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Stencil-based algorithms are a relevant class of computational kernels in high-performance systems, as they
appear in a plethora of fields, from image processing to seismic simulations, from numerical methods to
physical modeling. Among the various incarnations of stencil-based computations, Iterative Stencil Loops
(ISLs) and Convolutional Neural Networks (CNNs) represent two well-known examples of kernels belonging
to the stencil class. Indeed, ISLs apply the same stencil several times until convergence, while CNN layers
leverage stencils to extract features from an image. The computationally intensive essence of ISLs, CNNs, and
in general stencil-based workloads requires solutions able to produce efficient implementations in terms of
throughput and power efficiency. In this context, FPGAs are ideal candidates for such workloads, as they allow
design architectures tailored to the stencil regular computational pattern. Moreover, the ever-growing need
for performance enhancement leads FPGA-based architectures to scale to multiple devices to benefit from
a distributed acceleration. For this reason, we propose a library of HDL components to effectively compute
ISLs and CNNs inference on FPGA, along with a scalable multi-FPGA architecture, based on custom PCB
interconnects. Our solution eases the design flow and guarantees both scalability and performance competitive
with state-of-the-art works.
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organization→ Interconnection architectures; Reconfigurable computing; • Theory of computation→
Streaming models.
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1 INTRODUCTION
Multimedia and image processing applications like computer and robot vision [27], Gaussian
smoothing [63], and Sobel edge detection [3], numerical methods to solve linear eigenvalue problems
[67] or model and simulate various natural phenomena and behaviors [21, 46], classical and quantum
dynamics [11, 18, 50], cellular automata [81], pricing of financial options [32]. Although different
at first glance, all these fields of application and many others share the same computational pattern
and are examples of stencil-based algorithms. Given a system of points on a multi-dimensional
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grid, the update of each point value depends on the weighted contributions from a fixed pattern of
neighbors. This regular pattern is the stencil, and the update function applied to update each point
of the grid is called transition function.
Among the multiple fields of application, two of the most prominent and relevant examples of

stencil-based computations are Iterative Stencil Loops (ISLs), and Convolutional Neural Networks
(CNNs) [30, 39, 82, 83]. Indeed, ISLs iteratively apply the same stencil on a multi-dimensional grid
until the system of points reaches convergence. Similarly, the feature-extraction stage of CNNs
employs several convolutional filters to extract specific features from the input image. In general,
the computationally intense nature of stencil-based workloads makes them suitable for optimized
implementations on high-performance systems [7]. The same concept holds for both ISLs and
CNNs. In particular, both these kernel classes have proved to benefit principally from hardware
accelerations [4, 12, 14, 17, 25, 41, 51, 61, 62, 75, 78, 85, 88, 90]; indeed, they require optimized
computing to be used in real-life scenarios, as well as tightly optimized architectures in terms of
both performance and power efficiency metrics. Besides, these kernel classes, especially CNNs, are
continuously upgrading to improve their accuracy and require architectures whose flexibility and
design-productivity are high enough to keep pace with the algorithm evolution. To this purpose,
Field Programmable Gate Array (FPGA) [13, 29] are good candidates to handle these constraints
against GPUs and ASICs, as they can provide good computational and power efficiency, while their
reconfigurability properties satisfy the system flexibility needs. The principal gaps to cope with
when using FPGAs as hardware accelerators are, however, their long design time and their steep
learning curve. High-Level Synthesis (HLS) can ease the design process but often leads both to
suboptimal implementation results and restricted architectural choices, also preventing the design
to efficiently scale when distributed architectures are adopted [2, 22, 42–44, 61, 64, 79, 84, 90]. The
architecture scalability is indeed a key aspect of accelerating heavily compute-intensive applications,
as they usually need distributed systems to fulfill the performance requirements.

This work proposes a set of Hardware Description Language (HDL)-written Intellectual Property
(IP) libraries that leverage the Streaming Stencil Timestep (SST) micro-architecture [51] to improve
the scalability of stencil-based computations [57, 58]. Specifically, the proposed libraries are devised
to design both ISLs and the feature extraction stage of CNNs. Besides, this work implements a
multi-FPGA based system, composed of serially connected FPGAs. To improve the scalability,
the proposed architecture leverages a custom Printed Circuit Board (PCB) interconnect, which
provides a point-to-point connection with an overall bandwidth of 7.75 GB/s. The experimental
evaluation shows that our multi-FPGA system achieves performance comparable to or better than
the literature for both ISLs and CNNs. This work main contributions can be summarized as follows:

• highly-optimized set of HDL IPs based on an improved version of SST architecture to effi-
ciently implement both ISLs and the feature extraction stage of CNNs on FPGA;

• design and implementation of a scalable multi-FPGA system;
• implementation and scalability validation of multiple ISL algorithms on the proposed system;
• implementation and estimation of two state-of-the-art CNNs, namely AlexNet [37] and
VGG16 [66], on the proposed system.

