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CHARACTERIZATION OF BALLISTIC CAPTURE CORRIDORS
AIMING AT AUTONOMOUS BALLISTIC CAPTURE AT MARS

Gianmario Merisio*, and Francesco Topputo†

Current deep-space missions heavily count on ground-based operations. Although reliable,
ground slots will saturate soon, so hampering the current momentum in space exploration.
EXTREMA, a project awarded an ERC Consolidator Grant in 2019, enables self-driving
spacecraft, challenging the current paradigm and aiming, among others, at autonomously
engineering ballistic capture. This work presents the characterization of ballistic capture
corridors, time-varying manifolds that support capture. A preliminary methodology to ap-
proximate such entities is proposed. Results show that a mapping between corridor states
and capture set initial conditions is attainable. This is a first effort in the development of an
on-board autonomous ballistic capture algorithm suitable for spacecraft with limited control
authority and on-board resources like CubeSats.

INTRODUCTION

The space sector is experiencing flourishing growth and evidence is mounting that the near future will

be characterized by a large amount of deep-space missions.1–3 In the last decade, CubeSats have granted

affordable access to space due to their reduced manufacturing costs compared to traditional missions. At

the present-day, most miniaturized spacecraft has thus far been deployed into near-Earth orbits, but soon

a multitude of interplanetary CubeSats will be employed for deep-space missions as well. However, the

current paradigm for deep-space missions strongly relies on ground-based operations. Although reliable, this

approach will rapidly cause saturation of ground slots, hampering the current momentum in space exploration.

EXTREMA (short for Engineering Extremely Rare Events in Astrodynamics for Deep-Space Missions
in Autonomy) enables self-driving spacecraft, challenging the current paradigm under which spacecraft are

piloted in the interplanetary space. Deep-space guidance, navigation, and control (GNC) applied in a complex

scenario is the subject of EXTREMA, which wants to engineer ballistic capture (BC) in a totally autonomous

fashion. EXTREMA is erected on three pillars. Pillar 1 is on autonomous navigation. Pillar 2 involves

autonomous guidance and control. Pillar 3 deals with autonomous BC, the focus of this work. The project

has been awarded a European Research Council (ERC) Consolidator Grant in 2019.

BC allows a spacecraft to approach a planet and enter a temporary orbit about it without requiring ma-

neuvers in between. As part of the low-energy transfers, it is a valuable alternative to Keplerian approaches.

Exploiting BC grants several benefits in terms of both cost reduction4 and mission versatility,5, 6 in general

at the cost of longer transfer times.7, 8 In the past, BC mechanism was used to rescue Hiten,9 and to design

insertion trajectories in lunar missions like SMART-110 and GRAIL.11 More recently, BC orbits were pro-

posed for BepiColombo,12 Lunette,13 and ESMO14 missions. BC is closely connected to the weak stability

boundary (WSB) concept.15 To date, despite the effort spent in the past years, both WSB and BC are still not

completely understood.

BC mechanism is suited for limited-control platforms, which cannot afford to enter into orbits about a

planet because of the lack of proper means. BC is an event that occurs in extremely rare occasions and
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requires acquiring a proper state (position and velocity) far away from the target planet.6 Massive numerical

simulations are required to find the specific conditions that support capture.16 On average, 1 out of 10000

conditions explored by the algorithm grants capture.17

The union of those points defines the capture set, which in turn is used to find a ballistic capture corridor

(BCC). BCCs (sometimes referred to as corridors) are streams of trajectories that can be targeted far away

from the planet and that guarantee BC. From a different perspective, BCCs are time-varying manifolds that

support capture. These manifolds are rare, narrow, flat hyper-tubes located in the phase space, which are

obtained propagating backward initial conditions (ICs) belonging to capture sets. The present method is

definitely not keen for on-board applications.

This paper is focused on the Pillar 3 of EXTREMA. In Pillar 3, it is investigated how spacecraft can attain

BC in autonomy. The spacecraft assumed already in deep space has to acquire BC at Mars without relying

on any information provided from the ground. Mars is chosen without loss of generality due to its relevance

in long-term exploration. The method based on stable sets is preferred due to its versatility: it works for any

model, energy, and epoch.17 The challenge is to develop and validate an algorithm compatible with on-board

resources. In this work, BCCs at Mars are characterized as a first step in the development of such algorithm.

Capture sets at Mars were found via grid sampling and propagation in the solar system restricted n-body

problem accounting for solar radiation pressure (SRP) and Mars’ non-spherical gravity (NSG) perturbations

following the methodology presented in Reference 18. Favorable Mars’s true anomaly, orbital plane, and

eccentricity were exploited to enhance the quantity (number) and quality (regularity) of the specific conditions

granting capture.17 Corridors were computed via backward propagation, still in the high-fidelity model. The

streams of backward propagated trajectories was then characterized and numerically approximated. Far from

capture, the resulting parametric surfaces were proven to be smooth and well suited for mapping corridor

states to capture set ICs.

DYNAMICAL MODEL

Following the nomenclature in Reference 18, a target and a primary were defined. The target is the body

around which the ballistic capture is studied. The primary is the main body around which the target revolves.

Target and primary masses are mt and mp respectively. The mass ratio of the system is μ = mt/(mt +mp).
This work is focused on ballistic capture having Mars as target and the Sun as primary*.

Reference frames

The following reference frames were used: J2000, ECLIPJ2000, RTN@ti, and RPF.

J2000. Defined on the Earth’s mean equator and equinox, the J2000 is an inertial frame determined from

observations of planetary motions which was realized to coincide almost exactly with the International

Celestial Reference Frame (ICRF).19 The J2000 inertial frame (also known as EMEJ2000) is built-in in

SPICE†.20, 21 In SPICE, the ICRF and J2000 frames are considered the same. The center of the J2000 can be

chosen arbitrarily. The equations of motion are integrated in this reference frame.

