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Abstract—Automated failure-cause identification in communi-
cation networks allows operators to reduce service unavailability.
Once the most likely failure root-cause is identified, appropriate
countermeasures can be effectively put in place (e.g., by choosing
an in-field intervention vs. a remote equipment reconfiguration).
In this paper, we describe a successful application of Machine
Learning (ML) for automatic failure identification in microwave
networks based on the real-field data. On microwave links, differ-
ent heterogeneous causes (e.g., adverse atmospheric conditions,
or obstacles) lead to service unavailability and produce not easily-
distinguishable degradation effects on the transmission parame-
ters. Hence, failure identification is traditionally accomplished by
domain experts via direct inspection of transmission-parameter
logs. As a first contribution, we identify six categories of failure
causes in microwave networks and show that supervised ML
enables very accurate failure identification, hence significantly
simplifying failure troubleshooting. Comparing various ML al-
gorithms, we find that up to 93% classification accuracy is
obtained using real-field labeled datasets with 2513 points. One
main hindrance to the application of supervised learning is that,
in real network deployments, limited amount of labeled data is
available for training, as manual labeling is performed by domain
experts based on their knowledge and experience. On the other
hand, collecting unlabeled data is relatively simple as network
management systems retrieve large amounts of unlabeled infor-
mation automatically. As a second contribution, we investigate
an automated labeling procedure, based on autoencoders-like
Artificial Neural Networks, to combine the knowledge of the few
manually-labeled data with large unlabeled data. Results show
that our data augmentation based on autoencoders can slightly
improve failure-cause identification only when Artificial Neural
Networks or Support Vector Machines are used, while accuracy
slightly decreases when adopting Random Forest.

Index Terms—Microwave Networks, Failure Identification,
Root-Cause Analysis, Machine Learning, Data Augmentation,
Semi-Supervised Learning.

I. INTRODUCTION

Machine Learning (ML) can be effectively applied for
automation of failure management in communication net-
works. ML potential has been already demonstrated in optical
networks [1], [2], however, little attention has been so far
devoted to application in the context of microwave radio
networks. Microwave networks represent a promising field
as free-space signal transmission is substantially affected by
unpredictable variations of the radio channel state, which can
occur over time and with different severity levels, resulting in
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radio link unavailability event whose causes are not easy to
discriminate. In this work, we concentrate on the identification
of failure causes (a.k.a. root-cause analysis) in microwave
networks using supervised and unsupervised ML learning
methodologies [3].

In general, in microwave networks, different failure causes
trigger different countermeasures from the network operator.
For example, common failures causes in microwave links can
be 1) a sudden increase in channel attenuation (e.g., due to at-
mospheric events or presence of physical obstacles), typically
causing only temporary link unavailability (no repair action is
triggered in this case), 2) misconfiguration/limited damage of
radio equipment, which leads to permanent link degradation
link (a reparation is required in this case), or 3) equipment
hardware failure which leads to severe degradation or total
link disruption (which requires in-field intervention for sub-
stitution). Nowadays, failure-cause identification is carried out
by human experts, who “manually” analyse and correlate the
behaviour of various link measures (e.g., transmitted/received
power values, modulation format, equipment alarms, etc.) and,
based on their experience, identify possible failure causes and
devise proper countermeasures to restore the service.

As this manual analysis is very time-consuming, it is
nowadays performed by domain experts in an offline manner
(e.g., once per day). To the best of our knowledge, nowadays
no automated failure-cause identification solution/models for
microwave networks exist. Therefore, ML is regarded as a
promising technique to automate failure-cause identification
and enable automated and fast root-cause analysis. The basic
underlying idea for ML application to failure identification
is that different causes produce different “signatures” on the
link transmission parameters, and that ML models can learn
this signature by observing historical data, and hence become
able to identify failure causes in future similar situations. To
this end, in this paper we design different ML algorithms to
perform automatic failure-cause identification in microwave
links by exploiting observation of link transmission parameters
at both sides of the link. The various ML algorithms are then
evaluated and compared in terms of classification accuracy and
training duration.

However, such approaches rely on the availability of signifi-
cant amounts of labeled data, i.e., they need to be trained using
several observations coming from microwave links (along
with their signature) affected by a failure and for which
a root-cause has been identified and “labeled”, typically by
a human expert. As manual labelling is costly and time
consuming, another possible direction is to make use of the
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large amount of unlabeled data typically collected by current
network management systems in microwave networks. To
make use of this unlabeled data, in this work we also propose
to use unsupervised learning to automate the labelling of failed
instances. Such unsupervised approaches are typically referred
to as data augmentation. The objective of this further analysis
is to understand in which conditions the automatic labeling
improves the performance of supervised ML algorithms for
failure identification.

We can summarize the contribution of this paper as follows:
1) we model the problem of failure-cause identification in
microwave networks as a ML classification problem; 2) we
propose a classification of main categories of failure causes;
3) we develop different supervised ML algorithms to perform
the failure-cause identification, and we numerically evaluate
them, using real-world data, in terms of classification accuracy
and algorithm complexity; 4) we propose a data augmentation
approach to perform automatic labeling of unlabeled data, and
evaluate the performance improvement provided by automatic-
labeling. Our numerical results show that satisfactory accuracy,
up to 93%, can be achieved even with a relatively limited
training data set of around 2000 data points.

The paper is organized as follows. In Sec. II relevant exist-
ing work is discussed. Sec. III provides background informa-
tion on microwave networks. Sec. IV discusses the proposed
categorization of failures in microwave networks. The super-
vised and semi-supervised failure identification problems are
formally defined in Sec. V. Data preprocessing procedures are
then presented in Sec. VI, whereas the supervised and semi-
supervised methodologies adopted in this paper are presented
in Sec. VII. Finally, we provide numerical results in Sec. VIII
and draw paper conclusion in Sec. IX.

II. RELATED WORK

In the last 20 years, failure management in communication
networks has been investigated in both academia and industry.
Similarly to our work, Refs. [4] and [5] are among the earliest
works focusing on failure root-causes analysis in radio net-
works. In Ref. [4] authors applied correlation techniques based
on causality graphs and associate failure root-causes to alarm
sequences. Similarly, Ref. [5] adopts artificial neural networks
to correlate the presence of different alarms in mobile network
equipment to an initial cause generating the alarms sequence.
Authors in [6] designed a framework for automatic anomaly
detection and cause identification in mobile networks, based on
observation of alarms and employing a decision process which
emulates the human reasoning. However, unlike our paper,
these works do not consider signal propagation phenomena
and direct observation of signal transmission parameters, such
as transmitted/received power values.