2 BACKGROUND
This Section describes the technical background of this work. Section 2.1 and Section 2.2 explain
the structure of ISLs and CNNs, respectively. Section 2.3 illustrates the fundamentals of FPGA
Input/Output (I/O) this work builds upon for the multi-FPGA system.
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(a) Single time-step of a cross-shaped ISL (b) The AlexNet architecture

Fig. 1. ISL and CNN examples

2.1 Iterative Stencil Loops
ISLs represent a class of computational kernels used in a wide range of scientific and industrial
applications, such as methods for partial differential equations [67], computational finance [32],
and cellular automata [81]. These kernels usually constitute the computational bottleneck of a
given application due to their iterative nature. Indeed, in an ISL algorithm elements of a multi-
dimensional array are iteratively updated through a fixed pattern of weighted neighbors, called
stencil. Depending on the ISL, the shape of the stencil changes, as well as its weights distribution,
which can be composed either by a scalar or variable coefficients. A complete update of the multi-
dimensional array, called timestep, is usually performed several times to output the final kernel
result. Since stencils are composed of neighbor elements of the array, ISL algorithms have ghost
zones on the array boundaries: depending on the nature of the algorithm, boundaries can thus be
filled either with constant or periodic values. The filtering action performed by the stencil on a
single timesteps is highlighted in Figure 1a, where the stencil is slid over the whole input array to
iteratively isolate the reference element together with its north, south, west, and east neighbors.
Since reading multiple data elements – i.e. the stencil – creates an output element, ISL computation
is often bounded by memory transfers, which create stalls in the data processing path and worsen
the performance. Regardless of the hardware architecture used, one of the major implementation
challenges is to efficiently manage memory accesses and allow continuous data processing. Finally,
ISL parallelization possibilities are limited by data dependencies between subsequent time update,
as the next timestep can be computed only when the whole array is updated.

2.2 Convolutional Neural Networks
Firstly introduced in 1998 [39], CNNs take inspiration from the visual cortex biological process
to perform recognition and classification of images and nowadays are the state-of-the-art class of
deep learning algorithms for computer vision, and one of the hottest topics for both academics and
industrial research [30, 82, 83]. CNNs are composed of two main stages of computation, named
Feature Extraction Stage and Feature Classifier Stage, each of which can be divided into several
layers. The Feature Extraction Stage is the first stage of a CNN, and it is composed of a sequence of
Convolutional Layers, usually interleaved by activation and/or pooling layers, whose purpose is to
evaluate and highlight the presence of a set of features of the input image. The Feature Classifier
Stage is constituted by one or more Fully-Connected Layer (FCL). It elaborates the output of the
last Feature Extraction layer, determining its affinity against the CNN classes. One of the most used
CNNs in literature is AlexNet, reported in Figure 1b. Throughout this work, we do not focus on the
CNN training, i.e., the phase in charge of equalizing the CNN coefficients used during inference,
usually performed off-line only once, but on the efficiency of the inference part, used in real-time
scenarios and having stringent throughput and energy requirements.
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2.3 FPGA I/O
The Input/Output (I/O) capabilities of an architecture are crucial for its flexibility and performance.
The exchange of data between different chips or boards divides into two main transmissions types:
Parallel and Serial. In the former, data is sent simultaneously from a Transmitter (TX) to a Receiver
(RX) on separate communication lines and synchronized with a common clock. In the latter, data
are bit-wise serialized and transmitted sequentially on the same channel. The communication
can be either synchronous when the transmission clock is provided by RX and sent to TX, or
asynchronous, when TX transmits data asynchronously to RX (i.e., there is not a communication
media containing a synchronization clock), which takes care of recovering data and clock.

Historically, parallel buses were a standard for chip-to-chip and board-to-board communications,
as serial communication exhibited slower speed and overhead due to serialization and deserial-
ization of data. To satisfy an ever-increasing bandwidth demand, the size of parallel data buses
increased, and the communication clock rate. The increase in cost and dimension of parallel buses,
together with issues related to clock and data skew and signal degradation over long distances,
made room for serial transmissions, which reduced the overall pin and wires count, as well as Elec-
tromagnetic Interferences and costs. Nowadays, improvements like differential signaling, Double
Data Rate transfers, or multi-lane serial transmissions have been adopted to improve both parallel
and serial systems, and the performance gap between parallel and serial communications has been
almost filled. Therefore, serial transmissions have become advantageous for off-chips, board com-
munications, as they can provide higher performance while minimizing pin counts, simultaneous
output switching noise, and overall system costs. Ideally, perfect data transmission between TX and
RX interfaces would require an ideal clock synchronization in terms of both frequency and phase.
To satisfy this constraint while reducing the overall pin counts, a Synchronous Serial Interface
may seem the natural way to go, as the same clock is forwarded from RX to TX to handle data
transmission; however, non-idealities introduced by the communication media add jitter, distortions,
and attenuation to the transmitted clock, while increasing the communication media quality results
in a higher overall cost of the system. Thanks to their low cost, a wide range of electronic systems
(e.g., FPGAs) include dedicated hardware for serial links, known as Serializer/Deserializer (SerDes),
which provides a high-speed Asynchronous Serial Interface.

