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Abstract—The dynamic frame Aloha protocol has been shown

to reach efficiency e−1 when the number N of tags to be identified
is known and approaches infinity. Results available in literature
do not achieve efficiency e−1 for large N when N is unknown.
In this paper we analytically show that the best tag estimation
procedure let the protocol reach efficiency e−1. However, the
convergence to this result shows an oscillatory behavior that on
average goes like 1/ lnN . The oscillation can be reduced at will
at the expenses of the convergence speed. A practical algorithm
is proposed for achieving the claimed efficiency and numerical
simulations are shown to validate the results.

I. INTRODUCTION

Dynamic Frame Aloha (DFA) is a collision resolution

protocol proposed in 1983 [1] for satellite multiple access, and

rediscovered some time ago for radio-frequency identification

(RFID) [2], [3]. DFA is a popular topic among researchers,

as it is testified by the very many publications over decades

up to nowadays. Many papers refer to variations in the

basic algorithm and protocol in order to improve the effi-

ciency. Others study the performance taking into account new

physical capabilities, such as receiver capture, or limitations,

e.g., energy. However, referring to the basic protocol as it

is standardized, in spite of the many works about its best

configuration and performance, many basic issues remain to

be investigated.

In RFID, DFA is used to identify an unknown number of

tags N , that potentially can be very large, and in order to min-

imize the average identification time L(N) some parameters

must be optimized. Crucial to the performance, that varies with

N , is the continuous estimation, during the entire process, of

the number of tags yet to be identified. A number of estimators

have been produced in the past, see for example, [1], [4]–[11];

interesting comparisons are given in [10], [11]. The attained

results are rarely comparable because of different settings, and

are somehow limited, most of them referring to a restricted

range of N , or frame length, in some cases looking for some

simple practical backlog estimators; their performance have

been evaluated often by simulations, with the exception of

[12], [13], and in few cases by a numerical evaluation of some

model [14].

Although applications that relate to some large N are

possible, only few works [12], [13], [15] have considered the

asymptotic behavior of DFA. Asymptotic conditions provide a

well defined case study, allowing the comparison of different

alternatives; it also gives away with the initial frame-setting

problem, since their influence on L(N) becomes negligible.

The limit case in which a perfect estimate is used has

been thoroughly and analytically investigated in [15], proving

an asymptotic efficiency of e−1. However, other important

theoretical issues, such as the best estimation procedure and

whether or not the DFA performance can reach the theoretical

maximum, remain unanswered.

In this paper we continue the attempt to provide asymp-

totic answers, here investigating the best estimation process,

showing that it can be split into two phases with two different

estimates, for each of which we produce the best estimator.

The former is the asymptotic Maximum Likelihood Estimator

of the population size N , and the latter is proven to be the sim-

ple and long established Schoute’s estimate [1]. Furthermore,

we prove that such estimators are consistent and allow DFA

to reach asymptotic efficiency e−1, although with an overhead

whose weight that decreases as 1/ lnN . Finally, we show that

our results can be extended to finite values of N , and that, at

least for N ≥ 1000, the efficiency of DFA, though less than

its asymptotic value, is still the best possible.

The paper is organized as follows. Some basics on DFA,

background, and problems, together with explanations on our

approach, are given in Sec. II. In Sec. III we analyze the

problem of estimating the initial population size N , while in

Sec. IV we prove the results about the efficiency of the entire

protocol. Conclusions are given in Sec. V

II. BACKGROUND

In brief, DFA operates as follows: an initial number N of

users, also called tags, reply to a reader interrogation on a

slotted time axis where slots are grouped into frames of length

ri, where i is the index of the frame; a tag is allowed to

transmit only one packet per frame in a randomly chosen slot.

In the first frame all tags transmit, but only a part of them

avoid collisions with other transmissions and get through. The

remaining number of tags ni, often referred to as the backlog,

re-transmit in the following frames until all of them succeed.

Although the standard allows stopping the exploration of

the frame at any slot, and restart a new frame, in this paper

we limit ourself to the basic version of DFA in which the

Frame Restart is not allowed.