Although they are not directly focused on root-cause analy-
sis, other recent works have used statistical and ML techniques
for anomaly detection and prediction in radio networks, to
understand if/when a failure is occurring. For example, Ref. [7]
proposed a supervised learning approach to detect anomalies
and predict failures so as to quickly intervene and repair
any imminent microwave link failures. Decision trees have

been used in [8] to perform anomaly detection considering
synthetically generated data drawn from realistic microwave
network statistics. Moreover, Ref. [9] used supervised learning
to detect and localize failures in cellular networks, focusing on
the observation of end-to-end (i.e., application level) service
performance indicators. Ref. [10] proposed an anomaly de-
tection framework considering time-series for various perfor-
mance indexes and applying a regression algorithm in cellular
networks. Unlike our paper, these works do not focus on
the identification of the particular event leading to the failure
(i.e., they do not perform root-cause analysis), but concentrate
on a binary prediction to detect if a link will suffer an
anomaly or not. Moreover, although some of these works adopt
supervised techniques, they do not apply any semi-supervised
learning, i.e., they do not consider the possibility of leveraging
information from unlabeled data as we do in our study.

Semi-supervised and unsupervised approaches for failure
and anomaly detection in contexts with scarce labeled data
have been investigated in optical networks [11], [12]. In [11]
authors use single-class Support Vector Machines for anomaly
detection. This implementation is justified by the fact that
anomalies in optical networks are rare and so the algorithm is
trained with the N-centermost filter weights of samples where
the failures are not present. Ref. [12] proposes a density-
based unsupervised clustering algorithm to group and label the
points in possible classes, identifying the outliers as network
failures, and then the previously labeled data are used to
train a neural network to identify failures via binary clas-
sification. Furthermore, Ref. [13] focused on comparing the
performance of supervised, semi-supervised, and unsupervised
learning approaches for attacks detection and localization in
optical networks. Ref. [14] proposed an unsupervised learning
technique which detects malicious attacks at the optical layer
as anomalies without having prior knowledge of the signature
of the attacks and their effects. Similarly, Refs. [15], [16]
propose a hybrid unsupervised-supervised ML approach for
anomaly detection in optical networks without prior knowl-
edge of abnormal network behaviors. The approach is based
on utilizing unsupervised data clustering module that self-
learns abnormal network behaviors and detects anomalies, and
then on utilizing a supervised data regression and classification
modules based on deep neural networks.

To the best of our knowledge, no existing work has consid-
ered failure-cause identification in the specific context of mi-
crowave networks combining supervised and semi-supervised
approaches, i.e., leveraging information from both labeled and
unlabeled data to improve classification performance. Another
valuable aspect in our paper is that we use real data collected
from an operational microwave network consisting of more
than 10 thousand point-to-point microwave links observed for
a period of around 18 months. This manually-labeled dataset
is then used both to develop supervised ML classifiers and to
enable automatic labeling of an unlabeled dataset.

III. BACKGROUND ON MICROWAVE NETWORKS

A. Hardware Components
The basic structure of a microwave link with its building

blocks is shown in Fig.1. At both transmitter and receiver
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Fig. 1: Basic components of a microwave link.

sites, three main elements are present, i.e.:
1) Microwave radio is present at both Transmitter (Tx) and

Receiver (Rx) sides, where it generates (resp., demodu-
lates) the digital signal. At both sides, the microwave
radio can be placed at different locations, i.e., either
inside a building or shelter (full-indoor), in proximity
of the antenna (full-outdoor), or by adopting a hybrid
solution, called split-mount, where the electronic devices
are distributed between an outdoor unit (ODU) and
indoor unit (IDU).

2) Transmission line connects the microwave radio to the
directional antenna. It is typically implemented via
coaxial cables, suitable for frequency up to around 2
GHz, or waveguides, used for higher frequency up to
around 13 GHz (and, in some rare cases, up to 40 GHz).
Transmission lines are responsible for non-negligible
signal losses, depending on the signal frequency, and
may strongly affect the quality of transmission in case
of physical medium deterioration.

3) Directional antenna is usually parabolic-shaped and is
characterized by its, gain, size and directivity func-
tion, i.e., the capability of concentrating the transmit-
ted/received power to/from specific directions.

Note that microwave links usually work in a bidirectional
manner, i.e., at both ends, say site A and site B, of the
link transmitting and receiving equipment is present for the
communication in both directions A-to-B and B-to-A.

Microwave links are usually deployed with Adaptive Code
Modulation (ACM), i.e., links can be configured to operate at
different modulation formats, e.g., ranging from QPSK to 1024
QAM. Depending on channel quality, ACM enables automatic
configuration of modulation format, based on measurements of
the received power, signal-to-noise ratio (SNR), and BER.

B. Performance Metrics

The most common approach to monitor the performance of
microwave links is to evaluate the number of errored bits in a
certain time span. Consequently, link unavailability is defined
in terms of Unavailability Seconds, or UAS, which represent
the amount of time (expressed in seconds) when the number
of errors exceeds a certain threshold.

Link unavailability metrics are specified in ITU-T Recom-
mendations G.826 and G.828 [17], and include, among the
others, the following definitions.

• Errored Block (EB): a block (i.e., group of consecutive
bits) in which one or more bits are in error.

• Errored Second (ES): a one-second period with one or
more errored blocks.

• Severely Errored Second (SES): a one-second period
which contains 30% errored blocks.

Based on these definitions, one bidirectional microwave link
is considered as entering an unavailable state when at least
ten consecutive SES are observed in at least one of the two
directions A-to-B or B-to-A. Then, the link is considered again
available if, after the block of consecutive SES, for at least
ten consecutive one-second periods the link is not severely
affected by errors (i.e., these periods do not contain more than
30% errored blocks) in both directions. As an example, starting
at time t = 0s, if the link is characterized by 10 SES in
t = [0 ÷ 10)s, 5 non-SES in t = [10 ÷ 15)s, 2 SES in t =
[15÷17)s and 10 non-SES in t = [17÷27)s, the total amount
of seconds of unavailability, i.e., the total UAS, is equal to 17,
as the link enters the unavailability state at t = 0s and exits
the unavailability state at t = 17s.

IV. CATEGORIES OF FAILURES IN MICROWAVE LINKS

The availability of microwave links can be influenced by
various factors, as atmospheric factors (e.g., fog, rain, humid-
ity), temporary obstacles, or hardware failures. In this paper we
concentrate on ML-based failure-cause classification, in order
to automatically identify the root-cause phenomenon leading
to microwave links unavailability. Note that this operation
is carried on offline (e.g., once per day), based on data
collected by the management systems. Although different
countermeasures can be implemented, according to operator
needs, after failure cause has been identified, here we do not
focus on a specific failure handling architecture, which is not
in the scope of the paper, but evaluate how ML algorithms
perform in automatizing the failure-cause identification. As
a first preliminary step to build a ML-based classifier for
automated failure identification, in this section we propose a
categorization of six different failure causes1. For each cause,
different countermeasures are usually adopted to restore link
availability, as described in the following.