In this context, Multi-Gigabit Transceivers (MGTs) are SerDes capable of reaching bit rates
above 1 Gigabit/second. Thanks to their high bit rate capabilities, MGTs are increasingly used for
high-speed data communications. The MGT main building block is a Parallel In Serial Out (PISO) /
Serial In Parallel Out (SIPO) couple, where parallel data coming from the data bus are serialized
by the PISO and transmitted through a communication media to the SIPO, which is in charge
of recovering serial data in its original form. A method to correctly recover data at the receiver
side of the transmission link is the Clock and Data Recovery (CDR) circuit. This circuit creates a
recovered clock that is phase-aligned with the input transition position and used to sample the
incoming data stream. The CDR is usually composed of a Phase-Locked Loop, a negative feedback
circuit that, through a Voltage Controlled Oscillator (VCO), generates an output frequency locked
to the incoming data streams in both frequency and phase. The Phase Detector (PD) behavior can
be modeled as an XOR gate, as it outputs a signal that is proportional to the phase difference of
its inputs. This signal is averaged by a low-pass filter and sent to the VCO, which generates a
clock whose frequency is proportional to its input amplitude. The negative feedback loop reacts
to generate a stable recovered clock, which is locked to the input stream in phase and frequency.
It is important to guarantee enough transitions for the clock recovery circuit to operate: long
sequences of ones or zeros at the input of the PD circuit would cause a Loss Of Lock that prevents
the CDR to works correctly. Line encoding schemes, such as 8b/10b or 64b/66b, are thus used to
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ensure an adequate number of transitions on the serialized stream. It is worth noting that the
CDR circuit must receive a data stream whose frequency is not affected by jitter to work correctly.
Indeed, a jittered input signal would prevent the CDR from generating a stable recovered clock,
causing a wrong sample of the stream and communication errors. Thanks to their high working
frequency, modern MGTs allow extremely high-throughput communications and are widely used
to interconnect FPGAs [13, 29, 45, 72], thus increasing the hardware accelerator performance.

3 STATE OF THE ART
This Section describes the most relevant works about hardware acceleration, mainly on FPGA, of
ISLs and CNNs. Specifically, Section 3.1 analyzes the literature about ISLs, Section 3.2 focuses on
the State of the Art of CNNs, and Section 3.3 reviews relevant ISL and CNN multi-FPGA systems.

3.1 Iterative Stencil Loops
ISLs are widely used in scientific computations, but their low computational intensity limits
the performance whenever not coupled with tailored memory optimizations. For this reason,
efforts based on multi-core processors [6, 15, 71] and GPUs [28, 47] lead to sub-optimal results.
The flexibility of reconfigurable devices such as FPGAs leaves large room for ISL performance
improvements, since improving data reuse reduces off-chip memory accesses. Kobori andMaruyama
start exploiting temporal parallelism of ISLs employing FPGAs for cellular automata [35]. In [59],
a flexible RTL-based template for tri-dimensional stencil algorithms is proposed. To solve the
memory-boundedness of ISLs, authors minimize off-chip data transfer by storing all data on local
memories, though requiring large on-chip buffers as the problem size increases. Nacci et al. [49]
present an automatic flow to generate the ISL hardware design. They merge multiple iterations in a
tile, improving the data locality, which in turn is instantiated multiple times to work concurrently
on different data, and subsequently processed by the following stages, creating a cone-shaped
structure. Though improving on the off-chip boundedness, large stencil windows create on-chip
memory port contention. Due to data dependencies, it must introduce redundant computation
between neighboring tiles, thus limiting the overall performance and memory efficiency. Besides,
[78] proposes a framework that leverages OpenCL pipes to share data between neighboring tiles,
reducing the overall redundant computation. The framework traduces an OpenCL code in a cone-
shaped architecture, where pipes bridge neighboring tiles to remove data redundancy among them.
However, the on-chip port contention is still present, resulting in performance degradation when the
number of merged iterations increases. SODA [14] is an automated framework devised to implement
dataflow architectures for stencil computations on FPGA. Starting from a high-level input, SODA
produces an efficient micro-architecture that minimizes external memory transfers and on-chip
reuse buffer size. Moreover, the SODA framework includes resource and performance models to
effectively and quickly explore the design space and identify performance-optimized configurations.
The authors implemented different stencil computations on an AlphaData ADM-PCIE-KU3 board
and obtained up to 3.28X speedup over a 24-thread optimized CPU implementation.

3.1.1 Streaming Stencil Timestep. The SST is an FPGA-based acceleration methodology that models
ISLs as data-flow algorithms able to execute a single timestep update. The SST micro-architecture,
firstly proposed in [12, 51], relies on the polyhedral model [20] to automate the design of a generic
ISL algorithm from a C/C++ code. To provide a dataflow data-access, the SST micro-architecture
uses a non-uniform memory partitioning, first proposed in [16], to perform on-chip buffering
and provide concurrent accesses to all the elements of the stencil window at each clock cycle. In
particular, the memory sub-system leverages a series of channels, one for every stencil element
involved in the computation, composed of a series of chained filters, and interleaved by First In
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Fig. 2. SST access pattern and architecture (example on a 𝑁 ×𝑀 array indexed with variables 𝑖 and 𝑗 )

First Out (FIFO) buffers that realize the on-chip buffering relying on a blocking read and write
access. These filters select from the incoming data stream the elements that belong to their data
domain, i.e. , the elements accessed by the specific array reference, and send them to the Processing
Element (PE), while also passing every element to the subsequent filter within the chain. Each
filter has its own set of counters in charge of tracking the array spatial position and indicating
whether to forward the data to the PE in any given clock cycle, according to the stencil shape.
Figure 2a shows an example of a bi-dimensional cross-based stencil: the SST architecture handles
input data, performing on-chip buffering on the elements depicted in range, and forwarding the
stencil elements to the PE. The PE is a fully pipelined unit such that, at steady state, it produces
a new output at each clock cycle. A Multiplexer (MUX) collects both the output from the PE and
the array border, the elements that are not updated during the computation, and reconstructs the
output data stream with every element in the same spatial position as the original input stream.