ECLIPJ2000. This is an inertial frame built-in in SPICE which is defined on the ecliptic coordinates and

based on the J2000 inertial frame. The origin of the ECLIPJ2000 frame can be chosen arbitrarily.

RTN@ti. The radial-tangential-normal of date frame (RTN@ti) is an inertial frame frozen at a prescribed

epoch ti. The frame is centered at the target. The x-axis is aligned with the primary–secondary direction, the

z-axis is normal to the primary–secondary plane in the direction of their angular momentum, and the y-axis

completes the dextral orthonormal triad. ICs are defined in this frame.17 The RTN@ti frame was defined

in SPICE such that transformation matrices between this and other frames could be easily obtained trough

dedicated SPICE’s routines.

*See Table 2 in Reference 18 for a complete list of targets and their primaries.
†SPICE is the information system developed by Navigation and Ancillary Information Facility (NAIF) to assist NASA scientists and

engineers in mission modeling, planning, interpreting scientific observations, and executing activities. https://naif.jpl.nasa.
gov/naif/ [last accessed 30/07/2021]
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Table 1. Assumed spacecraft specifications.

Specification Symbol Value
Mass m 24 kg

SRP area A 0.32 m2

Coefficient of reflectivity Cr 1.3

RPF. The roto-pulsating frame (RPF) is a rotating frame centered at the primary–target system barycenter.

The rotation is such that both the target and the primary are at rest in the RPF. In this frame, the x-axis points

from the primary to the target, the z-axis is directed as the angular momentum of the system, and the y-axis

completes the dextral orthonormal triad. The transformation from and to the RPF is not trivial. Indeed, it

involves a change of origin, a rotation, and a scaling.22

Ephemerides

For this work the precise states of the Sun and the major planets were retrieved from the Jet Propulsion

Laboratory (JPL)’s planetary ephemerides de440s.bsp* (or DE440s).23 Additionally, the ephemerides

mars097.bsp of Mars (the target) and its moons were employed†. The following generic leap seconds

kernel (LSK) and planetary constants kernel (PCK) were used: naif0012.tls, pck00010.tpc, and

gm_de431.tpc‡.

Equations of motion

The equations of motion used are those of the restricted n-body problem. The gravitational attractions of

the Sun, Mercury, Venus, Earth (B§), Mars (central body), Phobos, Deimos, Jupiter (B), Saturn (B), Uranus

(B), Neptune (B) were considered. Additionally, SRP and Mars’ NSG were also included in the model. The

assumed spacecraft specifications needed to evaluate the SRP perturbation are collected in Table 1. They are

compatible with the specifications of a 12U deep-space CubeSat.24 The terms of the infinite series modeling

NSG were considered up to degree ndeg = 20 and order nord = 20. The coefficients to evaluate the NSG

perturbation were retrieved from the MRO120D gravity field model of Mars. Data are publicly available

in the file jgmro_120d_sha.tab, archived in the Geosciences Node of National Aeronautics and Space

Administration (NASA)’s Planetary Data System (PDS)¶. Far from Mars, when not in a temporary capture

condition, gravitational attractions of Phobos and Deimos, and Mars’ NSG perturbation were neglected.

The equations of motion, written in a non-rotating Mars-centered reference frame are18, 25
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where μt is the gravitational parameter of the target body (Mars in this work); r is the position vector of

the spacecraft with respect to the target and r is its magnitude; P is a set of n− 2 indexes each referring to

a perturbing body; μi and ri are the gravitational parameter and position vector with respect to the target

of the i-th body, respectively; A is the Sun-projected area on the spacecraft for SRP evaluation; m is the

spacecraft mass; r� is the position vector of the Sun with respect to the target; R is the time-dependent

*Data publicly available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/
de440s.bsp [retrieved 30/07/2021].

†~/spk/satellites/mars097.bsp [retrieved 30/07/2021].
‡Data publicly available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/naif0012.tls,

~/generic_kernels/pck/pck00010.tpc, and ~/generic_kernels/pck/gm_de431.tpc [retrieved 30/07/2021]. The

gm_de431.tpc PCK kernel was used because the new version consistent with the ephemerides DE440s was not released yet.
§Here B stands for barycenter.
¶Data publicly available at: https://pds-geosciences.wustl.edu/mro/mro-m-rss-5-sdp-v1/mrors_1xxx/

data/shadr/ [retrieved 30/07/2021].
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Table 2. Normalization units.
Unit Symbol Value Comment

Gravity parameter MU 42828.376 km3 s−2 Mars’ gravity parameter
Length LU 3396.0000 km Mars’ radius

Time TU 956.28142 s (LU3/MU)0.5

Velocity VU 3.5512558 kms−1 LU/MU

matrix transforming vector components from the Mars-fixed frame to the non-rotating frame in which the

equations of motion are written; Λ, J, K, and H are defined as in Reference 26. Lastly, Q is equal to

Q =
LCr

4πc
(2)

where Cr is the spacecraft coefficient of reflectivity, c = 299792458ms−1 (from SPICE20, 21) is the speed

of light in vacuum, and L = S�4πd2
AU is the luminosity of the Sun. The latter is computed from the solar

constant* S� = 1367.5Wm−2 evaluated at dAU = 1AU = 149597870613.6889m (from SPICE20, 21).

