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Abstract—In-memory computing (IMC) is receiving consid-
erable interest for accelerating artificial intelligence (AI) tasks,
such as neural network training and inference. However, IMC
can also accelerate other machine learning (ML) and scien-
tific computing problems, such as recommendation systems,
regression and PageRank, which are ubiquitous in datacenters.
These applications typically have higher precision requirements
than neural networks, which can challenge analogue-based IMC
and sacrifice some of the expected energy efficiency benefits.
Here we address these challenges experimentally, presenting new
techniques improving the accuracy of the solution of linear
algebra problems, such as eigenvector extraction for PageRank,
in a fully integrated circuit (IC) with analogue resistive switching
memory (RRAM) devices. Our custom redundancy algorithm can
improve the programming accuracy by using multiple memory
devices for representing a single matrix entry. Accuracy is further
improved by error compensation with analogue slicing, which
allows an ever more precise value representation.

Index Terms—In-memory computing, memristor, RRAM,
pagerank, memory reliability, neural network, artificial intelli-
gence.

I. INTRODUCTION

RTIFICIAL intelligence (AI) has an energy consumption

problem [1]. It has in fact been reported that training a
Transformer model emits the same amount of CO5 of 5 cars
in their lifetime. This carbon footprint is due to the electricity
used to power up and cool down large scale computing
systems, where training of AI models and scientific computing
takes place. Such computing systems are usually based on
the conventional von-Neumann architecture, where memory
and processing units are physically separated, and most of
energy (and time) is spent for transferring information from
the memory to the processor and back [2]. This architecture is
not optimized to perform matrix-vector multiplication (MVM)
which is the backbone of most AI and scientific comput-
ing algorithms. Custom digital architecture, such as tensor
processing units (TPU) [3], have been developed to carry
out efficiently this kind of computations. A recent approach,
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named in-memory computing (IMC) [4], aims to perform com-
putation directly within the memory, without the need for data
movement. Among the device technologies explored for IMC,
emerging memory devices such as resistive random access
memory (RRAM), often dubbed memristor, are particularly
attractive due to the low energy consumption, high speed
operation [4], high densities in compact crosspoint arrays
[5], and the opportunity to encode analogue states [6]. The
last two features enable the hardware acceleration of MVM
exploiting Ohm’s law and Kirchoff’s law. Crosspoint arrays
have been used to accelerate various MVM-based computing
tasks, such as neural networks [7], [8], image processing [9],
optimization problems [10], [11] and the solution of linear
systems of equations [12], [13]. The latter can be either
carried out iteratively by performing numerical methods, such
as Jacobi [12] or Krylov techniques [13], or can be accelerated
in one step with analogue circuits [14], [15]. Also, scientific
computing usually requires high precision [13], thus memory
devices capable of precise analogue programming are needed.
While integrated circuits (IC) comprising CMOS driving cir-
cuitry and memristive devices for computing have already been
developed [16]-[18], the feasibility of high-precision mapping
for RRAM-based IMC has not been reported yet.

Here, we demonstrate an eigenvector calculation by fully
integrated IMC system [18], particularly focusing on the
precision requirements for the Pagerank application [19], [20].
While various techniques have been presented to mitigate
the variation of memristor device conductance [6], [21], a
comprehensive study of the noise contribution in a fully
integrated IMC system has yet to be performed. After showing
the performance and impact of variation, we propose two
programming techniques based on redundancy and analogue
slicing to improve the accuracy of analogue memory states
in RRAM devices. Programming errors are experimentally
evaluated and demonstrated as negligible compared to back-
ground noise when redundancy/slicing techniques are applied.
Application-specific improvements thanks to this technique
and benchmark are presented in the companion paper [22].