1) Deep Fading consists of a strong increase of channel
attenuation, and can be due to many factors such as, e.g.,
seasonality, geographical position or radio frequency in
use. It can be caused by the presence of new obstacles
(e.g., growth of vegetation) or adverse meteorological
phenomena, such as heavy rain, snow or fog, leading
to multipath and shadowing effects. To contrast deep
fading, normally, no physical intervention is required
on the radio equipment to restore link availability. In
particular, in microwave links with ACM, deep fading
is typically contrasted automatically by a temporary
reduction of the modulation format, or in cases when the

1Note that, although in real microwave links many causes can be simulta-
neously present and concur to a link failure, here we assume that failures (i.e.,
unavailability) on a given link is caused by one event at a time. Investigation
on correlations between different simultaneous causes on radio propagation
is left for future work.
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degradation is more persistent (e.g., due to the presence
of new stable obstacles), via re-designing the radio link
budget.

2) Extra Attenuation occurs when received power is well
below (e.g. 6 or more dB lower) the minimum power
threshold, even considering the lowest-order modulation
format in the link2. Extra attenuation is a persistent
effect, which cannot be contrasted in general through
ACM. It can be caused, e.g., by path obstruction (due to
the presence of permanent obstacles), antenna misalign-
ment, mounting/screwing issues, water infiltration into
waveguide used in the transmission line or damaged an-
tenna/coupler. To solve this problem, human intervention
is typically needed, either remotely or in field.

3) Interference occurs when other transmissions overlap at
the receiving antenna at the same frequency, so that the
multiple received bit streams are undistinguishable. The
interfering channels can be, e.g., unexpected reflections
from other links or frequency misconfigurations. Typi-
cally, interference does not change over time, so human
intervention is needed to solve it, e.g., by turning off the
interfering link or changing its carrier frequency.

4) Low Margin: we include in this class of failure causes
the cases when the link configuration parameters have
not been chosen adequately, i.e., they do correspond to
the ones recommended by the manufacturer. In such
cases, UAS events may occur although they could have
been avoided though a more accurate link configuration.
As an example, low margin may occur when ACM
is disabled, or when the minimum modulation format
configured on a link is not adequate (e.g., 16QAM is
configured as minimum allowed on a link, but QPSK
would be sufficient to guarantee a tolerable BER at the
receiver even under a degraded propagation scenario).
To address low margin failure types, remote human
intervention is typically needed, such as, e.g., adjustment
the lowest modulation formats allowed by ACM.

5) Self-Interference occurs when the link is operated in
full-duplex, and the transmission line, which is shared
between the two streams and connects the antenna to
two radio components, creates local signal reflections
and spurious signals which are propagated to the re-
ceiver radio component. Such failures can be caused
by the degradation of the hardware (e.g., amplifiers
and/or filters) used to eliminate signal reflections. It
causes sporadic/random UAS as well as link instability
(e.g. ACM switching, packet dropping) even though the
link is working at nominal received power level and
no fading event is occurring. In this case, human in-
field intervention is usually needed, e.g., to substitute
hardware components.

6) Hardware Failure: we include in this category all the
cases when link unavailability is not directly related
to evident propagation problems. Moreover, we include

2Note that, for a given modulation format, a corresponding minimum
received power threshold can be set to guarantee a predefined maximum BER
at the receiver.

here the cases when multiple causes are concurring to
produce link unavailability. This category includes both
permanent and temporary failures, for which a more ac-
curate troubleshooting is needed to identify the ultimate
failure cause and implement proper countermeasure. We
are currently investigating different features, such as the
alarms issued in radio equipment, and on how to relate
such features to different possible causes in this class.

V. FAILURE-CAUSE IDENTIFICATION: PROBLEM
DEFINITION

In this section we first describe problem inputs and outputs
and then provide formal problem definitions, and identify the
research questions addressed in this study.

A. Problem Inputs and Outputs

Our dataset is collected over a set of 10841 links of a real
microwave network. For both sites of each network link (i.e.,
site A and site B), several performance metrics have been
collected at fixed time-steps of 15 minutes via a network man-
agement system (NMS) developed by SIAE Microelettronica.
The overall data collection period spans between Nov. 26th
2017 and May 5th 2019.

For each microwave link in the dataset and for each 15-
minutes slot, the SIAE NMS collects 39 different measures,
which constitute the inputs of our problem and which we group
in the following categories:

• General link information (x1÷x7) include information
that uniquely identifies link, i.e., they include an identi-
fication number (ID-Link), the date and time when the
measures have been collected, the geographical location,
the network operator and the IP addresses used at the
transmitter/receiver equipment at the two sides of the link.

• Design information (x8 ÷ x17) relates to those parame-
ters that are set during the design phase; they include
the protection technique3 (x8), the lowest and highest
modulation formats configured in the link (x9 − x10),
a flag indicating if the ACM is enabled on the link (x11),
and the type of equipment used in the link (x12). Three
types of equipment are considered in our dataset, namely,
AlcPlus2e and two devices of SM-OS family, all provided
by SIAE Microelettronica [18]. We also include 5 other
metrics, namely, the nominal (i.e., expected) received and
transmitted power associated to the lowest modulation
format set in the link (x13 − x14), the nominal received
power associated to the highest modulation format which
can be used in the link (x15), the carrier frequency (x16)
and the bandwidth (x17) associated to the link.

• G.828 performance measures (x18 ÷ x20) include the
availability and error performance metrics described in
Sec. III-B, i.e., for each link and each 15-minutes slot
we include ES, SES and UAS.

• Propagation measures (x21 ÷ x29) include, for both
sides of the link, the minimum and maximum received

3Note that in our study we always consider unprotected links, i.e., 1+0
configurations
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and transmitted power values as measured along the 15-
minutes slot. Furthermore, the lowest modulation adopted
during the 15-minutes slot is also included.

• Quality flags (x30÷x32) are set by the NMS to indicate if
the measurements collected in the 15 minutes are reliable
or not (e.g., due to lack of communication between the
NMS and the equipment) and they refer to the G.828
performance measures (x18÷x20), the transmitted power
measures (x21 ÷ x24) and the received power measures
(x25÷x29), respectively. In other words, if flags x30÷x32
are set to 1, the management systems is informing if the
communication between the link equipment and the data
collection agent is alive, otherwise the flags are set equal
to 0.

• Other measures (x33÷x39). In this category, we include
measurements that are not related to the entire 15-
minutes slot, but represent instantaneous measurements
performed at the end of the slot. Specifically, x33 and
x34 are the SNR values at both sites of the link, x35 =
min{x33, x34}, x36 and x37 are the modulation formats
used in the two directions, x38 and x39 are the received
power values at both sites.