Numerical integration of the equations of motion

The equations of motion in Eq. (1) were integrated with GRavity TIdal Slide (GRATIS) tool27 in their

nondimensional form to avoid ill-conditioning.18 The normalization units specifically used for this work

are reported in Table 2. Numerical integration was carried out either with MATLAB®’s ode11328 or with

ode78 routine implementing the Dormand-Prince 8th-order embedded Runge-Kutta method propagation

scheme,29 also known as RK8(7)13M†. The former is a multistep, variable-step variable-order, Adams-

Bashforth-Moulton, predictor-corrector solver of orders 1st to 13th‡. The latter is an adaptive step, 8th-

order RK integrator with 7th-order error control. The coefficients were derived by Prince and Dormand.30

MATLAB®’s ode113 was used to derive the capture sets and in the preliminary investigation of corridors,

while ode78 was used in the characterization of the corridors and in their numerical approximation. The

dynamics were propagated with relative and absolute tolerances both set to 10−12.18

CHARACTERIZATION OF BALLISTIC CAPTURE CORRIDORS

A BCC is a moving manifolds that supports capture. A corridor is obtained backward propagating ICs

belonging to a capture sets Cn
−1, where n > 0 is the number of revolutions after being captured. A capture set

is defined as Cn
−1 = Wn ∩X−1. Therefore, it is the intersection between the stable set in forward time Wn

and the unstable set in backward time X−1.18 They are defined accordingly to the algorithmic definition of

WSB.16 Similarly to how capture sets are symbolically designated, a corridor developed from a capture set

Cn
−1 is indicated as B̌n

−1.

In this work, two corridors were built and characterized starting from two peculiar capture sets. The cap-

ture sets were constructed from the same initial grid following the methodology discussed in Reference 18.

The grid of ICs was chosen to maximize the capture ratio Rc based on the analysis reported in Reference 17.

The capture epoch was chosen to be the JD 2460287.53156250 (UTC), corresponding to the 09 DEC 2023

00:45:18.363 (UTC). At that epoch, Mars’s true anomaly with respect to the Sun is equal to 270 deg, maxi-

mizing Rc.17 In a similar fashion, the inclination i0 and the right ascension of the ascending node (RAAN) Ω0

of the orbital plane of the initial osculating orbits were taken both equal to 0.2π rad. That because, according

*https://extapps.ksc.nasa.gov/Reliability/Documents/Preferred_Practices/2301.pdf [last ac-

cessed 30/07/2021].
†The notation RKp(q)sM is used when referring to a Runge-Kutta method of order p, with an embedded step-size control of qth-

order, and a total of s stages.29

‡The highest order used appears to be 12th since a formula of order 13th is used to form the error estimate and the function does local

extrapolation to advance the integration at order 13th. https://it.mathworks.com/help/matlab/ref/ode113.html
[last accessed 30/07/2021].
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to Figure 10 in Reference,17 such values maximize the capture ratio for Mars. The initial osculating eccen-

tricity e0 was fixed equal to 0.99.6 Finally, a discretization of pericenter r0 and argument of pericenter ω0

was assumed to build the initial grid. r0 was discretized in the interval [Rt + ε,10Rt ] with step Δr0 = 100km

(ε = 100km). ω0 was discretized in the interval [0,2π) with step Δω = 1deg (or ≈ 0.0175rad). The grid was

made of Nr0
= 339 and Nω0

= 360 evenly spaced points of r0 and ω0, respectively. Each IC was assumed to

be the pericenter of an osculating orbit, and therefore having true anomaly θ0 = 0.

The characterization process consisted of the following: i) critical analysis of trends and rates of corridor’s

osculating elements when orbiting the Sun; ii) visualization of time snapshots of corridor’s heliocentric Kep-

lerian elements and consequent pattern identification; iii) opportunistic selection of a circular domain in the

capture sets to derive the corresponding subcorridor (subset of a corridor); iv) investigation of subcorridor’s

dimensions and determination of its shape; v) visualization of subcorridor’s Poincaré sections and related

critical analysis; vi) parametric representation and numerical approximation of a subcorridor.

Step i) trends and rates of Keplerian elements

The first step of the characterization provided a first look into the behavior of the corridor when observed in

heliocentric coordinates. The expectation was to observe trajectories similar to each other far from the target

body. That because a spacecraft is affected mainly by the Sun’s gravitational attraction when far from Mars.

Consequently, the features of highly chaotic trajectories, essential elements of the BC phenomenon, should

not be observed far from the target body. Additionally, the rates of the Keplerian elements were computed

using a finite differences scheme to further confirm how variations of corridor’s Keplerian elements are small

far from the central body.

Step ii) time snapshots

The dynamics being non-autonomous, a time snapshot is a collection of states taken at a fixed time epoch.

Based on the considerations made for the previous step of the characterization, the time snapshots of a cor-

ridor’s heliocentric Keplerian elements were expected to show some patterns. Specifically, the aim of this

step was to visualize how states spread in a time snapshots, assessing by visual inspection if the clusters of

ICs rifted apart or stayed connected. Due to the presence of many clusters of ICs typical of capture sets and

the potential Cantor-like structure claimed in Reference 31, a corridor was expected to be made of various

subsets. However, the major concern was to find holes in their structure, recognizing such subsets as not

continuous entities.

Step iii) opportunistic selection of a corridor subset

A subcorridor Šn
−1, subset of a corridor B̌n

−1, was investigated in more details. A circular domain within

the capture set was opportunistically chosen to derive the corresponding subcorridor. Location and size of

the domain were selected based on the local value of regularity index* S and regularity coefficient ΔS% of the

capture set. Regularity index and coefficient are defined as33

S =
tNr − t0

Nr
, S(2b) =

2π√μt

(
r0

1− e0

)3/2

, ΔS% = 100

∣∣∣∣ S
S(2b)

−1

∣∣∣∣ (3)

where Nr is the number of forward or backward revolutions, t0 is the initial time, and tNr is the time required

to complete the Nr revolutions. S(2b) is used as reference and correspond to the regularity index of a Keplerian

orbit.33 The smaller the regularity index and coefficient, the more regular the post-capture trajectory.