II. HYBRID CMOS-MEMRISTOR INTEGRATED CIRCUIT

Figure 1 shows a crosspoint array of memristive devices
for IMC. The crosspoint is made by crossing top electrode
(TE) lines with bottom electrode lines (BE), resulting in a



IEEE TRANSACTION ON ELECTRON DEVICES

Fig. 1. Crosspoint array for performing accelerated MVM. TE lines (light
blue) are polarized to a voltage v, while BE lines (dark blue) are tied to
ground. The current flowing is equal to ¢ = Av where A is a conductance
matrix programmed in the memristive devices (red), which are created at each
intersection between TE and BE.

compact array structure where the memristive device is placed
at each intersection [4]. Interestingly, this structure can be
used not only as a memory, but also as a computational unit
to accelerate MVM. By programming the matrix A in the
conductance of the memristors in the crosspoint array and
applying a vector v to the columns, the resulting current
vector 7 on the grounded rows is equal to the matrix-vector
product of A and v, namely i = Av [4]. The IMC circuit was
implemented in a hybrid analogue-digital IC as shown in Fig.
2(a) [18], comprising routing and sensing peripheral circuits
integrated in 180nm CMOS node whose layout is shown
in Fig. 2(b), with monolithically integrated TaO, memristive
devices [23] (Fig. 2(c)) with large conductance windows up
to 10%x [23]. Each chip includes three crosspoint arrays of 4
kb (64 x 64) analogue memristors in a 1-transistor-1-resistor
(ITIR) structure and integrated analogue sensing/driving cir-
cuitry. It is possible to access any memristor either in random
fashion for programming and reading, or in a parallel way,
performing MVM in-situ on a whole array, which can be
executed in parallel with the other two 64 x 64 arrays and
in any additional chips. TE lines are connected to a simplified
digital to analogue converter (DAC) namely a switch from
ground to an arbitrary analogue voltage, typically Vet /Vieset
or V,.cqd, While for performing MVM a shift and add technique
is used [24] where input signals are applied as a digital
stream spanning from 0 to V,.,q and the output is then
reconstructed as digital summation in the digital domain. The
mixed analogue-digital approach allows to program a given
input precision on the fly, as well as avoid problems due to
conductance non-linearity which can be significant in high
resistance modes [6] thanks to the use of a single input
voltage equal to V,..q. Currents flowing into the BE are
converted to voltage with a trans-impedance amplifier (TIA)
with programmable gain and then read with an analogue to
digital converter (ADC). In particular, columns are organized

in blocks of 4 which are multiplexed to a single TIA and the
16 TIA outputs are further multiplexed and read with a single
10 bit ADC. The IC was packaged on a printed circuit board
(PCB) supplying power, analogue references, and external
communication via a microcontroller. To show the analogue
programming performance of the IC, we programmed the
cover art of the studio album of Abbey Road by The Beatles
[25], in the three 64 x 64 memristor arrays by writing each
red/green/blue (RGB) color component into a different array.
To this purpose, we tuned the conductance with a program
and verify (PV) algorithm, which iteratively performs set/reset
operations on the whole array by modulating TE and BE
voltages until reaching convergence.

Fig. 3(a) shows the final result while Fig. 3(b) shows the
standard deviation of GG after reading the conductance values
100 times indicating relatively small fluctuations (< 5uS or
< 5%) thus supporting the good performance of our system.

IITI. IN-MEMORY PAGERANK

An interesting and ubiquitous algebraic operation based on
MVM is the calculation of matrix eigenvectors. The principal
eigenvector, i.e. the eigenvector corresponding to the maxi-
mum eigenvalue, can be obtained by power iteration where,
given a matrix A, the eigenvector x is obtained iteratively
by solving zy1 = Axy/||Azk|| where || - || is any suitable
norm. The IMC circuit can be used naturally to accelerate such
a problem by mapping matrix A into the conductance of the
memristor array, applying xj to the TE lines and reading the
currents at each iteration. As an example, a random problem
was mapped in a 8 x 8 section of one of the memristor arrays
as shown in Fig. 4(a). The output voltage was monitored and
the mean absolute error (MAE) was computed as

1 N
MAE = =% "|a(k) — (k)| ()
k=1

where N = 8 is the problem size, = is the analytical solution
and z’ the measured solution. Fig. 4(b) shows the result where
it is possible to see that the error correctly approaches 1% in
just a few cycles, while the analytical and measured output
voltages (inset) are in good agreement.