The corresponding SST micro-architecture, as in Figure 2b, is composed of one channel having
five filters. Each filter forwards every element to the subsequent filter, and the elements belonging
to its data domain to the PE. To preserve coherency among data, FIFOs between filters store every
element whose spatial location is between two subsequent filters data domain. Since the MUX
reshapes the stream to be spatially coherent with the input array, it is possible to chain several SSTs
together to accelerate multiple timesteps within a single sweep. The queue of SSTs acts therefore as
a high-level pipeline, where, at steady state, each SST is concurrently active and computing on a
portion of the data stream. This technique requires constant bandwidth, which is independent of
the number of iterations queued. Indeed, data transfers between off-chip and on-chip memories
happen only at the beginning and at the end of the SST chain, and they do not vary with the length
of the queue. Thus, it is possible to scale the size of the accelerator and boost performance [12, 51],
with the only limits being the total number of timesteps and the available target FPGA resources.

3.2 Convolutional Neural Networks
The CNN computational intensity makes such networks usually suitable for large High Performance
Computing (HPC) systems, data centers and highly performing hardware accelerators like GPUs
[69], FPGAs [30] or even ASICs [34]. While GPUs are the current de-facto standard for CNN training,
they are less attractive for the inference task due to the high power they drain. Indeed, considering
other accelerators, FPGAs offer great advantages in terms of both power efficiency and flexibility,
and newer FPGA generations exploit several Digital Signal Processing (DSP) blocks and MegaBytes
of on-chip memory for CNN requirements. For these reasons, FPGA-based CNN acceleration is
becoming one of the most attractive alternatives in both the embedded [19, 55, 60], and the HPC
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domains [56, 85, 88], as described by state-of-the-art surveys [25, 75]. Indeed, in [80], the authors
use a bi-dimensional systolic array pattern to implement an end-to-end automation flow for CNNs
targeting FPGAs. The architecture is composed of a grid of pipelined PEs, exploiting meshed local
connections to exploit FPGA routing resources better, achieving higher working frequencies. This
work uses a two-phase Design Space Exploration (DSE), where the first phase relies on performance
and resource models to evaluate the best over several pre-designed templates, while the second
uses the hardware generation flow of the target device to reach the best performance. The work is
evaluated on an Arria 10 GT 1150 board against AlexNet, with a throughput of 360.4 GFLOPS.

Relying on Intel FPGA SDK for OpenCL, the authors of [4] introduce a CNN architecture targeting
an Intel Arria 10 FPGA able to cache on-chip both CNN features and weights. Moreover, they use a
1D Winograd transform to reduce the convolution arithmetic complexity. They introduce a shared
exponent technique to convert half-precision floating-point data to 18-bit fixed-point. This enables
a fully fit of the Altera DSP blocks, which can compute two 18x18 fixed-point multiplications in
a single unit, saving memory resources while increasing the computational efficiency, without
accuracy losses. They test AlexNet network by implementing every single stage of the network on
the whole FPGA, reaching a maximum of 1382 GFLOPS at 303 MHz, without taking into account
the FPGA reconfiguration time. In [41] the authors implement the 2D Winograd algorithm [38] to
improve their FPGA-based CNN design. This algorithm offers arithmetic complexity reduction,
and it is one of the fastest known matrix multiplication algorithms, enabling resource savings. The
authors design line-buffers to cache feature maps before and after the Winograd transformation.
Moreover, they propose a DSE, from which they derive an automatic tool flow, where their AlexNet
implementation on a Xilinx ZC706 platform reaches 1006.4 GOPS running at 200 MHz.
Other works exploit the Winograd transformation [1, 2]. In particular, Ahmad et al. [2] rely on

this technique to implement an optimized convolution engine obtaining significant throughput
focusing on single layers of AlexNet (3331.6 GOPS) and groups of layers of VGG16 (3623.9 GOPS).
Zhang et al. [86] propose a DSE technique to identify the optimal architectural solution, in terms
of both performance and resource usage, over a large design space and leveraging on both roofline
model and the Computation to Communication Ratio. The design space is created by applying to the
described network a set of optimizations such as on-chip reuse buffering and loop transformations,
e.g., tiling, pipelining, and unrolling. This methodology is applied only to the CNNs convolutional
layers rather than the full network. Implementing AlexNet on a Xilinx Virtex-485Twith an operating
frequency of 100MHz, this work achieves 1.33GFLOPS. In [70], the authors describe a design space
methodology to accelerate CNNs on OpenCL-based FPGA. Such a methodology aims to maximize
network throughput by considering the FPGA resources and memory bandwidth. The authors
evaluated their approach on both AlexNet and VGG on two Altera boards, namely DE5-Net and
P395-D8. On the other hand, Zhang et al. [87] leverage on Fast Fourier Transform and Overlap-and-
Add to optimize the convolutional layers of CNNs and reduce their computational requirements. In
this way, the authors significantly reduced the number of required floating-point computations.
The experimental evaluation, performed on an Intel Quick-Assist QPI FPGA Platform, reached
123.48, 83.00, and 96.60 GFLOPS on VGG16, AlexNet, and GoogLeNet, respectively. Li et al. [40]
propose an end-to-end CNN accelerator where all the network layers are simultaneously mapped
on the same FPGA. This work takes advantage of both a batch-based approach and a design space
methodology to optimize external memory utilization and identify the proper parallelism level. The
authors implemented AlexNet on a Xilinx VC709 and reached 565.94 GOPS as peak performance.