Step v) dimensions and shape of the subcorridor

Dimensions and shape of the subcorridor (for the sake of conciseness also referred to as corridor from

now on) were investigated too. That to see how much its size increases or decreases with time, how much

*In literature, the regularity index is more commonly known as stability index.17, 18, 32 However, in Reference 33, the adjustment from

stability to regularity index was proposed to avoid misunderstandings with the periodic orbit stability index. The same nomenclature

introduced in Reference 33 is used in this work.
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the corridor is stretched, compressed, tilted, etc., what shape it takes on, and how the shape changes over

time. Specifically, two- and three-dimensional representations of the corridor were plotted to get confidence

with shape and sizes of corridors. The result was achieved visualizing the envelope ∂ Šn
−1 of the subcorri-

dor. Envelope constructed sampling uniformly the subcorridor domain border with enough points, backward

propagating them up to a desired final time before capture, and collecting all the propagated trajectories.

Step iv) subcorridor’s Poincaré sections

Poincaré sections of the subcorridor were computed at prescribed solar longitudes λ . The selection of

longitude values was performed based on the physical space spanned by the corridor in the time frame of the

backward propagation performed. Therefore, the corridor was intersected in the physical space by half-planes

originating from the z-axis. The shapes of these cuts in the physical space were derived and plotted for various

solar longitudes. Velocity surfaces corresponding to Poincaré sections were computed too. Differently from

time snapshots, corridor’s trajectories reach the Poincaré sections at different time epochs. Poincaré sections

were computed because they were expected to provide precise estimates of corridor dimensions and a clear

insight on its shape.

Step vi) subcorridor parametric representation and numerical approximation

A numerical approximation of the corridor was built with the aim of a future on-board implementation of

a BCCs database. Firstly, a parametric representation of the corridor was carried out. Then, an interpolation

between two corridor’s Poincaré sections was performed to derive an intermediate section. Finally, states on

the interpolated sections were retrieved via a second interpolation.

The corridor was represented through parametric surfaces, miming what was done in Reference 34 but

applying the methodology to a non-autonomous system instead of an autonomous one. The Cartesian coor-

dinates x0 and y0 were used as parameters*. They are two independent variables that describe the locations of

ICs on the orbital plane in which the capture set is defined. Given a Poincaré sections and the corresponding

solar longitude λ , that corridor’s section is completely described by six variables, namely the time interval

from t0 (or alternatively the time epoch), the projection of the position vector on the xy-plane (computed as√
x2 + y2), the third component of the position vector z, and the three velocity components vx, vy, and vz.

In this way, the corridor’s state on a Poincaré section were suitably mapped to the corresponding states at

capture.

The grid used to numerically represent the parametric surfaces were constructed sampling the subcorridor

domain with a Fibonacci lattice and subsequently performing a Delaunay triangulation. The Fibonacci lattice

is a mathematical idealization of the sunflower pattern. It can be generated with the following formulae35

li = l0
√

i−1/2 (4)

φi = 2πiΦ−1 (5)

where li and φi are the radial and azimuthal polar coordinate of each point i of the grid, while Φ = 1+Φ−1

is the golden ratio equal to (1+
√

5)/2. The Fibonacci grid was chosen for its several attributes, namely its

geometric regularity, the almost homogeneous and isotropic resolution, and a lack of artificial symmetries.

All features that make the lattice suitable for numerical modeling.35

Given two Poincaré sections 1 and 2 separated by an angle Δλ = λ2 − λ1 small, thereby enough close

too each other, the intermediate section at λi = (λ1 +λ2)/2 was derived by linear interpolation. The linear

interpolation was carried out point by point between corresponding samples of the Fibonacci lattice. States on

interpolated sections were evaluated by linearly interpolating the parametric surfaces numerically constructed

on the Fibonacci lattice.

Finally, a test point was evaluated on the numerical approximation of the corridor to preliminary verify

the goodness of numerical approximation itself. The test point was arbitrary chosen to be the center of the

*This is not the only available option. Also other couples of parameters could be used, e. g., the pericenter rp0 and the argument of

pericenter ω0.
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Figure 1. Capture set C2
−1. Branches developing exterior ballistic capture corridors

are colored in gray. ICs are represented in nondimensional quantities in the Mars-
centered RTN@t0 frame. Mars is the gray circle with black surround.

corridor since it is never a point of the Fibonacci lattice. The evaluations were compared against the high-

fidelity solution propagated with GRATIS. The evaluation errors, called errors at insertion, were computed

for any tested solar longitudes as

eti = |ti − t∗i | , eri = ‖ri − r∗i ‖ , evi = ‖vi −v∗i ‖ (6)

where t∗i , r∗i , and v∗i are the time epoch, position, and velocity of the high-fidelity solution, respectively. Ad-

ditionally, also errors on time epoch and osculating elements at capture were estimated. They were computed

between the new capture point*, obtained by forward propagating the evaluated test point, and the initial

osculating elements of the test point at time epoch t0. Hence

et0 = |t0 − t∗0 | , er0
= |r0 − r∗0| , ee0

= |e0 − e∗0| , ei0 = |i0 − i∗0| , eΩ0
= |Ω0 −Ω∗

0| , eω0
= |ω0 −ω∗

0 | (7)

where quantities marked with ∗ superscript are the exact initial time epoch and osculating elements.