Although IMC can accelerate algebraic tasks, most scientific
computing problems require a relatively high precision (e.g.
floating point) both in the matrix elements to be stored and
in the output solution. For this reason, practical implementa-
tion of IMC for scientific problems needs a mixed-precision
architecture [13]. Nonetheless, improving the low precision
operations can speed up the overall execution significantly. On
the other hand, machine learning and data-analysis algorithms
generally do not require floating point precision, only that the
correct ordering or probability are given in the result. This
is the case for Pagerank, the algorithm behind web search
engines and recommender systems [19], [20]. The problem
consists of ranking the authority of various web-pages on a
graph, which can be done with different techniques such as
randomly walking the graph and computing the probability
of landing in a given page or by computing the principal
eigenvector of a proper matrix. Fig. 5(a) shows a graph of
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Fig. 2. Schematic of the integrated circuit (IC) comprising 3 64x64 1TIR TaOx RRAM, driving and sensing circuity. (b) Layout of the IC with highlighted
RRAM arrays (orange) and sensing circuits (red). (b) Fabricated CMOS-memristive stack. (d) Picture of the realized IC.
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Fig. 3. (a) RGB image of Abbey Road programmed in 3 64 x 64 arrays in
the conductance range from 0.1 uS to 100uS
. (b) Distribution of fluctuation error over 100 reads.
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Fig. 4. (a) Programmed 8x8 matrix. (b) Mean absolute error (MAE)
as function of number of cycles and measured and calculated normalized
eigenvector as function of iteration cycles (inset).

web-pages (circles) connected to each other by arrows that
represent citations. In this representation, page 1 cites page
2 and is cited by page 4, and so on. To find the Pagerank
solution through the eigenvector calculation, a stochastic link
matrix has to be computed [20] by normalizing the adjacency
matrix, i.e. a Boolean matrix where element Aij is equal to
one if the i-th page cites the j-th page and is equal to zero in
all other cases. The stochastic matrix principal eigenvalue is
A = 1 and the corresponding eigenvector is the Pagerank of the
network. However null elements can introduce both algebraic
issues, such as leading to a singular matrix, and technological
issues, since a conductance g = 0 is virtually impossible to
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Fig. 5. (a) To retrieve the most cited webpage (circle) among a network
of citation (arrows) it is possible to compute the principal eigenvector of a
stochastic matrix (b) which is constructed from the adjacency matrix.

obtain, therefore '0’s are replaced by relatively low numbers,
namely 1/N [20]. Thus the analogue target matrix G can be
defined as:

Ay .
%,A"j +(5, if ZzAlJ 750

1/N, if 3, A =0

Gij = )
with p = 0.85 random walk probability and 6 = 1;N” the
probability of randomly picking a page [20]. The matrix G
has a principal eigenvalue A\ ~ 1 and argmax(z)) gives the
order of the web-pages based on their authority. Fig. 5(b)
shows an example of an analogue matrix G of a 32 x 32
problem, which is the reference problem for this work. The
matrix was programmed in a 32 X 32 subsection of the 64 x 64
memristor array, however the read matrix is different from the
target one, due to both circuit and device non-idealities such
as limited precision of the analogue states, noise, fluctuations
[27] and devices becoming stuck in a non-ideal status, i.e.
on, off, or even in an intermediate state [6]. This is shown
in Fig. 6(a) where the stuck off and stuck on devices in the
32 x 32 sub-array are plotted in red and blue, respectively.
This issue is particularly important in Pagerank problem, since
a ’0” or a ’l” in the stochastic matrix can be seen as a
removed connection or strongly added one, respectively. Thus,
the graph changes significantly and the result will show a large
error. Fig. 6(b) shows the measured MAE as a function of
iteration cycles for computing the principal eigenvector with
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Fig. 6. (a) Stuck off (grey) and stuck on (red) devices on the 32x32 subarray with programmed problem. As an example, we considered stuck off and stuck
on a device that after 1000 PV iteration could not increase its conductance to 25 uS or decrease it below 125 uS, respectively on a single sub array
(b) MAE as function of the number of cycles, after 10 iterations the result shows a cosine similarity = 0.9934 with the ideal

result. (c) Correlation graph between the correct ranking (top) and measured ranking (bottom).