In Sec. VI we describe how we elaborate these 39 inputs
to obtain the features used as inputs to the ML failure
identification algorithms. In particular, to capture how these
characteristics vary over time, each data point in the dataset
is constituted by a 45-minutes window, i.e., three consecutive
slots of 15-minutes and all their collected metrics, where at
least one UAS event is present at the third 15-minutes slot4.
This filtering operation, applied on the entire dataset of 15-
minutes slot, has led an elaborated dataset consisting of around
10 millions 45-minutes windows in total. Out of these, a total
of 2513 45-minutes windows have been then manually labeled
by domain experts with a label representing one of the failure
causes described in Sec. IV. We identify the following labels
associated to the 45-minutes windows: y1: Deep Fading, y2:
Extra attenuation, y3: Interference, y4: Low margin, y5:
Self-interference, y6: Hardware failures. To give a rough
idea of the effort required for the manual data labeling, two
domain experts have spent around two weeks to label all the
2513 windows. In the following, we assume that all manually-
labeled windows are correct and provide the ground truth.

B. Problem Statement

In this paper we address two problems related to the
identification of failure causes in microwave networks.

Problem 1: Failure-cause identification (supervised ML).
We model this problem as a multi-class classification problem.
More specifically, given a 45-minutes window observation on
a microwave link where the 39 inputs (x1 ÷ x39) described
in Sec.V are available for each of the constituting 15-minutes
slots, and for which at least one UAS event is present at the
last 15-minutes slot (i.e., a failure event has been detected
and the link is considered unavailable, at least in this slot),

4Note that we do not consider windows where the last 15-minutes slot is
not characterized by UAS as such situation is representative of disappearing
degradation phenomena.

we estimate/identify the failure cause among those described
in Sec.V (y1 ÷ y6)5. In our numerical analysis we will use
different amount of labeled data taken from our complete
dataset, and select different existing ML classifiers for failure-
cause identification in order to address the following research
questions:
RQ1.1. Which is the most suitable ML algorithm in terms of
accuracy and time complexity?
RQ1.2. How much labeled data do we need to get acceptable
performance for each algorithm?

Problem 2: Data augmentation for failure-cause identi-
fication (semi-supervised learning).
In this case, our objective is to investigate how unlabeled data
can be effectively used to improve failure-cause identification.
To this end, we propose a procedure based on semi-supervised
learning, which we use to perform automatic data labeling
of massive amounts of unlabeled data. So, the automatically-
labeled data will be included in the training set of new ML
classifiers developed via a supervised-learning approach. More
formally, we are given a labeled dataset and an unlabeled
dataset. Both sets include 45-minutes windows where, for
each window, the 39 inputs (x1 ÷ x39) described in Sec.V
are available for each of the constituting 15-minutes slots, and
for which at least one UAS event is present at the last 15-
minutes slot. In the labeled dataset, each 45-minutes window
is assigned a label (i.e., a failure cause) chosen among the
causes (y1 ÷ y6). The output of this problem is an automatic
labeling procedure to decide the labels associated to the points
in the unlabeled dataset, and identifying their failure causes.
This way, we are able to develop new ML classifiers using
a much larger labeled dataset, constituted by the manually-
labeled dataset and automatically-labeled dataset. The goal of
the analysis is to address the following research questions:
RQ2.1. Does the automated labeling procedure provide an
improvement on the classification accuracy and for which ML
algorithm the improvement is most significant?
RQ2.2. How much data, labeled automatically, do we need to
improve the classification performance?

C. Supervised and Semi-Supervised Failure-Cause Identifica-
tion Framework

Fig. 2 shows the overall framework of the supervised and
semi-supervised ML approaches considered in this paper,
which are detailed in the next sections. For both frameworks,
Data Preprocessing is performed at first (see Sec. VI).

Then, considering different ML algorithms, we perform
model through k-fold cross-validation (explained in Sec. VII),
and evaluate ML algorithms performance in terms of accu-
racy and training duration. Note that, in the semi-supervised
learning case, before ML model selection, we perform Data
Augmentation, which consists of i) feature engineering and
ii) automatic labelling of unlabeled data (see Sec. VII-B).

5Note that our objective is to automate the failure cause classification,
which is typically addressed by domain experts in an offline manner in current
microwave networks.
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Fig. 2: Overall framework of the Supervised and Semi-
Supervised ML approaches

VI. DATA PREPROCESSING

Data used in this work is obtained from a real microwave
network. To transform the collected raw data in data suitable
for training of our ML algorithms, we must first perform
significant data preprocessing as described in the following.

A. Windows Formation

To capture the variation of links characteristics over time
and limit computational complexity, we consider 45-minutes
windows constituted by three consecutive slots of 15 minutes,
each featured by the inputs x1 ÷ x39 described above.

Each 45-minutes window in our dataset is characterized by
at least one UAS event in the last 15-minutes slot, as shown
with an example in Fig. 3, where we show a sequence of
15-minutes slots for one link along a 2.5 hours observation
period, and the corresponding 45-minutes windows included
in our dataset out of this overall time span. Assuming that
UAS events have occurred in two consecutive slots (i.e., 2:30-
2:45 and 2:45-3:00), two 45-minutes windows are formed, i.e.,
2:00-to-2:45 and 2:15-to-3:00. Note that, observing historical
data and thanks to the knowledge of domain experts, a 45-
minutes time span is deemed sufficient to capture temporal
dynamics of failure causes in microwave links, also in cases
when the 3rd slot is the only one affected by UAS (such as
the third 15-minutes slot in “Window 1” in Fig. 3).

B. Quality Flags Filtering

In some cases, data retrieved from the field can be in-
consistent, e.g., because the communication channel between
the NMS and the device performing the measurement is
temporarily interrupted. In these cases, the NMS cannot collect

02:00 02:15 02:30 02:45 03:00! !

Window 1

Window 2
time

HH:mm

HH:mm !
15-minutes interval starting at HH:mm not suffering any UAS

15-minutes interval starting at HH:mm suffering from UAS

Fig. 3: Example of 45-minutes windows related to a failure
(i.e., unavailability) event occurred on a link within a period
of 30 minutes.

any measurement, so one or more of the quality flags x30÷x32
described above, is set to 0 by the NMS when providing the
measurements. In our analysis, we consider only the windows
where data is consistent along the entire 45-minutes period.

C. Handling incomplete information

In real scenarios, data can be partially available, so it is
important to properly manipulate missing information to avoid
negative impact on the ML classifiers’ accuracy. Different
approaches can be used to handle incomplete datasets [19],
e.g., discard data points with partial information, provide an
estimation for the missing information, or enforcing static
numerical values.

In our case, due to its scarcity in the dataset, we completely
neglect input x29 indicating the lowest modulation adopted
during the 15-minutes slot. Concerning the values of minimum
and maximum received and transmitted power at both sides
of the microwave link (x21 ÷ x28), we enforce “out-of-
range” values in case of missing information, exploiting the
knowledge of the distributions of such metrics. Specifically,
considering that, for the equipment in our dataset, the received
and transmitted power values range between [-98,-28] dBm
and [-20,28] dBm, respectively, we force numerical values
of -150 dBm and 100 dBm for minimum/maximum received
and transmitted power, respectively. These values have been
chosen as they are numerical values (hence, they can be
handled by ML algorithms), but, since they are far enough
from the expected values, they still capture unequivocally the
difference with the cases when information is not missing.