RESULTS

The peculiar capture sets C2
−1 and C6

−1 from which corridors B̌2
−1 and B̌6

−1 were developed are shown in

Figures 1 and 2, respectively. In the capture set C2
−1, four sickle-shaped clusters of ICs are distinguishable.

The two of them located in the half-plane y > 0, colored in gray, develop the exterior corridor. Differently, the

other two branches develop the interior corridor. On the other hand, set C6
−1 is made by only two clusters. The

branch in the bottom half-plane gives rise to the interior corridor, while the gray one generates the exterior

corridor.

An exterior corridor Ěn
−1 was defined as the subset of a corridor B̌n

−1 including heliocentric trajectories

having semi-major axis a greater than Mars’ one (equal to 1.5237 AU) after escaping from Mars in backward

time. Contrarily, an interior corridor Ǐn
−1 was defined as the subset of a corridor B̌n

−1 including all trajectories

having semi-major axis smaller than Mars’ one. Consequently, B̌n
−1 = Ěn

−1 ∪ Ǐn
−1. In the context of the

EXTREMA project, interior corridors are more interesting because they extend between Mars and Earth’s

orbits.

In Figure 3, corridors B̌2
−1 and B̌6

−1 are shown. Interior and exterior corridors are colored in blue and

yellow, respectively. As expected, B̌2
−1 looks thicker and more packed than B̌6

−1. That because of how stable

*To find the new capture point is not trivial. In fact, for a generic state, neither the capture epoch nor the capture point location are

known a priori. Generally speaking, capture is not even granted. However, if the IC forward propagated still belongs to a corridor (any

corridor), a new capture point can be found inverting the methodology to construct ballistic capture orbits.18 Details are absent because

out of the scope of this work.
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Figure 2. Capture set C6
−1. Branches developing exterior ballistic capture corridors

are colored in gray. ICs are represented in nondimensional quantities in the Mars-
centered RTN@t0 frame. Mars is the gray circle with black surround.

sets are defined.36 Indeed, by definition of capture set, Cn
−1 ⊆ Cm

−1 with m and n both positive, and n > m.

Consequently, B̌n
−1 ⊆ B̌m

−1 is verified too, therefore B̌6
−1 is a subset of B̌2

−1. In general, the same applies to

Ǐn
−1 and Ěn

−1.

Step i) trends and rates of Keplerian elements

Osculating elements of corridors about the Sun in the ECLIPJ2000 frame were computed to check their

variation in time. Figure 4 shows the histories of the six Keplerian elements from t0 to t0−1000 d of both

B̌2
−1 and B̌6

−1. In the plots, histories are compared to Mars’ orbit Keplerian elements. Except for initial short

transients close to the capture epoch t0 characterized by huge variations, all elements but true anomaly θ
stabilize rapidly. After approximately 300 days in backward time, curves look completely flat. Such time

span is in line with the typical time of flight on pre-capture legs belonging to the unstable set X−1. After

the strong, short transient, true anomaly varies accordingly with Mar’s true anomaly as expected. From the

plots in the top-left corner of both Figure 4(a) and Figure 4(b), showing the trend of semi-major axis a, the

distinction between interior and exterior corridors is clear. However, the four peculiar branches of C2
−1 cannot

be distinguished within the two bundles of curves.

Previous statements are confirmed by the results in Figure 5 showing the yearly rates of the heliocentric

osculating elements but the true anomaly. In the plots, they are compared to the yearly rates of Mars’ orbit

which are represented by the dotted horizontal lines. As expected, the strong, short transients are character-

ized by large rates as can be seen on the left hand side of Figures 5(a) and 5(b).

Step ii) time snapshots

Two time snapshots at t = t0−600 d were taken. One about B̌2
−1, found in Figure 6, and the other of

B̌6
−1, visible in Figure 7. They show the instantaneous values of the Keplerian elements about the Sun in the

ECLIPJ2000 frame of the two corridors 600 days before capture epoch at Mars. They correspond to the states

at the end points of the trajectories in Figure 3.

Differently from what shown by Figure 4(a), in Figure 6 the four branches are easily identifiable. Interior

and exterior corridors features are nearly symmetric. Indeed, they almost exhibit a point symmetry with

respect to Mar’s Keplerian elements, marked by red crosses. In this time snapshot, each branch is well

resolved, thin, and relatively long. That is a peculiarity of this specific corridor and not a common feature.

Indeed, numerical experiments here omitted showed that such characteristics are typical of highly regular

capture sets like the ones used in this work (see Figure 1 and Figure 2). Differently, less regular capture sets

8



(a) Corridor B̌2
−1 developed by capture set C2

−1. (b) Corridor B̌6
−1 developed by capture set C6

−1.

Figure 3. BCCs from t0 to t0−600 d. Interior and exterior corridors are colored in
blue and yellow, respectively. Trajectories are represented in nondimensional coordi-
nates in the RPF.

(a) Trends of heliocentric osculating elements of B̌2
−1. (b) Trends of heliocentric osculating elements history of B̌6

−1.

Figure 4. Trends of heliocentric osculating elements of BCCs from t0 to t0−1000 d with
respect to ECLIPJ2000 frame. In both figures, from left to right and top to bottom,
semi-major axis a, eccentricity e, inclination i, RAAN Ω, argument of pericenter ω ,
and true anomaly θ are shown as a function of the time from the capture epoch t0.
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(a) Rates of heliocentric osculating elements of B̌2
−1.
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(b) Rates of heliocentric osculating elements of B̌6
−1.