Outcomes of slots, i.e., successfully used, not used, or

collided, are continuously observed to derive an estimate of

the backlog, n̂i, which is used to set the length ri of the next

frame until all tags have been identified. The problem arisesISBN 978-3-903176-18-8 c©2019 IFIP



to get at each frame a suitable estimate n̂i, and to determine

the most favorable ri.
From the protocol point of view, the goal is to minimize

the average number of slots L(N) needed to identify N tags,

which depends on N and the way in which the length of the

subsequent frames is assigned. In the following, we refer to the

efficiency N/L(N), a more convenient performance figure.

The optimal frame setting and performance of DSA when

N is known have been thoroughly investigated in [15]. There

we have shown that the optimum frame setting is ri = ni at

all frames, providing an efficiency that asymptotically reaches

e−1, an often recurring figure in S-Aloha.

When N is an unknown parameter, as usually assumed

in DFA, three problems arises that affect the efficiency of

the protocol, namely the backlog estimate n̂i, the optimal

setting of frame lengths once n̂i is known, and the setting

of the initial frame length r0, since at the beginning of the

procedure no clues can be obtained on N . All the three issues

are of paramount importance in determining the efficiency of

Frame Aloha; however, up to now, none of them have been

satisfactorily investigated together.

Many of works have appeared in the literature, [4]–[11],

[14], deal with the first two problems. Results are rarely

comparable because of different settings such as r0, or a

restricted range of N , or limitations on the frame length ri. No

one has satisfactorily addressed the problem of conveniently

setting r0, especially when N can vary from zero to a large

unknown value, in which case r0 can not be se to large values

to avoid affecting the cases with low N . Again, no one has

explicitly and satisfactorily addressed the case where in the

first frames we observe all collisions, and how to produce

the very first estimate of the population size. Furthermore,

only few investigations have been produced on asymptotic

performance [12], [13], and a systematic approach that could

predict, for example, whether the protocol can reach e−1

efficiency, is missing.

Here we focus on a very large N and a small r0, that we

set to r0 = 1 since asymptotically its value has no impact

on the performance. With such assumptions, in the first frame

we observe all collided slots; since this observation brings

no clues on the value of N , we must increase the length

ri of the subsequent frames with some predetermined law,

until a frame appears where the slots are not all collided. At

this point an estimate of N can be drawn, the frame length

can be properly set, and the procedure enters the subsequent

phase in the best possible conditions. Thus, the protocol can

be seen as composed of two parts, the convergence phase,

where an estimate of N is derived, and the solution phase,

where tags are identified starting with a suitable frame length.

If the estimate of N is perfect, as it happens with a consistent

estimator when N → ∞, in the solution phase we can set

ri = ni, exactly as with known N , and tags are identified

with efficiency e−1. The overall efficiency is then dictated by

how the lengths of the two phases compare.

With finite, but large N , the estimate N̂ derived in the

convergence phase presents some approximation, and the

solution-phase efficiency can be improved by using an estimate

drawn by subsequent observations. Then, we set ri = n̂i,

in accordance to the best setting when N is known [15], a

good practice if n̂i presents a small estimation error and ni is

large, as it should be the case with an unbiased and consistent

estimate when N is large. The two-phases modeling clearly

shows that we are allowed two different estimators that can

be optimized separately, an observation entirely new.

III. ANALYSIS OF THE CONVERGENCE PHASE

A. Asymptotic Behavior

In the following we assume that in the convergence phase

the frame size is increased with a geometric law of parameter

h, so that at step i the frame length is ri = round(hi), for

i = 0, 1, · · · . As ri increases some non-collisions, i.e., empty

or successful slots, begin to appear, say at frame U , and, at this

point, an estimate N̂ can be provided. From here the solution

phase begins, where, starting at frame U + 1, the estimate N̂
is continuously updated until all tags are identified.

Next we show that the observation drawn at frame U
becomes more and more relevant as N increases, providing

sufficient information for inferring the exact value N in the

limit N →∞.

