide to rely on cointegrated stocks, thus focusing on

financial time series for which deviations from long-run patterns should be temporary until they

revert to the mean. Differently from typical machine learning applications, we do not propose to use

an LSTM framework to simply produce buy or sell signals. We exploit it to generate an outcome

representative of the likelihood of a stock to present in the near future an increase in its market return

with respect to its cointegrated group of peers. This aspect is crucial since we want to combine such

predictions from LSTM with common trading practices based on sorting stocks according to either

price or returns gaps. Hence, our proposed approach is not intended to design a more performing

indicator than those typically employed to construct pairs-trading strategies. The inclusion of the

outcomes of the LSTM aims to show in fact whether valuable signals extracted from financial time
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series contain information that can complement the one already embedded in price or returns gaps,

thereby generating even better portfolio performances once jointly combined. Our analysis shows that

pairs-trading strategies based on price or returns gaps can reach even better performances once the

probability of stocks future market deviations with respect to peers are included as an additional

criterion for constructing portfolios. We reveal, therefore, that the LSTM outcomes contribute to

provide predictive signals whose information content go above and beyond the one typically embedded

in both price and returns gaps. More specifically, we find that LSTM outcomes can be utilized to

practically guide the construction of strategies based on short-term reversal or momentum.

The deep learning approach we have here pursued still has many possible refinements and details

to be further analyzed, such as a more careful and systematic study of the hyperparameters (e.g.,

network architecture, temporal sequence length, optimization algorithm, among others), an analysis

of the temporal stability of the models (i.e., sensitivity to train and test window lengths), a calibration

of different models for different groups of stocks rather than one model for all stocks. Not to men-

tion the possibility of adopting a different deep learning framework, e.g. a Gradient Recurrent Unit

network (Cho et al., 2014), or even the more recent and promising Transformer approach to sequence

learning introduced by Vaswani et al. (2017) for Natural Language Processing with already several

applications to time series analysis even if not, to our knowledge, to financial time series. More in

general, although the capacity of our proposed approach to provide valuable signals is investigated

under different perspectives (e.g., variations in the investment horizons, impact of transaction costs,

sectorial compositions and portfolio weighting scheme), a detailed analysis of what patterns in past

time series data are leveraged by the model to produce informative signals on future returns would be

extremely useful to further investigate the nature of market anomalies in this setting.
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