Figure 5. Rates of heliocentric osculating elements of BBCs from t0 to t0−1000 d
with respect to ECLIPJ2000 frame. In both figures, triangles and error bars show
the mean rates and their standard deviations, respectively. Solid lines represent the
maximum rates, while dotted horizontal lines are the rates of Mars’ orbit.

produce corridors whose time snapshots present poorly resolved, sparse, and large clusters which are hardly

identifiable each other. Similar considerations can be done for the time snapshot in Figure 7 apart from the

fact that only two clusters are identified. That because the other two branches are lost when imposing more

revolutions and moving to the capture set C6
−1.

Step iii) opportunistic selection of a corridor subset

A subcorridor Š6
−1 was built starting from the C6

−1 branch developing the interior corridor. Specifically, a

circular domain within the capture set was opportunistically selected to fulfill the purpose. A circle of radius

Δrp = 250 km, and centered in rc = Rt+3400 km and ωc = 250 deg was constructed on the orbital plane

of the capture set, as shown in Figure 8(a). The circle was placed at the top of the cluster because ICs are

strongly regular in that region. Indeed, both regularity index and coefficient are small as shown by plots in

Figure 2. In Figure 8(b), a magnification of the red circle in Figure 8(a) is reported.

Step iv) dimensions and shape of the subcorridor

The subcorridor dimensions and shape were studied backward propagating from t0 to t0−600 d the IC

at the center and 20 ICs uniformly distributed along the border of the red circular domain in Figure 8. The

resulting set of trajectories was used to build the corridor’s envelope ∂ Š6
−1 in the physical space. The corridor

is reported in Figures 9 and 10 from different points of view and in various reference frames.

Figure 9(a) shows the corridor, in light blue, from a top view of the xy-plane in the Sun-centered ECLIPJ2000

frame. The corridor was backward propagated from the capture epoch, visible in the bottom-left, for 600 days.

That is almost a revolution period of Mars, whose orbit is plotted in black. The corridor remains closely at-

tached to Mars’s orbit and increases in size in backward time. The latter is a desirable feature, since it eases

targeting the corridor for spacecraft with limited control authority like CubeSats. The corridor being a family

of trajectories, its characteristics should be similar to what already discovered about single trajectories for

Earth–Mars transfers with ballistic capture.6

The plot in Figure 9(b) offers a three-dimensional representation of the corridor in the Mars-centered

ECLIPJ2000 frame. Far from Mars, the initial tiny circular region is stretched considerably. The envelope,

initially shaped as a relatively small circle, increases remarkably in size and becomes almost a segment when

backward propagated. That seems to reflect what observed in Figure 7, which shows thin and very long

clusters of trajectories. Two-dimensional Mars-centered views of the corridor are provided in Figure 10.

Specifically, Figure 10(a) collects the three views of the whole corridor, while Figure 10(b) offers magnifica-

tions of the corridor and post-capture* envelopes at a closer range from Mars.

*Trajectories of post-capture legs were obtained forward propagating the ICs on the border of the subcorridor domain from t0 to
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lating elements with respect to ECLIPJ2000 frame. The patterns of the two interior
corridor branches, in blue, and the two exterior corridor branches, in yellow, are
clearly visible. Red crosses represent Mars’ Keplerian elements.
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Figure 8. Details of capture set C6
−1 showing the regularity index of the ICs belonging

to the set. ICs are represented in nondimensional quantities in the Mars-centered
RTN@t0 frame. Mars is partially shown in gray with black surround.
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Figure 9. Representations in the physical space of the subcorridor envelope ∂ Š6
−1

built from the red circular domain border shown in Figure 8. Envelope backward
propagated from t0 to t0−600 d.
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Figure 10. Representations in the physical space of the subcorridor envelope ∂ Š6
−1

built from the red circular domain border shown in Figure 8. Subcorridor back-
ward propagated from t0 to t0−600 d. Trajectories plotted in the Mars-centered
ECLIPJ2000 frame. In both figures, from top to bottom: xy-plane, xz-plane, and
yz-plane.
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Step v) subcorridor’s Poincaré sections

Poincaré sections at prescribed solar longitudes of corridor’s envelope (grid made of 100 ICs uniformly

distributed along the border of the red circular domain in Figure 8) and center were computed to better un-

derstand how the envelope’s shape changes over time and to estimate more precisely its characteristic dimen-

sions. Seven half-planes in the physical space perpendicular to the xy-plane were selected at corresponding

solar longitudes λ equal to 225 deg, 180 deg, 135 deg, 90 deg, 45 deg, 0 deg, and 315 deg. They are repre-

sented in Figure 9(a) as dashed red half-lines starting from the origin. The sequence is in accordance with the

order in which the corridor crosses the Poincaré sections. The longitudes values were selected because they

cover almost uniformly and completely the corridor from t0 to t0−600 d.

Results are shown in plots of Figure 11. They display Poincaré sections of positions and velocities of

the envelope ∂ Š6
−1, marked by blue crosses, with respect to the corridor Š6

−1 center, represented by the red

diamond. Coordinates are computed in the ECLIPJ2000 frame. The sequence of Poincaré sections about

positions allows to visualize how the envelope changes shape over time. In particular, its size at λ = 315 deg

is more than one order of magnitude larger than its size at λ = 225 deg. At λ = 90 deg, the envelope twists

around itself, while at λ = 45 deg it takes on a bizarre shape. Numerical experiments here excluded showed

that around λ = 90 deg the corridor twists completely on itself. Differently, at around λ = 45 deg the top

part of the envelope undergoes a deformation that resembles the movement of a waves. The twist lasts

approximately from λ = 105 deg to λ = 75 deg, while the deformation persists roughly from λ = 60 deg

to λ = 30 deg. Likely, such behaviors are the results of the peculiar distribution of Keplerian elements

characterizing the trajectories belonging to the corridor and of how they geometrically interact in the physical

space.