We start by evaluating the distribution of RV U , the first

frame index at which a non-collision is observed. Let denote

by Xi the number of non-collided slots in frame i. The

probability that U coincides with frame i, PU (i) = P(U = i),
is given by

PU (i) = P(Xi > 0, Xi−1 = 0, Xi−2 = 0, . . . , X0 = 0). (1)

The frame length at frame i is ri = round(hi) ≈ hi and

the average traffic is γi = N/ round(hi) ≈ N/hi. In the

approaching phase the traffic γi is very large, and successes

and empties are rare events, allowing us to adopt Poisson as

their distribution; therefore, (1) can be approximated to

PU (i) ≈
(
1−
(
1−e−γi(1+γi)

)ri)
i−1∏

j=0

(
1−e−γj(1+γj)

)rj
.

(2)

In the Appendix the following Lemma is proved:

Lemma 1. As N →∞ the function of γ

f(γ) =
(
1− e−γ − γe−γ

)N/γ
(3)

tends to a unit step function centered in γ = lnN , and such

that f(lnN) = e−1.

Denoted by π(γ) the function in the right-hand side (rhs)

of (2) considered as function of γi = γ, we have

Lemma 2. As N →∞ function π(γ) in (2) becomes

π(γ) =





1− e−1 γ = lnN/h

1 lnN/h < γ < lnN

e−1 γ = lnN

0 elsewhere

(4)



Proof. The proof is straightforward since, by Lemma 1, the

first term in the rhs of (2) tends to a γ-reversed unit step

centered in γ = lnN , while terms of the remaining product

can be written as f(γhi−j), each of them converging to a

unit step centered in γ = lnN/hi−j , so that the product itself

converges to a unit step centered in γ = lnN/h.

We are now in the position to find the asymptotic behavior

of PU for large N . Starting from r0 = 1 at frame i = 0 and

increasing the frame size as hi leads to a sequence {γi =
N/hi}, or {γi = hν−i}, if we use the exponential notation

N = hν . Then we have the following theorem specifying the

distribution of U , the number of the first not all collided frame:

Theorem 1. As hν = N →∞ the probability law PU presents

a unit mass in U = u where u is the only index such that

ν − ln(βν)/β < u < ν − ln(βν)/β + 1 (5)

being β = lnh.

Proof. The index frame u is such that γu lies within the

support of π(γ) in (4), that is,

lnN/h < γu < lnN, (6)

or, using the exponential notation, and β = lnh,

νβ/h < hν−u < νβ.

Taking the logarithm we get

ln(βν)/β − 1 < ν − u < ln(βν)/β, (7)

which can be rewritten as in (5). Since the span of the range

in (5) is less than one, while u must be an integer, there is

only one u obeying (5).

A possible exception seems to be the case where γu
coincides with the upper extreme lnN . In this case N belongs

to the set {N∗

u} solutions of equation

N∗

u = ru lnN
∗

u . (8)

However, this scenario is not possible since ru must be integer,

while the solutions {N∗

u} are irrational.

Figure 1 shows the values of u, as function of the popu-

lation size exponent ν. This figure is purely qualitative, as it

represents what happens in the limit ν → ∞. The value u
increases as a staircase function, between the two envelopes

that represent the bounds in (5): these bounds are parallel

straight lines in the limit, thus showing that u increases at

regular steps in ν.

Next we give an alternative interpretation of (5) by first

fixing the value of N and then finding the boundaries on N
that determine the change of frame index u.

Let us multiply the terms in (6) by ru, thus getting the

inequality

ru lnN/h < N < ru lnN.

Making N coincide with the lower and the upper extremes,

and exploiting (8), shows that the boundaries of N can be

expressed as in the following
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Figure 1. The staircase curve represents the values of u, assumed to be
integer, as function of the population size exponent ν and h = 2, together
with the dash curves representing their extremes and the straight line ν = u.
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Figure 2. Behavior of the traffic γ versus the population size N , for different
values of h = {1.5, 2, 3}.