State of the Art also contains various works [22, 42, 44, 64, 74, 79, 84, 85, 90] describing automatic
toolchains to map CNNs on FPGAs. Usually, these tools start from a high-level representation of the
network described using frameworks like Caffe [33], PyTorch [53], TensorFlow, etc., and then apply
a sequence of transformations and optimizations to produce efficient FPGA designs. For instance,
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Caffeine [85] is a framework integrated with Caffe that exploits a systolic-like computational
architecture to evaluate CNNs on FPGAs using a matrix-multiplication pattern. This framework
allows users to configure different CNNs directly in software without changing the FPGA bitstream.
They use a weight-major mapping technique to exploit data locality for both convolution and FCL
execution. As a case study, they implement both VGG16 and AlexNet on various FPGAs peaking 636
and 338 GOPS, respectively. DNNBuilder [90] is another relevant example of automatic toolchains.
DNNBuilder takes as input Deep Neural Network (DNN) description from Caffe and TensorFlow
frameworks and exploits an automatic design space exploration to produce an optimized FPGA
design. In particular, the DSE tool takes into account the target board features (e.g., available FPGA
resources and external memory bandwidth), as well as the DNN complexity. The authors evaluated
DNNBuilder on four different DNNs, namely AlexNet, ZF, VGG16, and YOLO, on both edge and
cloud FPGAs, outperforming state-of-the-art FPGA accelerators.

Finally, in [5] the authors propose a data-flow accelerator template that relies on the SST archi-
tecture, achieving 5.2 and 28.4 GFLOPS on two CNNs based on USPS and CIFAR-10 datasets. On
top of [5], the authors present Condor, an end-to-end framework [56] integrated with Caffe [33].
Albeit already proposed in [85], [56] enables the accelerator cloud integration through the Amazon
AWS F1 instances, reporting 8.36 GFLOPS for USPS and 53.51 for the LeNet feature extraction stage.

3.3 ISLs and CNNs Multi-FPGAs
Both ISLs and CNNs are large-scale computational kernels that could benefit from multi-FPGA
platforms on the execution times and power efficiency sides. Here, we review multi-FPGAs imple-
menting ISLs and CNNs of interest to this work.

Sano et al. [61] present a multi-FPGA domain-specific programmable architecture for ISLs that
guarantees a flexible accelerator by leveraging run-time configurable processing elements. This
architecture exploits both time and spatial parallelism and applies a streaming computational
pattern, allowing linear performance scalability. This work has been prototyped on a cluster of
nine Altera Stratix III, achieving 260 GFLOPS and 236 GFLOPS for 2D and 3D Jacobi kernels, while
they model the performance of 100 chained Altera Stratix V with peak estimation of 17 TFLOPS
and 17.7 TFLOPS. Waidyasooriya et al. [77] proposed an FPGA-platform based on OpenCL to
accelerate stencil computations. Such a platform consists of a pipeline of computation modules, each
performing one iteration of the stencil computation. The authors also developed an optimization
methodology that identifies the optimal architecture to implement based on the devised platform,
starting from a given application. The experimental evaluation, performed on two FPGA boards,
namely a DE5 and 395-D8, covers both 2D and 3D single-precision stencil computations and shows
performance ranging from 119 to 237 GFLOPS. Starting from this work, Waidyasooriya et al. [76]
designed a multi-FPGA accelerator to scale stencil computations in time and space dimensions. The
authors evaluated their approach on a two-FPGA system, where they connected two Nallatech 385A
accelerator boards to the host via PCIe and to each other via QSFP interconnect. Finally, the author
executed 2D and 3D stencil benchmarks using skewed grids and non-skewed grids, reaching up to
950 GFLOPS (single FPGA) and 1861 GFLOPS (two FPGAs). Considering the SST micro-architecture,
Cattaneo et al. evaluate their framework [12] on a multi-FPGA system [51] composed of two Xilinx
Virtex-485T, reaching 30 GFLOPS and 6 GFLOPS for a 2D and 3D Jacobi solver, respectively, and up
to 10x power-efficiency improvement when compared to [6].

Considering the CNNs, Zhang et al. [88] propose a pipelined FPGA cluster, where seven FPGAs
are connected through a ring topology, reaching single-link bandwidth of 750 MB/s to improve the
energy-efficiency of FPGA-based CNN accelerators. The authors then propose an analytical model
to easily map CNNs on a multi-FPGA architecture by choosing the selected objective, i.e. , energy,
latency, or throughput . The result of their AlexNet implementation shows a maximum throughput
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of 825.6 GOPS relying on a cluster of four Xilinx Virtex VX690t. Thereby, a multi-FPGA system
for ISLs, or CNNs, is not a novelty per se. Still, this work proposes a system with one of the best
bandwidths for chip-to-chip communication against related works, as Section 6.1 will show. The
high bandwidth feature is the enabling improvement for achieving performance and scaling CNNs
and ISLs in a multi-FPGA system, as shown in Section 7.