The characteristic dimensions of the envelope were retrieved from charts in Figure 11. Specifically, at λ =
225 deg, the two characteristic dimensions are approximately d = 6.1×10−5 AU (i. e., the smaller dimen-

sion) and D = 4.6×10−4 AU (i. e., the larger one). On the other hand, at λ = 315 deg, d and D are about

2.8×10−4 AU and 1.7×10−2 AU, respectively. In the latter case, d is relatively large (≈ 4.2×104 km), al-

beit being two orders of magnitude smaller than D. That implies targeting a section perhaps large enough for

limited control authority spacecraft, thereby proving that ballistic capture corridor targeting is a viable option

for CubeSats.

The Sun-centered states of the points belonging to the envelope and shown in the Poincaré sections of

Figure 11 can be retrieved summing the corresponding states of the center collected in Tables 3 and 4 (position

and velocities, respectively). For the sake of completeness, time epochs and time intervals from t0 of when the

center crosses the sections are reported in Table 5. As an additional note, the center trajectory takes 224.76

days to escape from Mars in backward time. At the escape, the solar longitude is about 144 deg.

Step vi) subcorridor parametric representation and numerical approximation

The corridor was successfully represented through parametric surfaces. Figure 12 shows three sets of

surfaces. They were obtained performing a Delaunay triangulation on a Fibonacci lattice of 105 points. The

first set, in yellow, refers to a Poincaré section at λ1 = 90.05 deg named section 1. The second one, colored in

red and referred to as section 2, describes a Poincaré section at λ1 = 89.95 deg. Finally, the blue set collects

the parametric surfaces that were retrieved by linear interpolation of sections 1 and 2.

The center of the corridor was evaluated on all the seven Poincaré sections drawn in Figure 9(a). Two

different corridor numerical approximations were tested, a coarse and a fine one. The former was built from

Poincaré sections with step Δλ = 0.1 deg and approximated on Fibonacci lattice of 105 points* (see Figure 12

for an example approximation of this kind). The latter was derived from sections with step Δλ = 0.01 deg

and Fibonacci lattice made of 715 points† (check Figure 8(b) to see how a 715 points Fibonacci lattice looks

like).

t f ,W6
. The latter being the time epoch at which the 6th revolution about the target body is achieved.

*To grant having 21 complete clockwise spirals made of 5 points each.
†To grant having 55 complete clockwise spirals made of 13 points each.

15



-3 -2 -1 0 1 2 3

( x2+ y2)0.5 [AU] 10-4

-5

0

5

z 
[A

U
]

10-5 Position -  = 225 deg

center
border

5 5

10-3

vy [km/s]

0

vx [km/s] 10-3
0

-5 -5

0

v z [k
m

/s
] 10-3 Velocity -  = 225 deg

-1 -0.5 0 0.5 1

( x2+ y2)0.5 [AU] 10-3

-2

0

2

z 
[A

U
]

10-4 Position -  = 180 deg

-5
2 0.020.01

vy [km/s]
10-3

0

vx [km/s]

0-0.01-2

0

-0.02

10-3

v z [k
m

/s
] Velocity -  = 180 deg

5

-3 -2 -1 0 1 2 3 4

( x2+ y2)0.5 [AU] 10-3

-5

0

5

z 
[A

U
]

10-4 Position -  = 135 deg

0.01 0.05

vy [km/s] vx [km/s]

-4

0 0-0.01 -0.05

10-3

v z [k
m

/s
] Velocity -  = 135 deg

0

-3 -2 -1 0 1 2 3 4

( x2+ y2)0.5 [AU] 10-3

0

2

4

z 
[A

U
]

10-4 Position -  = 90 deg

0.02 0.1
-0.02

0.05

vy [km/s] vx [km/s]

0 0-0.05-0.02

v z [k
m

/s
] Velocity -  = 90 deg

0

-1 -0.5 0 0.5 1

( x2+ y2)0.5 [AU] 10-3

0
5

10
15

z 
[A

U
]

10-4 Position -  = 45 deg

-0.02
0.04 0.10.02 0.05

vy [km/s] vx [km/s]

00 -0.05-0.02 -0.1

v z [k
m

/s
] Velocity -  = 45 deg

0

-8 -6 -4 -2 0 2 4

( x2+ y2)0.5 [AU] 10-3

0

10

20

z 
[A

U
]

10-4 Position -  = 0 deg

0.06 0.2
0

0.04

vy [km/s]

0.10.02

vx [km/s]

0 0-0.02 -0.1

10-3

v z [k
m

/s
] Velocity -  = 0 deg

4

-15 -10 -5 0 5

( x2+ y2)0.5 [AU] 10-3

-5
0
5

10

z 
[A

U
]

10-4 Position -  = 315 deg

0.04
0

0.20.02

vy [km/s]

0.1

vx [km/s]

0 0-0.1

0.01

v z [k
m

/s
] Velocity -  = 315 deg

0.02

Poincaré sections - C-1
6  ECLIPJ2000@Sun

Figure 11. Poincaré sections of subcorridor Š6
−1 in the ECLIPJ2000 frame for the

various solar longitudes λ shown in Figure 9(a). Blue crosses represents points sam-
pled on the subcorridor domain border. Center of circular domain identified by the
red diamond. On the left, positions with respect to center. On the right, velocities with
respect to the center. Time epochs, positions, and velocities of the center are collected
in Tables 5, 3, and 4, respectively.
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Table 3. Positions of center in Poincaré sections.
Solar longitude Position