Corollary 1. The range of N that provides the same frame

index u is given by

N∗

u−1 < N < N∗

u . (9)

As a function of N , the steps of u in Fig. 1 occur at values

{N∗

u} defined in (9), or at values ν∗u = logh N
∗

u . When N is

within the interval [N∗

u−1, N
∗

u ], the traffic γu increases linearly

in N . When N is the closest integer to N∗

u−1 the traffic is

the closest value to N∗

u−1/ru = (lnN∗

u−1)/h; When N is

the closest integer to N∗

u the traffic is the closest value to

N∗

u/ru = lnN∗

u . When the upper extreme N∗

u is surpassed,

the traffic suddenly drops to N∗

u/ru+1, due to the increment

in u, and then starts increasing again. Therefore we have

Corollary 2. As N increases the behavior of traffic γu(N)
follows an increasing sawtooth behavior with extremes, in



each period, given by

(lnN∗

u−1)/h < γu < lnN∗

u . (10)

Figure 2 shows the behavior of traffic γu as function of the

population size N for h = {1.5, 2, 3}. Discontinuities arise

at values N∗

u . Again, the figure is purely qualitative, as it

represents what happens in the limit N →∞. In any case, it

shows that higher values of h cause larger oscillations in γ,

denoting that low h are more precise in determining the range

of γ, i.e., the range of N .

B. Finite N

When N is a finite number, the distribution of U changes

with respect to what is described in Th. 1, and U can also

assume values in the surroundings of u. Since we are dealing

with large N , in the sequel we assume that the distribution of

U takes values only in {u, u±1}. Then, the step function f(γ)
becomes less sharp, and the function π(γ) alters its form with

respect to the rectangle (4) and becomes more similar to what

is shown in Fig. 3; in particular, the breadth of π(γ) exceeds

one in logarithmic units, but it is still less than two. This means

that, now, up to two elements of sequence {γi = N/hi},
depending on the actual value of N , can lie in the support of

π(γ); one, the element of index u, lies within the rectangle,

while the other, the element of index u− 1 (or u+1), lies to

the left (or to the right) of the rectangle. Their probabilities

are, in fact, proportional to the height of the curve. When N is

such that γu lies in the center of the rectangle, its probability

is PU (u) ≈ 1; however, when N is close to the upper extreme

N∗

u , and γu approaches the upper extreme of the rectangle, the

probability of the term to the left with smaller traffic, which

corresponds to PU (u + 1), i.e., a larger r, rises so that the

distribution becomes bivariate. When N is close to the lower

extreme N∗

u−1, and γu approaches the lower extreme of the

rectangle, PU (u − 1) rises so that the distribution becomes

bivariate again. Therefore, when N increases, the distribution

of U changes periodically from a distribution with only one

probability mass to a distribution with two probability masses.

The curve describing the average E {U} versus N becomes

a staircase function with smoothed steps, and the standard

deviation of U oscillates periodically as shown in Fig. 4. Here,

we observe that for h = {2, 3}, N is large enough to show

values of N where U has zero variance. These values are

those in the middle of range (9), N ≈ (N∗

u + N∗

u−1)/2,

which make γu lie at the center of rectangle (4) in Fig. 3,

where the distribution of U has a unit mass; on the other

side, when N ≈ N∗

u the variance is maximum because the

distribution of U is bivariate. Focusing on h = {2, 3}, Fig. 3

also show that for values N ≈ N∗

u , with traffic at the extremes

of the rectangle, the bivariate distribution of N assumes values

in u and u ± 1 with probability ≈ 0.5, which gives, in

fact, standard deviation ≈ 0.5. As N approaches infinite the

bivariate distribution only appears in intervals around the N∗

u’s

that shrink as N increases until they vanish in the limit.

Therefore, the standard deviation is greater than zero in such

shrinking intervals, but its peak is still ≈ 0.5.
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Figure 3. Shape of function π(γ) of (2) for different values of the population
size N = hν and h = 2.
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The traffic γu, shown in Fig. 2, at finite N becomes the RV

γU whose average behavior changes to a smoother periodical

shape, as shown in Fig. 5.

We now present some properties of the RVs represented

by the number of successes Si and empty slots Ei in frame

U = i. In the Appendix we prove the following Lemma:

Lemma 3.