D. Choice of Input ML Features

We consider data points as 45-minutes windows consisting
of three consecutive 15-minutes slots. However, for each 45-
minutes window, we do not consider all the 39 · 3 features
as inputs of the ML algorithms but define an overall set of
35 features by elaborating the 39 inputs x1 ÷ x39 for each
15-minutes slot constituting a window.

The features, described in Tab. I, include: (f1÷f5) the link
characteristics, which do not depend on the 15-minutes slots
and represent the design parameters of the links; (f6 ÷ f11)
the G.828 performance measures ES and SES for the three
15-minutes slots; (f12÷f35) the minimum/maximum received
and transmitted power values for each side of the link (i.e.,
site A and site B) and for each of the three 15-minutes slots.
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Tab. I: Features describing a 45-minute window of the radio link. Feature names with ‘*’ are measurement features with three
different values, one for each 15-minutes slot.

Type Feature Name Description

Link Characteristics f1 LowThr Minimum received power tolerated on the link with any modulation format used (dBm)6

f2 Ptx Nominal transmitted power when the minimum modulation format is used (dBm)
f3 Thr min Minimum received power threshold tolerated by the link with its current modulation format (dBm)
f4 RxNominal Nominal received power at the maximum modulation format (dBm)
f5 acmEngine A flag which indicates if the ACM is enabled on a given microwave link

G.828 metrics f6, f7, f8 ES* Number of one-second periods with at least one ES in the 15-minutes slot
f9, f10, f11 SES* Number of one-second periods with at least one SES in the 15-minutes slot

Power values f12, f13, f14 txMaxA* Maximum power transmitted from site A in in the 15-minutes slot (dBm)
f15, f16, f17 txminA* Minimum power transmitted from site A in the 15-minutes slot (dBm)
f18, f19, f20 rxmaxA* Maximum power received at site A in the 15-minutes slot (dBm)
f21, f22, f23 rxminA* Minimum power received from site A in the 15-minutes slot (dBm)
f24, f25, f26 txMaxB* Maximum power transmitted from site B in the 15-minutes slot (dBm)
f27, f28, f29 txminB* Minimum power transmitted from site B in the 15-minutes slot (dBm)
f30, f31, f32 rxmaxB* Maximum power received at site B in the 15-minutes slot (dBm)
f33, f34, f35 rxminB* Minimum power received from site B in the 15-minutes slot (dBm)

E. Features Normalization

A typical operation performed before training ML algo-
rithms is features normalization, and is useful to improve the
performance of the ML classifier as it makes the algorithm
less sensitive to scale of data, and allows to speed-up ML
algorithm convergence [20].

Formally, for each feature fi (i = 1, 2, ..., 35) we calculate
the mean f̄i and the standard deviation σi considering all the
data points in the dataset. Then, for each data point j ∈ X ,
characterized by features (f ji , i = 1, 2, ..., 35) we obtain the
the standardized features by updating their values as follows:

f ji ←
f ji − f̄i
σi

(1)

VII. SUPERVISED AND SEMI-SUPERVISED
FAILURE-CAUSE IDENTIFICATION

A. ML Algorithms

Failure-cause identification is finally performed using vari-
ous multi-class ML classifiers, each based on a different ML
algorithm, namely, Artificial Neural Network (ANN), Support
Vector Machine (SVM) and Random Forest (RF). Various
combinations of hyperparameters have been tested to obtain,
for each algorithm, the classifier with highest classification
accuracy.

Specifically, the combinations of hyperparameters which
have been evaluated are described in the following (see, e.g.,
[3] and the references therein).

• ANN: we consider multi-layer ANNs, where we tune
the number of hidden layers between 1 and 10 and
the number of neurons per layers in the set {10, 50,
100}, and vary the activation function used in each
neuron considering the {Identity, Sigmoidal, Tanh, Relu}
activation functions.

• SVM: for the slack variable, which drives the SVM mar-
gins between the various classes, we consider multiples of
5 in the range [5÷ 100]; moreover, we consider different
SVM kernels, chosen from the set {linear, polynomial,
radial basis function, sigmoid} and evaluate both One-
vs-One and One-vs-All strategies to define the optimum
multiclass SVM classifier.

• RF: we consider different number of trees, ranging be-
tween 10 and 250 with step of 10, and splitting criterion,
chosen between Gini Index and Cross-Entropy [3].

B. Data Augmentation for Failure-Cause Identification

As the amount of available labeled data is usually scarce,
due to time consuming and costly labeling operations, a second
objective of this paper is to evaluate the benefit of using
unlabeled data to augment the labeled dataset, and so to
improve failure classification performance. To this end, we
investigate a data augmentation methodology to automatically
label unlabeled data.

Note that a trivial way to perform automatic labeling could
be re-using the classifiers developed with manually-labeled
data. However, after testing this approach for all the classifiers
(i.e., based on ANN, SVM and RF) and using the original 35
features, we did not find any improvement in the classification
performance for all the ML algorithms evaluated. Therefore,
we resort to a more sophisticated data augmentation procedure,
consisting of two main steps, i.e., 1) features engineering,
and 2) automatic labeling of the unlabeled data, which are
described in detail in the following.

1) Features engineering: To perform automatic labeling of
the unlabeled data, i.e., of the 45-minutes windows k ∈ XU ,
we exploit the available manually-labeled data points, i.e., the
dataset [XL, YL], where each 45-minutes window j ∈ XL is
characterized by features (f ji , i = 1, 2, ..., 35) and is assigned
a label yj ∈ {1, 2, 3, 4, 5, 6}, corresponding to a failure cause
as described in Sec. IV.

However, to perform accurate automatic labelling, it is
important to find a proper features space, which captures
similarities between data points in XL and XU . To do so,
we test various features spaces by checking if they verify the
clustering assumption on the labeled dataset [XL, YL] [21].
For each features space, the clustering assumption is verified
if, by performing unsupervised clustering on dataset XL, we
obtain groups which are in accordance with labels YL.

To quantitatively evaluate the clustering assumption, we use
a numerical metric called Adjusted Rand Index (ARI) [22],
which is generically used to calculate the similarity between
two different partitions of the same dataset. More specifically,
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ARI is a real number ranging between -1 and 1, where values
close to 1 correspond to high similarity, i.e., they indicate
that, in the two partitions, two given points are more likely
to be grouped in the same cluster. In our problem, the first
partition P1 is provided with labels as it is taken from the
know manually-labeled dataset [XL, YL], which contains 6
groups identified by labels y1÷y6. The second partition P2 is
a clustering on the set XL, performed considering the features
space F under test. Our objective is to find the features space
F = F∗ such that the ARI(P1,P2) is maximized.

As preliminary approach, we considered the basic features
space F = {f1 ÷ f35}, but found values of ARI close to 0.3,
which was not satisfactory.