λ x y z
(deg) (AU) (AU) (AU)

225 −1.102808 −1.102808 7.844357×10−3

180 −1.641041 1.554104×10−13 4.293343×10−2

135 −1.162058 1.162058 5.006461×10−2

90 −6.957004×10−15 1.557277 2.662889×10−2

45 1.020845 1.020845 −8.854905×10−3

0 1.367875 7.111910×10−13 −3.521404×10−2

315 9.624945×10−1 −9.624945×10−1 −4.120283×10−2

Table 4. Velocities of center in Poincaré sections.
Solar longitude Velocity

λ vx vy vz
(deg) (kms−1) (kms−1) (kms−1)

225 1.787586×101 −1.510174×101 −8.164564×10−1

180 8.595426×10−1 −2.222691×101 −4.055608×10−1

135 −1.623405×101 −1.507938×101 1.683084×10−1

90 −2.333669×101 2.152594 6.396673×10−1

45 −1.617810×101 1.940766×101 7.479764×10−1

0 1.080975 2.655486×101 4.253387×10−1

315 1.832666×101 1.940964×101 −1.405752×10−1

Table 5. Time epochs and time intervals from t0 at which center crosses Poincaré sections.

Solar longitude Time epoch Time interval from t0
λ tc tc − t0

(deg) (UTC) (d)

225 28 OCT 2023 11:14:06.557 −41.563
180 24 JUL 2023 08:52:44.062 −137.66
135 13 APR 2023 16:33:00.264 −239.34
90 07 JAN 2023 05:22:50.146 −335.81
45 15 OCT 2022 00:19:38.723 −420.02
0 02 AUG 2022 12:51:56.425 −493.50

315 25 MAY 2022 11:05:11.527 −562.57
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Figure 12. Parametric surfaces of subcorridor’s time epoch and Cartesian states at
three different Poincaré sections. Cartesian states in the Sun-centered ECLIPJ2000
frame. The parameters are the two independent Cartesian coordinates x0 and y0 of
the capture set orbital plane. The yellow and red surfaces located at solar longitudes
λ1 = 90.05 deg and λ1 = 89.95 deg, respectively, were used to linearly interpolate the
blue one at λ1 = 90 deg.

The test point evaluations were compared against the high-fidelity solution propagated with GRATIS (col-

lected in Table 3 and Table 4). The errors at insertion were computed for any tested solar longitudes. Results

are shown in the left plot of Figure 13(a). The right plot provides the errors at capture. Figure 13(b) reports

the same errors when using the fine approximation.

As expected, the fine approximation performs better, overall granting smaller errors than the coarse one

both at insertion and capture. Errors are larger when interpolating far from capture, likely because of the

stretching phenomenon observed in the Poincaré sections shown in Figure 11. However, they seem to stabilize

after the corridor crosses the Poincaré section at λ = 90 deg. Regarding errors on time epoch and velocity at

insertion, they seem to exhibit local maxima in correspondence of the corridor twisting, when λ ≈ 90 deg.

CONCLUSION

This work presents the first step in the development of an on-board autonomous ballistic capture algorithm

suitable for spacecraft with limited control authority and resources like CubeSats. The characterization of

ballistic capture corridors, in particular the mapping of capture conditions to interplanetary states, is the first

effort to engineer BC in a completely autonomous fashion. Future work will be focused on providing a formal

mathematical definitions of BCCs and associated entities. Additionally, a proper Monte Carlo analysis will

be carried out to assess robustness to capture of corridor numerical approximations for increasing levels of

refinement. Different interpolation schemes will be tested to find the best trade-off between computational

effort and accuracy. Indeed, numerical experiments here omitted showed how too coarse approximations

18



225 180 135 90 45 0 315
 along corridor in backward time [deg]

10-6

10-4

10-2

100

102

104

er
ro

rs

Errors at insertion
fX

-1
 

 1
44

 d
eg

Time epoch [s]
Position [km]
Velocity [km/s]

225 180 135 90 45 0 315
 along corridor in backward time [deg]

10-8

10-6

10-4

10-2

100

102

104

er
ro

rs

Errors at capture

fX
-1

 
 1

44
 d

eg Time epoch [d]
Pericenter [km]
Eccentricity [-]
Inclination [deg]
RAAN [deg]
Arg. pericenter [deg]

BCC-1
6  @Mars

(a) Errors when coarsely approximating the subcorridor with step Δλ = 0.1 deg and a 105 points Fibonacci lattice.
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Figure 13. Errors at insertion on the subcorridor Š6
−1, on the left, and at capture

point, on the right. The dotted black vertical lines mark the approximate solar lon-
gitude λ fX−1

at which a spacecraft escapes from Mars when flying on the subcorri-
dor’s center trajectory in backward time. The x-axes are not monotone increasing
because they represent the solar longitude λ wrapped to 360 deg along the subcorri-
dor in backward time.
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failed in representing correctly corridors. In particular, approximations seem really sensitive to the step

Δλ used for reconstructing intermediate Poincaré sections. Alternative interpolation techniques like cubic

spline or cubic convolution are expected to perform better than the simple, fast linear interpolation. That at

the drawback of large computation efforts required both in terms of memory and time. Specifically, cubic

convolution interpolation was already proven successful when trying to approximate invariant manifolds in

the restricted circular three body problem.34 The discussed corridor numerical approximation will be refined

and employed to build a database of BCCs. Database that the guidance algorithm under development in the

EXTREMA project will exploit to achieve autonomous BC at Mars. Finally, attainability of BCCs pathways

as viable options for autonomous CubeSats to achieve temporary capture at major planets according to their

knowledge and dispersion errors will be analyzed.
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