E {Si} =
Ne−γi

1− f(γi)
, i ≥ 0. (11)

Furthermore, E {Si} is a decreasing function of N , and as

N →∞ we have

1 < E {Su} < (N∗

u−1)
(1−1/h) (12)
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Figure 5. Behavior of the average traffic E {Γ} versus the population size
N , in the case h = {1.5, 2, 3}.

where the extremes are approached when N approaches the

extremes N∗

u and N∗

u−1. The following also holds:

Var {Si} ≤ E {Si} , i ≥ 0. (13)

We note that, as N increases within the interval [N∗

i−1, N
∗

i ]
and γi increases, E {Si} decreases, presenting again a saw-

tooth behavior as N changes, the same as γi, though inverted.

Turning to the frequency of successes Si/ri, by Lemma 3,

we have

E

{
Si

ri

}
=

γie
−γi

1− f(γi)
, i ≥ 0 (14)

and:

Theorem 2. As N →∞ we have the following convergences

in probability for i ≥ 0

Si

ri
→

γie
−γi

1− f(γi)
→ 0,

Ei

ri
→

e−γi

1− f(γi)
→ 0 (15)

Proof: By Lemma 3 we have

Var

{
Si

ri

}
=

Var {Si}

r2i
≤

E {Si}

r2i
≤

1

ri
→ 0 (16)

which proves the convergence to (14). Convergence of Ei/ri
can be proved in a similar way.

C. Consistent Estimates

Here we derive an estimate N̂ of the population size N ,

based on the observations that refer to frame U , namely U = i,
Si and Ei. In order to simplify the notation, hereafter we omit

the index i.

Theorem 3. For large N the ML estimate of the population

size N , N̂ML, is the solution of the following equation

S + E

r
=
N̂ML

r
e−N̂ML/r, (17)

and is consistent; that is, as N → ∞ we have the following

convergence in probability

N̂ML → N →∞. (18)

Furthermore, for finite N , N̂ML is biased, underestimating N .

Proof: The likelihood of N , or equivalently of the traffic

γ = N/r, given the outcome in frame U = i is

L(γ|U = i, S=a,E=b) ∝ P(S=a,E=b, U= i|γ). (19)

When N is very large S, E, and C, the latter representing

the number of collided slots in frame i, follow a Poisson

distribution of average respectively equal to rps, rpe and rpc,

where r = hi, ps = γe−γ , pe = e−γ , and pc = 1−e−γ−γe−γ.

Using the shorthand notation

∏
=

i−1∏

j=0

(1− e−γhi−j

− γhi−je−γhi−j

)r/h
i−j

, (20)

(19) reads as

L(γ|i, a, b) ∝
(rps)

a

a!
e−rps

(rpe)
b

b!
e−rpe

(rpc)
c

c!
e−rpc

∏

= pas pbe pcc
rre−r

a! b! c!

∏
∝ pas pbe pcc

∏

= γae−(a+b)γ(1− e−γ − γe−γ)r−a−b
∏

,

(21)

where c = r − a− b. Using the approximations

(1− e−γ − γe−γ)r−a−b ≈ e−(r−a−b)(e−γ+γe−γ), (22)

(1− e−γhi−j

− γhi−je−γhi−j

)r/h
i−j

≈ e−r/hi−j(e−γhi−j
+γhi−je−γhi−j

), (23)

valid for γ ≫ 1, the log-likelihood of γ is

lnL(γ|i, a, b) ∝ −γ(a+ b)− (r − a− b)(e−γ + γe−γ)

+ a ln γ −
i−1∑

j=0

r

hi−j
(e−γhi−j

+ γhi−je−γhi−j

). (24)

The derivative of the log-likelihood with respect to γ is

d

dγ
lnL(γ) ∝

a

γ
− (a+ b) + (r − a− b)γe−γ

+

i−1∑

j=0

rhi−jγe−γhi−j

.