Moreover, we also tried simple features engineering
adding linear combinations of the original features (fi, i =
1, 2, ..., 35) described in Sec. VI. We evaluated several fea-
tures spaces, where, besides the original features (fi, i =
1, 2, ..., 35), we included around fifty linear combinations of
these features, obtained by leveraging on SIAE experience and
background knowledge on microwave networks, such as the
difference between the nominal received power RxNominal
and the minimum received power at sites A and B7. How-
ever, such simple features engineering approaches, based on
adding linear combinations of original feature, did not give
satisfactory results in terms of ARI, which was well below
0.5 for all the tested cases.

Therefore, a more sophisticated features engineering is pro-
posed in this paper, which leverages the power of ANNs with
particular symmetrical structures, namely, the Autoencoders.

Autoencoders are often used to perform dimensionality
reduction and find compressed representation of the data, that
can be used both for help the classification task and to execute
data visualization procedure. The structure of an autoencoder
is symmetric and composed by three main elements, i.e.: 1) the
encoder is constituted by the ANN input layer (say of size F )
and the initial set of hidden layers, and it is used to compress
the data, i.e., to reduce the number of raw features (F = 35
in our case) into a smaller number D < F ; 2) the bottleneck
layer, which is the intermediate hidden layer constituted by
D nodes where the D coded features are collected and which
will represent the new features space in our problem; and 3)
the decoder, that is symmetric with respect to the encoder,
is constituted by the remaining hidden layers and the output
layer in the ANN, where the number of output neurons is
equal to the number of input neurons F . The goal of the
decoder is to recompute the input data starting from the
encoded features provided by the encoder. When autoencoders
are used in unsupervised learning problems, they are trained
by considering, for each training point j with features f ji
(i = 1, ..., F ) fictitious labels of type yji = f ji (i = 1, ..., F )
for all neurons at the output layer. Therefore, the final goal of
autoencoders is to provide a new set of encoded features vector
Φ = {ϕ1, ..., ϕD} at the bottleneck layer. These D features
are non-linear (i.e., encoded) combinations of the original
raw features, and can be used to reconstruct an approximated

7For sake of conciseness, we do not list all the linear combinations of
features included in this evaluation as they did not provide significantly good
results in terms of ARI.

Encoder Classifier

Input Data Coded Features Classes

f1
f2
f3
.
.
.
.
f35

y1
y2
y3
y4
y5
y6

Φ = {φ1,…, φD}

Fig. 4: Example of autoencoder structure used in the feature
engineering phase.

New autoencoder structure:

Train autoencoder
(Input = XL , Output = YL)

Perform clustering on XL with features 
space Φ and enforcing 6 clusters

Calculate ARI(Φ)=ARI (P1, P2)
If ARI(Φ)>maxARI then maxARI=ARI(Φ)

Coded features
Φ = {φ1,…, φD}

Input: 
Labeled dataset XL, YL (Partition P1 = YL)

maxARI = -1

Partition P2 = clusters from XL

nr. of hidden neurons/layers 
nr. of encoded features D

Output: features vector Φ corresponding to maxARI

Change 
Autoencoder

structure

Fig. 5: Flow-chart of the features engineering used to obtain
features space Φ with maximum ARI.

representation of the input data through the decoder part of
the autoencoder.

Inspired by autoencoders abilities and leveraging the knowl-
edge provided by the available labels for data points in the
labeled set [XL, YL], we consider a slightly modified approach,
where the final output layer is characterized by 6 output
neurons (instead of 35), representing the classes, i.e., the
labels, of the 6 failure causes (see Fig. 4). Then, after finding
the best autoencoder structure (i.e., the one characterized by a
number of layers, number of neurons in each layer, number of
neurons in the bottleneck layer providing the highest ARI), the
obtained autoencoder is trained using the 45-minutes labeled
windows in set [XL, YL].

The steps adopted to perform the ARI-maximized search of
features space Φ are summarized in the flow-chart in Fig. 5.
Note that the features engineering process using autoencoders
might be helpful also in the baseline supervised case. To this
end, we have compared the three ML algorithms described
above when we use or do not use features engineering (through
autoencoders) to transform the features space. We obtained
very negligible accuracy differences, with only some small
gains for ANN and SVM algorithms. Due to space limitations,
we do not show this analysis in the paper.

2) Automatic labeling of unlabeled data: After obtaining
the best-performing features space F∗ and applying features
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normalization to it, we perform an automatic labeling of
unlabeled points in XU , based on the following two different
approaches:

• K-Nearest Neighbours (KNN). All the unlabeled points
are assigned a label in this case; for a given point j ∈ XU ,
its label y(j) is assigned considering considering the K
nearest points k1, k2, ..., kK ∈ XL, based on euclidean
distance and considering the normalized features space
F∗. For each of these K nearest points, the labels are
weighted according to its distance from point j, so the
label is assigned according to formula:

y(j) = argmaxi

K∑
l=1

1/d(j, kl) · 1y(kl)=i, (2)

∀j ∈ XU , i = 1, ..., 6

where d(j, kl) is the euclidean distance between data
points j ∈ XU and kl ∈ XL considering the normalized
features space as defined by the autoencoder structure,
and 1condition is equal to 1 if condition == TRUE.

• Gaussian Processes. in this case, we assume that the
points in each class are normally-distributed. To assign
a label to an unlabeled point j ∈ XU , for each class
i = 0, ..., 5, the model provides in output a probability
that point j belongs to class i, say P{j|i}. Then, we
assign to point j label yi such that

y(j) = yi s.t. yi = argmaxiP{j|i}, (3)

∀j ∈ XU , i = 1, ..., 6

Note that, when adopting the Gaussian-process-based
labeling, we define a confidence threshold ρ to assign
labels, and include in the automatically labeled dataset
only the points for which the highest probability provided
in eq. 3 is higher than this threshold.

VIII. NUMERICAL RESULTS

In this section we perform numerical evaluation of the
supervised and semi-supervised failure identification. First,
we provide details on the datasets used for our analysis.
Then, considering only the manually-labeled dataset [XL, YL],
we compare the performance of the different ML algorithms
(ANN, SVM and RF), in terms of classification accuracy and
training duration. Finally, we perform the same comparison
considering also data augmentation, i.e., after adding to the
ground truth dataset the automatically labeled data [XU , YU ].

Our experiments have been conducted on a PC with Intel
Core i7-6700 processor, 32 GB RAM and 402.5 GB HDD, and
ML algorithms have been implemented using Python libraries
(sklearn, pandas, tensorflow and keras).

A. Datasets

The manually-labeled dataset [XL, YL] consists of 2513 data
points (i.e., 45-minutes windows with at least one UAS event
in the last 15-minutes slot) in total. Labels are distributed
among the 6 classes as shown in Tab. II. A severe unbal-
ance between some classes can be observed, due to the fact

Tab. II: Distribution of data points in manually-labeled dataset
[XL, YL] over failure classes.

Failure Cause # of 45-minutes windows

y1 - Deep Fading 284
y2 - Extra Attenuation 581
y3 - Interference 49
y4 - Low Margin 190
y5 - Self-Interference 187
y6 - Hardware Failure 1222

Tab. III: ML algorithms and selected hyperparameters.