the programmed matrix, which can not go below 10%, while
the cosine similarity, namely

cosim(z,z") =z’ /(||z||||2']]) )

which is an indicator of how close two vectors are [20], is
equal to an acceptable value. The effect of this error can
be understood by looking at the correlation graph in Fig.
6(c) where correct and measured ranking are shown on the
top and bottom, respectively. Not only are some of the first
pages mixed up, but very low authority pages (as page 23"%)
appear in the top 10 references, which is a misleading result.
However, since solving eigenvector problems requires multiple
iterations, it is important to characterize all possible sources
of noise that could be iterated and amplified, not only related
to the memristive device variations but also to the limited
precision of analogue circuitry and the corresponding noise.
In fact the TIA and the 10-bit ADC may be affected by
process variations, noise, and non-linearity that could limit the
precision by several bits. To measure conversion precision, an
equivalent number of bits (ENOB) metric is usually adopted.
We characterize the eigenvector calculation of the 32 x 32
problem of Fig. 5 under various conditions to understand
the impact of different noise sources. First we evaluated
the error due to programming variations with respect to the
target matrix of Fig. 5(b). We adopted a program/verify
(PV) algorithm by applying incremental set/reset pulses to
achieve a given target conductance Giqpge¢. Set pulses with
pulsewidth t5.; = 10 us, TE voltage Vs from 1 V to
3.1 V and gate voltage Vygte,ser from 0.5 V to 1.5 V were
applied to increase the conductance, while reset pulses with
pulsewidth t,.5¢: = 1 ms, TE voltage V,cser from -0.4 V
to -2.6 V and a fixed gate voltage Vyate,reset = 5 V were
used for decreasing the conductance. When the conductance
reaches the Gigrger Within an internal tolerance +Giopin
the algorithm stops while more PV iterations are applied
whenever the conductance exceeds Giqrger by an external
tolerance £Gio,c5¢. Fig. 7(a) shows the resulting distribution
of the programming error, namely Gerror = G — Giarget
with GG measured conductance, after 1000 iterations of the PV
algorithm showing a relatively small error in programming.
Then we characterized the error in performing MVM, by

applying random bipolar input vectors to the programmed
matrix and comparing the result with the analytical product
of the same random vectors with the read matrix G. Fig.
7(b) shows the distribution of the MVM error, confirming
an inherent stochasticity of the operation [26]. Finally, we
characterize the resulting ultimate noise floor (NF), namely
all the background noise including CMOS non-linearity (such
as IR drops), noise and memristor read-to-read fluctuations.
To this purpose, we measured the conductance matrix several
times and recorded the variation between multiple reads whose
distribution is plotted in Fig. 7(c). Note that this noise is not
only due to random fluctuations of memristive devices [27],
since single devices characterization has shown little read-
to-read variation with o < 0.5 pS [23] compared with a
onr = 1.5 uS measured in this experiment. To compare
the various contributions, we applied the same experimental
procedure in the calculation of the eigenvector of matrix in
Fig. 5(b) and evaluated the MAE due to each source, which
is reported in Fig. 7(d). Final results suggest that the error
is mainly due to programming variation, thus supporting the
relevance of an improved analogue programming algorithm.

IV. REDUNDANCY

To limit the impact of programming variations and stuck
devices, we first adopt a redundancy technique where multiple
memristors connected in parallel are used as a single matrix
entry [28], [29]. Figure 8(a) shows the concept where the
problem matrix G, (same as Fig. 5(b)) is addressed in 4
different array areas, leading to a 64 x 64 target matrix Giorget
to be programmed in the memristor array. Fig. 8(b) shows
a conceptual outcome, where variations are still present in
the array. The equivalent matrix is given by the average
of these 4 sub-matrixes, namely G,., obtained by reducing
the input voltage by a factor 4 and summing the currents
from columns containing the same coefficient. Figure 8(c)
shows the distribution of Gerror = Gp — G, for increasing
redundancy factor M namely the number of devices used for
a single coefficient, demonstrating the reduction of the error
even with a small M. Redundancy is particularly effective in
the case of stuck on/off cells. For example, it is possible to
compensate a device stuck off with a redudancy M = 2, by
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Fig. 8. Redundancy. (a) The problem matrix G is programmed in 4 different
sub-arrays resulting in 4 different programming matrices whose average G, =
(G1 + G2 + G3 + G4)/4 gives the overall matrix. (b) Programming error
as function of the redundancy factor M.