The largest term of the summation is rhγe−γh which, for a

large N that implies a large γ, becomes negligible for h > 1,

so that we can disregard the whole summation. Furthermore,

we can also disregard the first term a/γ and write

d

dγ
lnL(γ) ∝≈ −(a+ b) + (r − a− b)γe−γ . (25)

Equalling the above expression to zero yields the equation:

a+ b

r − a− b
=
N̂

r
e−N̂/r,
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which provides (17) because r ≫ a+ b.
Taking the average of (17) conditional to U = i, and

disregarding E with respect to S, we get for all i ≥ 0

N/r e−N/r

1− f(N/r)
= E

{
N̂ML

r
e−N̂ML/r

}
. (26)

The small value of the second derivative of the function xe−x

for large x allows writing

E

{
N̂ML/r e

−N̂ML/r
}
≈ E

{
N̂ML/r

}
eE{−N̂ML/r}, (27)

so that from (26) we can derive the following inequality

N/re−N/r ≤ E

{
N̂ML/r

}
eE{−N̂ML/r}, (28)

which implies N ≥ N̂ML, i.e., that N̂ML underestimates N .

However, if we let N →∞ in (17), by Th. 2 we can replace

S/r with its asymptotic value γe−γ and, still disregarding

E/r, (17) converges (in probability) to

N/r e−N/r = N̂ML/re
−N̂ML/r, (29)

that is, N̂ML = N , which proves (18).

D. Practical considerations

The results of Th. 3 show that for large, or infinite, values of

N , N̂ML is virtually optimum; However, we must investigate

its validity for moderately large values of N , such as N =
1000, more common in practice. Specifically, equation (17)

might suggest that RV fluctuations in the LHS could cause too

large fluctuations in the traffic estimate Γ̂ML since the average

values expected for γ = N/r start from γ ≈ 4 for N ≥
1000. This is not so, as exemplified in Fig. 6, that shows the

average and the standard deviation of the fractional estimation

error, i.e., (N̂ − N)/N , for different values of N , attained

by simulating 10000 procedures for each N , and adopting

h = {1.5, 2, 3}. The average value starts from about 10% at

N = 1000 and decreases, as expected, as N increases. The

standard deviation presents a similar behavior. Figure 6 also

confirms that N̂ML underestimates N .

The oscillations of average and standard deviations are

similar to those already observed, e.g., in Fig. 5. The vari-

ance reaches the smallest values in correspondence of values

N ≈ N∗

u . In fact, as shown by Lemma 3, in those points Su

reaches its minimum variance, actually zero, so that the entire

variance of N̂ is only due to rU .

The effect of this error, and its bias, is negligible with

respect to the performance of the whole protocol.

IV. FRAME ALOHA EFFICIENCY

A. Asymptotic Behavior

Given the estimate N̂U,ML of the previous section, the

estimate of the backlog at the beginning of frame U + 1 is

given by n̂U+1 = N̂ − SU .

Therefore, disregarding SU with respect to N , the average

length of the solution phase is such that

lim
N→∞

L′′

N
= e. (30)

As for the convergence phase, the number of slots up to

frame i where the first non-collisions are observed, is given

by

L′ =

∞∑

i=0

PU (i)

i∑

j=0

rj =

∞∑

i=0

PU (i)

i∑

j=0

hj

=
∞∑

i=0

PU (i)
hi+1 − 1

h− 1
≈

h

h− 1
E {rU} . (31)

In the limit we have E {rU} → ru, so that

L′

N
→

h

h− 1

ru
N
→ 0, h > 1, (32)

where the convergence to zero is proven by inequality (10).

Therefore, in the limit, the overhead of the convergence phase

length is zero and the overall efficiency,

η(N) = 1/(L′/N + L′′/N), (33)

becomes, by (30) and (32), e−1.

B. Convergence Behavior

In Sec. III-D we have seen that, at the end of the con-

vergence phase, the estimate presents an oscillating behavior,

depending on the value of N , that affects the average length

of phase itself and the overall efficiency.

As N increases, term L′/N (32) oscillates because ru/N
oscillates. This term decreases on the average as 1/ lnN , and

reaches zero asymptotically. To investigate term L′′/N , we

need more details.