ML algorithm Parameter Value

ANN Number of Hidden Layers 5
Number of Nodes per Layer 100
Activation Function Relu

SVM Slack Variable 85
Kernel Radial Basis Function
Decision Function One-Vs-One

RF Number of Trees 70
Cost Function Cross-entropy

that some failure causes, such as, e.g., interference, are less
frequent.

For data augmentation, we use a set of unlabeled data
collected in the entire period between Nov. 26th 2017 and May
5th 2019. This dataset, which is referred to as [XU , YU ] in the
following, consists of a total of 10500 45-minutes unlabeled
windows, still characterized by having at least one UAS event
at the third 15-minutes slot in the 45-minutes window.

B. Supervised ML Algorithms

First we compare ANN, SVM and RF ML algorithms in
terms of classification accuracy and training duration, using
only the manually-labeled dataset [XL, YL]. The objective is
to identify which algorithm is the most suitable to perform
failure-cause identification.

We define a fixed 80%-20% training-test partition and, for
each ML algorithm, we perform model selection by applying
10-fold cross-validation on the training set only. More specif-
ically, for each algorithm, we identify the best combination
of hyperparameters as the one having the highest average
accuracy on the 10 folds of the training set, where each time
the training is performed on 9 folds (i.e., 90% of the training
set) and the validation on the remaining fold (i.e., 10% of
the training set). Thus, repeating this procedure for all the
combinations of hyperparameters and for all the 10 folds used
as validation set one at a time, we obtain the best combination
of hyperparameters for each algorithm as shown in Tab. III.

After model selection is completed for each algorithm, the
obtained models (i.e., the ML classifiers with the hyperpa-
rameters selected as in Tab. III) are retrained on the entire
training set, i.e., the 80% of the manually-labeled dataset
[XL, YL], and the accuracy for each algorithm is evaluated
on the independent fixed test set, constituted by the remaining
20% of dataset [XL, YL].

Note that the performance obtained with this procedure are
influenced by the initial 80%-20% split between training and
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Fig. 6: Failure identification results for the different ML
algorithms: cross-validation accuracy and training duration.

test set. So, to provide more generalized results, an “outer”
cross-validation might be applied by varying the training-test
split and repeating this procedure several times.

Numerical results are shown in Fig. 6 in terms of classi-
fication accuracy and training duration. The results show a
supremacy of RF in both the accuracy and the computational
time. In particular, RF provides more than 3% higher accuracy
compared to SVM and ANN, and negligible training duration,
especially if compared to ANN. On the other hand, ANN
provides around 1% higher accuracy compared to SVM, but
a much longer training time, about 7 times higher. The low
training time provided by RF can be explained considering that
the different trees used in the algorithm are independent, so
their training can be parallelized and, consequently, the com-
putational time decreases drastically. Moreover, regarding the
highest performance obtained by RF in terms of classification
accuracy in comparison to the ANN and SVM, the motivation
resides on the fact that RF classification is performed with a
similar “human” reasoning as the one adopted when perform-
ing data labeling, e.g., based on the observation of windows
features and “if-then-else” classification.

To see classifiers behaviour in identifying the different
failure causes, we show in Tab. IV the confusion matrix of
the best RF classifier (i.e., the one with the hyperparameters
leading to the highest average accuracy across all the 10 folds
used during cross-validation8) used on the independent test set
with 503 data points, corresponding to 20% of the manually-
labeled dataset [XL, YL]. In the table, we also show the F1-
score for each class, which shows that for some failure causes,
e.g., y5 (Self-Interference) and y6 (Hardware Failure), better
performance are obtained compared to other causes. This
demonstrates that these causes are discriminated more easily
with respect to the others, whereas in some cases, e.g., for the
Low Margin class (y4), additional information might be needed
to improve the failure-cause identification performance.

C. Semi-Supervised Algorithms: Impact of Automatically-
Labeled Data

Now we concentrate on data augmentation and on the
benefits provided on classification accuracy when leveraging
the knowledge of the manually-labeled dataset [XL, YL] to per-
form automatic labeling of unlabeled points XU using different

8Note that we similar outcomes can be drawn considering RF classifiers
with other hyperparameters set.

Tab. IV: Confusion matrix and per-class F1-score obtained for
the RF classifier with highest cross-validation accuracy.

Predicted Label

y1 y2 y3 y4 y5 y6

y1 50 2 0 4 0 1
y2 5 106 0 5 0 0

True y3 0 0 8 1 1 0
Label y4 5 2 0 31 0 0

y5 0 0 0 0 36 1
y6 0 6 0 1 0 238

F1-score 0.85 0.91 0.89 0.78 0.97 0.98

[XL,YL] [XL,train,YL,train]

[XL,test,YL,test]

50%

50%

[XU]

[XU,YU]

Data augmentation
(semi-supervised)

ML algorithms
training (supervised)

Manually-labeled
dataset

Automatically-labeled
dataset

Unlabeled
dataset

Ground 
truth

Performance 
evaluation with 

trained ML models

Fig. 7: Datasets usage in the semi-supervised use case.

labelling approaches. After this procedure, we can evaluate the
performance of the various ML algorithms using a new train-
ing set [XL+U , YL+U ], where XL+U = XL ∪ XU , YL+U =
YL∪YU and where labels YU have been obtained via automatic
labeling as described in Sec. VII-B. To show the high-level dif-
ference between the various automatic labeling approaches, we
consider a fixed ground-truth test set, [XL,test, YL,test], which
is obtained by randomly choosing 50% of the data points in
the manually-labeled dataset [XL, YL] (i.e., XL,test ⊆ XL

and YL,test ⊆ YL), constituted by a total of 1257 45-minutes
windows. The remaining part, say [XL,train, YL,train], where
XL,train = XL \XL,test and YL,train = YL \ YL,test, is used
to perform data augmentation (i.e., features transformation
and automatic labeling as described in Sec. VII-B). Note that
the split between [XL,train, YL,train] and [XL,test, YL,test] is
performed by maintaining the classes proportion as in Tab. II.
The usage of the various datasets is summarized in Fig. 7.

In Tab. V, we show how the data points in [XL,test, YL,test]
are distributed between the 6 considered failure causes after
applying the automatic labeling procedure. We compare the
three different automatic labeling procedures, i.e., KNN, GP-
60 and GP-90, where the last two approaches correspond to
the case of Gaussian-process-based automatic labeling with
confidence level set to ρ = 60% and ρ = 90%, respectively.

As observed in Tab. V, all the 1257 points in XL,test are
assigned a label in the KNN case, as KNN enforces labels to
each unlabeled point by weighting the labels of its K nearest
neighbours according to eq. 2. It can be observed also that
the percentual distribution of data points obtained with KNN
resembles approximately the one of the points in the entire
labeled dataset [XL, YL]. This is motivated by the fact that
the autoencoders (and therefore, the encoded features vector
Φ) used to perform the automatic labeling has been chosen
with the objective of maximizing ARI.