Summary. This Section focused on relevant implementations available in the literature about
both ISLs and CNNs. Among them, the SST approach [12, 51] applied to ISL computational pattern
has shown exciting results, as the authors can to both efficiently partition the on-chip memory and
perform data-flow computations on the stencil. On the other hand, [5, 56] showed that the same
micro-architecture applies to CNNs as well. Indeed, ISLs and CNN layers share similar characteristics
in data locality patterns. However, all these works show significant limitations on throughput,
scalability, and resource utilization efficiency, which prevents them from reaching performance
comparable with the literature. Besides, they leverage HLS tools and off-the-shelf IP components to
generate the hardware design, resulting in a sub-optimal architecture in terms of both timing and
resource consumption. For these reasons, the proposed work aims to improve the above-mentioned
design methodology by exploiting scalable and parameterizable HDL modules to describe the most
common ISL and CNN computational blocks, providing tailored components that alleviate the
user effort to describe specific networks in HDL. Moreover, since both computational domains are
moving toward the usage of multi-FPGA systems [12, 30, 61, 88], this work also proposes a custom
multi-FPGA architecture that leverages modular ad-hoc PCBs optimized for data-flow applications.

4 HARDWARE ACCELERATION METHODOLOGIES
This Section presents the fine-grained structure of our HDL IPs for stencil-based computations. As
stated before, various application fields rely on stencil-based kernels. In this work, we focus on
two particular instances of algorithms that build upon the stencil model: ISLs and CNNs. Although
they may look different, these algorithms share a similar data locality pattern, based on applying
one or more stencils to the input data. Our accelerators for these workload classes rely on the
SST micro-architecture [16, 51], as in Section 3.1.1, to perform on-chip memory buffering while
providing a data-flow like computation. Our enhanced and reusable SST-based architecture exploits
both inter-iteration parallelism and a new degree of parallelism, namely intra-iteration parallelism,
performing better than [57] for ISLs. Concerning CNNs, we combine inter-layer, intra-layer, intra-
FM parallelism, DSP time-sharing, and clock gating. To the best of our knowledge, we are the
first to apply the combination of DSP time-sharing and clock gating to CNN computations. These
techniques considerably increase parallelism, throughput, and weight reuse. Finally, given the
benefits of a distributed system, Section 6 proposes a scalable multi-FPGA architecture, where an
arbitrary number of serially connected FPGAs provides a pipeline of computational resources.

4.1 ISL Hardware Architecture
The work proposed in [51] keeps large rooms for improvements. Indeed, the authors do not apply
intra-iteration parallelization to fully exploit the system throughput capabilities and leverage HLS
tools to create the architecture, with a consequent sub-optimal resources handling. This work
builds on top of [51] to overcome these limitations. Specifically, it provides a set of architectural
templates to minimize application design time and exploit specific optimizations to improve the
overall performance. Indeed, the proposed solution implements both inter- and intra-iteration par-
allelization, while keeping the on-chip memory requirements to a (analytically optimal) minimum
[17]. The proposed hardware accelerator components implement a data-flow model of computation,
which relies on three fundamental elements: filters, FIFOs, and PE. The templates can be examined
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Fig. 3. Enhanced SST design

at two levels of hierarchies: at the level of the single timestep and the entire accelerator level, able
to accelerate multiple timesteps in a single sweep.

4.1.1 Micro-architecture for Single Timestep. The non-uniform memory partitioning, proposed
in [16], performs on-chip data buffering, providing concurrent accesses to all the stencil window
elements at each clock cycle. As described in Section 3.1.1, the SST memory sub-system is made by
a series of channels, composed of a series of filters connected in a chain, and interleaved by FIFO
buffers. These filters select from the incoming data stream the elements that belong to their data
domain and send them to the PE, while also passing every element to the next filter within the
chain. Addressed in the same Section, the micro-architecture exploits counters to perform data
filtering, adapted to support intra-iteration parallelism.
While the fully pipelined PE converges to the new value production at each clock cycle, a

multiplexer engine collects all the elements to reconstruct the output stream positions as the input
stream. The proposed solution exploits intra-iteration parallelization to enhance computational
intensity and bandwidth of the stencil kernels while minimizing on-chip memory usage. It processes
consecutive element updates using multiple parallel PEs, maximizing thus data reuse1 while having
a minimal impact on on-chip memory usage. Figure 3a illustrates the implemented computational
pattern, easily comparable with Figure 2a. The highlighted stencil windows and all the elements
included between the stencil boundaries – north and south elements if columns slide the matrix
–are the ones stored on-chip at the instant depicted in figure. In general, every parallel PE added
to improve computational intensity and bandwidth of the stencil kernels requires an additional
number of elements to be stored on-chip equal to the stride of the stencil kernel, which is commonly
1. Comparing Figure 3a and Figure 2a, only 3 additional elements need to be indeed stored on-chip
to enable 4 concurrent updates. This means that the width of the on-chip memories has to be
increased to store the required elements. Consequently, we increased the width of the on-chip
memories to store the required elements concurrently, thus guaranteeing contention-free data
accesses. Increasing the intra-iteration parallelization improves the accelerator bandwidth but
complicates the SST synchronization mechanism and increases the resources required to perform
the computation. Hence, our implementation exploits an intra-iteration parallelization of four. We
chose this solution to balance the parallelization benefits in throughput and resource utilization.