After the (U + 1)−th frame the backlog is

nU+2 = (N − SU )(1 − e−(N−SU)/rU+1). (34)

Therefore, the average length of the solution phase is

L′′ = E {rU+1 + e · nU+2}

= E

{
N̂ − SU + e(N − SU )(1− e−(N−SU )/(N̂−SU ))

}
,
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Figure 7. Protocol efficiency η(N) versus the initial number of tags N for
h = {1.5, 2, 3}. Simulated results are reported for h = 2.

which provides

L′′

N
= E

{
N̂

N
−

SU

N
+ e(1−

SU

N
)(1− e

−
N(1−SU/N)

N̂(1−Su/N̂) )

}

≈ E

{
N̂/N − SU/N + e(1− SU/N)(1− e−1)

}
. (35)

Term (35) converges to e, as seen in (30), because of the

consistency of N̂ and Theorem 2:

plim
N→∞

SU

N
= 0. (36)

In (35), both terms E

{
N̂/N

}
and E {SU/N} oscillates

with the same period and phase as the first term, but with

an amplitude by far smaller than the former, which decreases

due to (18) and (36).

As an example, the plot of (33), derived using (31) and (35),

for N in the range 103 < N < 106 and h = {1.5, 2, 3} is

shown in Fig. 7. The oscillation of the efficiency is the one

that affects almost all variables we have discussed, and must

be ascribed to the limited resolution at which the convergence

phase identifies N , the resolution decreasing as h increases.

The oscillation can be reduced to any small value by taking

h as close as possible to one, at the expenses of a slower

convergence to e−1, as shown by (32).

In practice we can not use the perfect backlog estimate in the

solution phase. We could think of extending the MLE estimate

in subsequent frames, taking into account the entire history.

However, if N is not too small, such complex evaluation is

not needed.

An interesting backlog estimate has been provided by

Schoute in [1], being the first and the simplest ever appeared:

n̂ = round(2.39c), (37)

where c is the number of collisions actually observed in the

frame. It is derived assuming that in the observed frame the

traffic is in optimal conditions, i.e., γ = 1, i.e., ri = ni.

The Schoute’s proposal comes from approximating the number

of tags transmitting in a slot by a Poisson variate. Hence,

the average number of tags in a collided slot is H = (1 −
e−1)/(1− 2e−1) ≈ 2.39, and the estimate is then (37).

In [12], [13] we addressed the asymptotic efficiency of the

Schoute’s estimate starting with a mismatched frame length,

actually r0 = 1, and observed a convergence phase where

the frame length is increased geometrically with h = 2.39.

Once some non-collisions in frame U have occurred, Schoute’s

protocol proceeds again in the geometric increase phase, iden-

tifying some tags, until n̂ approaches n. We have analytically

proved that this convergence indeed occurs, so that an efficient

solution phase begins. However, this additional phase presents

an average length that is not negligible with respect to the

solution-phase length, and causes an overhead that reduces

the asymptotic efficiency to 0.311.

In the same paper we have proved that the asymptotic

efficiency of the Schoute’s estimate increases to the theoretic

maximum e−1 if the initial frame length r0 happens to be equal

to N . This shows the robustness of the estimate with respect

to random fluctuations caused by collisions, and has suggested

us to adopt Schoute’s estimate in the solution phase, after the

MLE estimate N̂ has been obtained. The simulation results

for the case h = 2, averaged over 104 runs, are reported as

dots in Fig. 7. The perfect match with the solid curve proves,

in fact, the perfect suitably of this estimate. The pseudocode

for one run of the Monte Carlo simulation is reported in the

Algorithm.

Algorithm Dynamic Frame Aloha with efficient estimate

N ← hν0 , L′ ← 0, L′′ ← 0
i← 0, r ← hi, C ← r
while C = r do

(C, S)← draw(N, r)
L′ ← L′ + r
i← i+ 1
r ← r · h

end while

n← N − S
γ̂ ← solve(γ̂e−γ̂ = (r − C)/r)
r ← γ̂ · r − S
while C > 0 do

(C, S)← draw(n, r)
L′′ ← L′′ + r
n← n− S
r ← round(2.39 · C)

end while

L← L′ + L′′

V. CONCLUSIONS

In this paper we have analytically investigated the asymp-

totic behavior of dynamic frame Aloha for RFID when the

population size N can range from small to very large and

unknown values. Starting from an initial frame of length one,



we have shown that the entire procedure can be split into two

parts. In the first, the convergence phase, the frame length

increases geometrically, until some non-collisions are observed

at frame U , where a consistent estimate of N is produced.