On the other hand, in the GP-60 and especially GP-90 cases,
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Tab. V: Distribution of data points in automatically-labeled
dataset [XL,test, YL,test] over failure classes for the different
automatic labeling procedures (KNN, GP-60 and GP-90).

Failure Cause KNN GP-60 GP-90

y1 - Deep Fading 140 121 0
y2 - Extra Attenuation 302 293 259
y3 - Interference 27 10 0
y4 - Low Margin 105 89 0
y5 - Self-Interference 95 91 0
y6 - Hardware Failure 588 580 550

Total 1257 1184 809

compared to the KNN case, a lower amount of data can be
labeled with a predefined confidence level. However, for some
classes, such as y2 and y6, still a significant amount of data can
be included, even in the GP-90 case. This demonstrates that,
for the considered features space obtained after applying the
features transformation through the best autoencoder obtained
for each scenario, these classes are still highly compact and
so the transformed features space is helpful in performing
reasonable automatic labeling to augment the original dataset
with high number of data points.

Now we evaluate how the three data augmentation scenar-
ios, i.e., KNN, GP-60 and GP-90, impact on the performance
of the ANN, SVM and RF classifiers. Note that, as we want
to evaluate how the classification accuracy varies with the
number of available manually-labeled windows, we consider
the following three cases: A) 100% XL,train, B) 75% XL,train

and C) 50% XL,train, where we assume to have as a starting
point 100%, 75% or 50% of the data in the training set
[XL,train, YL,train]. In the 75% and 50% cases, data points
are always selected by maintaining classes proportions as in
Tab. II. Also, we repeat the procedure with 3 different random
sampling in both the 75% and 50% cases and provide averaged
accuracy results9. For each scenario, aiming at obtaining
a features set F which maximizes ARI, we tested several
autoencoders structures by considering different combinations
of hyperparameters, i.e., we vary the number of hidden layers
in the range [3, 9], the number of hidden neurons per layer in
the range [18, 1000] and the number of nodes in the bottleneck
layer (i.e., the number of encoded features D) in the range
[1, 17]. Moreover, as activation function used in the hidden
and output layers, we consider only hyperbolic tangent10.

In Fig. 8(a) we show classification accuracy of the Baseline
scenario with supervised dataset only and with original fea-
tures f1÷f35 as in Tab. I11. Moreover, we show how the clas-
sification accuracy changes when the three data-augmentation
scenarios are applied:
- GP-90: automatic labeling with GP-90 and encoded features
(Fig. 8b),

9Note that, in any case, no significant difference has been observed by
considering the different random sampling, as well as considering the different
XL,train-XL,test splitting.

10Note that, for each considered scenario, a different combination of
hyperparameters can be obtained as the best autoencoder. Here we report
results where, in each case, the specific best autoencoder is adopted.

11Note that results in Fig. 8(a) and 6 are similar, but they are not directly
comparable as they refer to different test sets.

- GP-60: automatic labelling with GP-60 and encoded features
(Fig. 8c), and
- KNN: automatic labelling with KNN and encoded features
(Fig. 8d).

Observing Fig. 8, we note that the best accuracy values are
obtained when adopting RF and considering only the labeled
dataset [XL,train, YL,train] and using the original 35 features
as in Tab. I, i.e., for the RF case shown in Fig. 8a. This
result is obtained independently of the amount of labeled data
used, and it reaches around 92.9%, 91.8% and 90.9% for the
cases of 100% XL,train, 75% XL,train and 50% XL,train,
respectively. Comparing the cases with different amount of
training points (i.e., 100% XL,train vs 75% XL,train vs 50%
XL,train), as expected, accuracy improves for all the ML
algorithms with increasing amount of manually-labeled points.

Figs. 8b-to-d show the benefits/disadvantages of the dif-
ferent data augmentation scenarios (i.e., GP-90 vs GP-60 vs
KNN) with respect to the case when only the manually-labeled
points are used, increasing the number of automatically-
labeled points. We observe that data augmentation does not
always provide improvement in classification accuracy, espe-
cially for the RF case, when automatic labeling using encoded
features always provides a deterioration of accuracy. The
reason RF accuracy decreases is that, while autoencoders used
to perform data augmentation transform the inputs of the
classifiers into a “hidden” (i.e., “encoded”) features space, RF-
based classification is more similar to a “human” reasoning,
where the outputs (i.e., the failure causes) are decided upon
observation of real physical parameters, as the features f1÷f35
used to perform manual labeling. This aspect is exacerbated
for smaller training sets (e.g., for the case 50% XL,train),
when the number of automatically-labeled samples becomes
prominent compared to the amount of data labeled manually).

On the other hand, some improvement can be observed for
SVM and ANN cases. Specifically, for ANN, when using
100% of the training set (i.e., in the 100% XL,train case),
the GP-60 case provides around 1% accuracy improvement
with respect to GP-90, and the KNN case provides up to
1.2% improvement. Similarly, for the SVM case, the GP-60
case provides around 0.7% improvement with respect to GP-
90 case, which is comparable to the improvement provided
with KNN-based automatic labeling. Overall, concerning ANN
and SVM algorithms, there is at least one data augmentation
scenario for which classification accuracy can be improved
with respect to the case when only the manually-labeled
dataset is used.

IX. CONCLUSION

We designed different ML-based classification algorithms to
automate failure-cause identification in microwave networks.
ML algorithms are trained with real data collected from a
set of 10841 microwave links during a period of around
18 months. Considering a labeled dataset of 2513 points,
representing periods of 45 minutes when microwave links are
unavailable with the associated failure cause, we compare the
performance of different ML algorithms, i.e., ANN, SVM and
RF, in terms of classification accuracy and training duration.
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Fig. 8: (a) Classification accuracy for different ML algorithms and training set sizes (Baseline scenario with training set only
and non-encoded features f1 ÷ f35). (b)-(c)-(d) Accuracy variation for the three data augmentation scenarios and encoded
features Φ.

For all tested algorithms, satisfactory accuracy is obtained,
reaching 93% when using RF, with limited training duration,
which is in the order of few seconds for ANN and below
1 second for SVM and especially RF. Moreover, based on
F1-score metric evaluated for RF classifier, we found that
some failure causes, such as Self-Interference and Hardware
Failures, are discriminated more easily with respect to the
others, whereas in some cases, i.e., Low Margin, additional
information might be needed to improve the failure-cause
identification performance.

Furthermore, to make use of a large amount of addi-
tional unlabeled data, we also investigated 1) semi-supervised
data augmentation based on autoencoders, which are used
to identify a proper features space, and 2) how to auto-
mate the labeling of unlabeled data by adopting KNN and
Gaussian Processes algorithms. We did not find significant
accuracy improvement through data augmentation. In general,
the performance improvement obtained using unlabeled data
is limited or negligible, and it depends on the specific ML
algorithm adopted for failure identification.
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