For what concerns the single timestep, this solution leads to a performance increase of a factor 4
against the solution proposed in [12, 51]. Moreover, intra-iteration parallelization enhances the
overall bandwidth, since to sustain the datapath rate, multiple elements per clock cycle need to
be fetched from off-chip memory in a number equal to the number of parallelized PEs. Thus, this
1the stencil windows of consecutive elements are overlapped and therefore share common data that can be reused
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Fig. 4. Scheme showing the structure of the proposed ISL hardware accelerator.

parallelism allows to match the off-chip bandwidth with the computational ones and respect the
data-flow computational pattern, where consumed and produced data must be tuned to avoid stalls.
Specifically, the input data stream is firstly processed by different filtering stages, each having
as many filtering conditions as the number of parallel PEs, as depicted in Figure 3b. This set of
filters’ main purpose is to orchestrate data to guarantee a continuous flow towards the PEs without
other control structures that may interfere with the stream of data. Each filter outputs data to
both the PEs and the subsequent filter within the channel; to guarantee coherency among data,
consecutive filters are interleaved by read- and write-blocking FIFOs, used as on-chip memory
buffers to store the current input elements. Since multiple elements are updated concurrently,
the structure of a channel has been updated by inserting multiple FIFOs between filters, equal to
the number of elements updated in parallel, allowing the transfer of multiple separate elements
concurrently. More specifically, if 𝑁 is the width of the input matrix, while [51] requires one FIFO
to store 𝑁 − 1 elements - which represent the maximum distance between two points belonging to
the SST window - the proposed solution exploits 𝑌 FIFOs to store the same data, each containing
(𝑁 − 1)/𝑌 elements. This change has no theoretical impact on memory resource usage since the
difference lies in how these FIFOs are written/read. Nonetheless, there may be a minimal difference
in the resource usage that mainly depends on the synthesizer. On the other hand, it may be easier
for a synthesis tool to place 𝑌 smaller FIFOs on the FPGA instead of a larger one. Valid data at the
output of the last filter notify a fullness of the memory pipeline. From that moment forward, all the
PEs start consuming data concurrently and computing.

The proposed micro-architecture is implemented in HDL. This design choice allows performing
tailored optimizations to improve both resource utilization and the working frequency, dramatically
improving the system performance. Therefore, each PE exploits a mix of LUTs and DSPs to balance
resource utilization, while input and output operator registers guarantee to meet timing constraints
even with a high working frequency. PE results and the input border, are then ordered by a
multiplexer engine to spatially reconstruct the array and provide meaningful data to the next stencil
iteration. A PE is implemented by replicating the algorithm behavior, either using fixed or floating-
point notations, exploiting elementary arithmetic operations, such as additions and multiplications.
The created PE is automatically replicated and connected to both the SST and the multiplexer
engine to match the imposed intra-iteration parallelism. The proposed library implements the most
common stencil windows for several data dimensions, i.e. , 1D, 2D, 3D. As a result, the user just has
to select the desired stencil window and specify the operation that the PEs have to implement.

4.1.2 ISL Hardware Accelerator. The described micro-architecture contains all the functional
characteristics to evaluate the target iterative stencil over a given number of timesteps. However,
implementing just a single iteration engine core would lead to poor performance as data would
be transferred from off-chip memory 𝑇 times, where 𝑇 is the number of timesteps. Since, as in
[51], data exiting from a single iteration engine are ordered to be spatially coherent with the
input array, multiple engines can be serially connected to accelerate multiple timesteps in a single
Input/Output (I/O) transfer, as shown in Figure 4. The streaming data pattern and the data-flow
computational model of the proposed accelerator allow achieving a pipelined execution within the
chain, where each iteration can be seen as a “pipeline stage”. The overall accelerator comprises 𝑁

, Vol. , No. 1, Article . Publication date: .



12 E. Reggiani et al.

Weights
Memory

Weights
FSM

Data
FSM

Convolutional 
Core

Requantization
Core

Pooling
Core

Coarse-layer

Weights
Input

Stream

Data
Input

Stream

Output
Stream

(a) Coarse-layer architecture

Memory Subsystem

#Kernel

Weights Engine

Convolution Kernels

#Kernel x #MACC

Accumulation
Core

Convolutional Core

Split

MACC

MACC

MACC

MACC

#Kernel

(b) Convolutional Core architecture

Fig. 5. CNN accelerator architecture

serially connected engines, reducing the completion time while increasing resource utilization by
a factor of 𝑁 against the single iteration design. The ISL computational pattern, along with the
presented SST architecture, allows a throughput increase that scales with the number of chained
timesteps. Thus, the performance of the proposed multi-timestep accelerator is just limited by the
available FPGA fabric resources and the bandwidth available from the FPGA I/O. An approach
to further improve the system scalability consists of fully exploiting the SST data-flow paradigm
through a point-to-point multi-FPGA system, where multiple FPGAs are chained to compose a deep
pipeline of acceleration engines. Indeed, this solution allows extending the data-flow approach that
characterizes the SSTs to an arbitrary number of accelerators, where every SST performs only one
timestep on the same input data. The hardware architecture discussed in Section 6 aims to cope
with these considerations, thus extending the stencil acceleration to a distributed system scale.

Finally, it is worth noting that there is no control step between two SSTs. Although this control
could be useful to identify an early convergence of a stencil computation, it would include additional
and unnecessary logic that could limit the scalability of the multi-timestep approach. Moreover,
this would add complexity and contention when processing a batch of data, as these data could
potentially converge at different stages of the multi-timestep pipeline. Therefore, two control steps
could simultaneously require access to the I/O interface.