In the second phase a simpler backlog estimate can be used.

We have proved that, as N → ∞ the overall efficiency

reaches e−1, the best possible. Also, we have provided a

practical algorithm that achieves the best performance already

for N ≈ 1000. The convergence of the protocol efficiency

to e−1 is rather slow, as goes like 1/ lnN , and presents an

oscillating behavior whose amplitude can be reduced at the

expenses of the convergence speed.

APPENDIX

PROOF OF LEMMA 1

Since we are dealing with the case where γ ≫ 1, we also

have e−γ + γe−γ ≪ 1, so that we can use the approximation

1− x ≈ e−x for x→ 0 and (3) becomes

f(γ) ≈ e−(N/γ)e−γ
−Ne−γ

. (38)

Applying the change of variable γ = t lnN , after some algebra

we have

f(t lnN) = g(t) ≈ e(−
1

Nt−1 ( 1
t lnN +1)). (39)

We now evaluate g(t) in three points while letting N → ∞,

namely t = 1 and t = 1± ǫ, where ǫ > 0. We get

g(1− ǫ)→ 0, g(1) ≈ e−1, g(1 + ǫ)→ 1. (40)

This shows that as N →∞ function g(t) tends to an unit step

centered in t = t∗ = 1, therefore f(γ) tends to an unit step

centered in γ = lnN .

PROOF OF LEMMA 3

We denote by S̃ the binomial RV with parameters r and

p = γe−γ , i.e., the approximate probability that in a slot

there is a success. Also, Ẽ represents the binomial RV with

parameters r and p = e−γ , i.e., the approximate probability

that the slot is empty. Since we are assuming large N , and

γ ≫ 1, so that γe−γ ≫ e−γ , in the following we neglect

E

{
Ẽ
}

with respect to E

{
S̃
}

.

For the expected value of RV Si we have

E {Si} = E

{
S̃
∣∣∣ U = i

}
=

∑
k k P(S̃ = k, U = i)

P(U = i)

=

∑
k k P(S̃ = k)

∏

P(S̃ + Ẽ > 0)
∏ =

E

{
S̃
}

P[S̃ + Ẽ > 0]
,

=
rγie

−γi

1− f(γi)
=

Ne−γi

1− f(γi)
(41)

where
∏

is the product for j = 0, . . . , i−1 that appears in (2).

It is easy to show that the derivative of (41) with respect

to N is always negative. For i = u we asymptotically have

1 − f(γu) → 1, and E {Su} in the two extremes of interval

(10) becomes

sup
N

E {Su} → N∗

u−1e
−(lnN∗

u−1)/h → N
∗(1−1/h)
u−1 (42)

inf
N

E {Su} → N∗

ue
− lnN∗

u = 1. (43)

In the same way we have derived (41) we can prove that

E
{
S2
i

}
≈

E

{
S̃2
}

P[S̃ > 0]
, i ≥ 0, (44)

Var {Si} =
E

{
S̃2
}

P[S̃ + Ẽ > 0]
−




E

{
S̃
}

P[S̃ + Ẽ > 0]




2

=
Var

{
S̃
}

P[S̃ + Ẽ > 0]
−

E

{
S̃2
}

P[S̃ + Ẽ > 0]

(
1

P[S̃ + Ẽ > 0]
− 1

)

≤
Var

{
S̃
}

P[S̃ + Ẽ > 0]
≤

E

{
S̃
}

P[S̃ + Ẽ > 0]
≈ E {Si} (45)

for all i ≥ 0, where we have exploited the fact that for the

binomial distribution we have Var

{
S̃
}
≤ E

{
S̃
}

.
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