assuming a state in which G1 = G2 = Gigrger but is highly
probable to reach G; = 0 and G2 = 2Gigrget, such that
GMSB = Gl + G2 = Gtarget-

To fully take advantage of redundancy for suppressing the
effect of stuck cells, it is necessary to develop a redundancy-
aware program/verify (RA-PV) algorithm, which is illustrated
in Fig. 9(a). The desired conductance Gyqrget is reached by
averaging M different memristive conductance (top), while
the same programming pulses namely TE voltage Vi (center)
and gate voltage Vz (bottom) are applied to all the M devices.
At each iteration, RA-PV reads the conductance in all the M
sub-arrays, then it makes a decision of either setting, resetting
or stopping programming each entry. In this way, if a stuck
device is found in the last of the M sub-array, at the next
iteration all the other M-1 devices will be programmed in
order to compensate for the new error. Fig. 9(b) shows the
distributions of G-, demonstrating an improvement larger
then 2x for RA-PV compared to PV. Note that RA-PV is
also beneficial for endurance, since less cycles are needed to
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Fig. 9. Redundancy aware PV. (a) Conductance (top) with light red showing
single traces for M = 4 conductance and strong red line the average con-
ductance, TE (center) and gate voltage (bottom) as function of programming
cycles. (b) Comparison of the conductance error for a simple PV (blue) and
redundancy aware PV. The decrease of the positive Gerror is due to stuck-
on devices being more frequent than stuck-off devices in the PV case, which
were then corrected with the RA-PV algorithm

program the desired conductance. The algorithm can be used
both for improving accuracy and reducing device stress.

V. ANALOGUE SLICING

To further increase the programming quality, we adopted an
analogue slicing technique. Slicing is a well-known strategy
[12], [24] to improve the number of bits in an MVM oper-
ation. With a memristor capable of representing k bits and
a specification requirement of N, = 2k bits, it is possible
to write the k£ most significant bits (MSB) on a device and
the k least significant bits on the second device which are
connected in parallel. By properly setting the ADC, it is thus
possible to perform 2k-bit precision. Taking inspiration from
this, we developed a new analogue slicing (AS) technique.
First, the target matrix GG, is written into a sub-array resulting
in matrix G, then an error matrix G = G, — G, is computed
as shown in Fig. 10(a). Note that GG includes both positive and
negative entries. Positive and negative errors are multiplied
to a magnification factor « and [, respectively, fit in the
conductance window (i.e. 1-100 w.S). Finally, the resulting
error contributions namely G.; and G._ are programmed
with the same M factor of G, and according to the RA-
PV algorithm. Note that G. compensate the errors in G,
including stochastic conductance variations and deterministic
errors such as IR-drop errors. However, to further increase the
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Fig. 10. analogue slicing. (a) The measured average matrix Gpssp is
compared with the problem matrix G to obtain the error matrix G'¢ which
is divided in its positive and negative part, magnified to fit the maximum
conductance window and programmed. (b) Comparison of the error in
programming G, without analogue slicing (blue) and with analogue slicing
(red).

MVM accuracy, a linear correction is applied to reduce as
much as possible the impact of IR drop. Fig. 10(b) shows the
distribution of programming error Ge,..o,r With and without
AS considering M = 4, indicating a clear improvement in
precision by AS. In fact, the standard deviation ogerror = 0.4
wS is significantly smaller than the nNF standard deviation
onr = 1.5uS which now becomes the dominant factor in the
IMC precision.

VI. CONCLUSION

We demonstrated in-memory accelerated solution of eigen-
vectors calculated in a fully-integrated hybrid CMOS-
memristive system. We characterized the sources of noise and
developed a programming methodology based on redundancy
and analogue slicing to improve the programming perfor-
mance. The results indicate that programming errors can be
reduced below the background noise thus significantly improv-
ing the precision of IMC circuits. These results support the use
of the hybrid CMOS/memristor IC for analogue computing
acceleration.
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