4.2 CNN Hardware Architecture
Moving to CNN, we propose a flexible and scalable methodology to accelerate any CNN inference on
FPGAs, by combining HDL and HLS design flows and exploiting data quantization and time-sharing.
In the context of CNN accelerations, Convolutional Layers (CNVLs) represent the most critical
computational kernel, as they contain most of the network operations. Thus they consume most of
the accelerator resources. Indeed, an inaccurate design of the CNVL quickly leads to high latency
and system performance degradation. For this reason, it is crucial to fully exploit the FPGA parallel
architecture. In general, after CNVLs follow an activation layer, a requantization layer – if working
with quantized data –, and, sometimes, a pooling layer. In this work, the aforementioned quartet –
or trio, if the pooling layer is absent – is named coarse-layer, and the features extraction part of a
CNN can be viewed as a chain of coarse-layers.

The proposed IP library can leverage the same hardware resources to implement several subse-
quent coarse-layers, namely stages. A coarse-layer consists in the components shown in Figure 5a:
the Convolutional Core (CNVC), the Pooling Core, theData Movements Finite State Machine (FSM), and
the Requantization Core. It is worth to note that the proposed HDL IP library only implements the
Convolutional Core and the Pooling Core. On the other hand, we designed both the Requantization
Core and the FSMs using HLS tools – i.e. Vivado HLS –. The FSMs are lightweight components –
i.e. every FSM occupies just some hundreds of Look-Up Tables (LUTs) and Flip Flops (FFs) – and
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would not benefit from an HDL-based implementation. Therefore, relying on HLS to implement
these cores does not affect accelerations performance but improves design productivity. On the
other way, the Requantization Core needs a moderate number of DSPs to perform bias addition and
data quantization. Nevertheless, the integration of this core in the HDL IP library is future work.

4.2.1 Convolutional Core. The CNVC contains most of the CNN operations, and results to be
compute-intensive even when high parallelism imposes a substantial data movement from the
off-chip memory. The outcome of this core is a volume composed of a set of bi-dimensional
matrices, named output feature-maps. Specifically, the core input feature-maps are convolved with
a set of filters. The resultant volume is summed element-wise to obtain a single bi-dimensional
output feature-map. The described computational pattern keeps room for two principal parallelism
opportunities, named intra-FM and intra-layer parallelisms. Intra-FM parallelism relies on the
data dependencies absence to compute the output feature-map; thus, a set of convolutions are
computed concurrently. A reduction tree is used to create the output feature-map element. Intra-
layer parallelism exploits data reuse to convolve the same layer input feature-maps with different
weights-set to compute several output feature-maps in parallel.

The above-mentioned parallelism paradigms can easily saturate the FPGA computational re-
sources. Even when low-precision fixed-point arithmetic is adopted, DSPs are not able to fulfill
the parallelism possibilities offered by this core. Consequently, a fine-grained tuning of the CNVC
parallelism dictates both the overall performance and the parallelism to infer on the other com-
ponents. To exploit both intra-FM and intra-layer parallelisms while saving DSP resources, this
library implements a time-sharing approach to compute each convolution with one DSP primitive.
Each DSP is used as Multiply and Accumulate (MACC) unit to perform an element-wise multi-
plication between the input feature-map and the correspondent filter while accumulating these
partial results. To allow a single DSP to perform this computation, the input datapath flows at a
sub-multiple of the clock frequency, whose value changes according to the filter dimension. In
particular, we are clock-gating the datapath as its clock is enabled once every 𝑁 × 𝑁 clock cycles,
where 𝑁 is the filter dimension. This solution offers a substantial DSP count reduction and can
exploit larger intra-layer and intra-FM parallelism degree, resulting in less off-chip data movement
to process the network. Moreover, the design relies on parameterized HDL-based cores easily
retailored for the target network and device through the following parameters: filter and input
feature-map dimensions, bit-width of data and weight buses, padding, and stride factors, intra-FM
and intra-layer parallelisms. Figure 5b represents the CNVC. The Memory Subsystem feeds a set of
Convolution Kernels, guaranteeing a data-flow communication pattern, while aWeights Engine loads
and distributes the weight windows to each Convolution Kernel, whose output is hierarchically
accumulated by the Accumulation Core to create the corresponding output feature-maps.

Memory Subsystem. The CNVLs require concurrent access to several neighbor elements of the
input feature-maps: to perform the convolution, these elements need to be slid and processed over
a filter. The presented methodology relies on bi-dimensional line buffers to concurrently access all
the filter elements while performing a data-flow computation. Specifically, an input channel streams
sequentially the input feature-maps elements, while a chain of FIFOs is used to cache a suitable
number of rows and output concurrent elements, preserving data locality. The concept of on-chip
buffering implemented in the Memory Subsystem leverages the SST architecture [51]: indeed, as
highlighted in [5], the data locality needed to perform a convolution requires the extraction of a
bi-dimensional square stencil from the input feature-maps, and the SST architecture can be applied
to allow on-chip memory buffering on the Convolution Kernel input data. To enhance flexibility,
this work automatically infers a suitable number of FIFOs to implement the chain and the optimal
FIFO depth, which has to store an entire input feature-map row.
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The Memory Subsystem exploits intra-FM parallelism, as the bit-width of its data-bus can be
set to buffer several input feature-maps concurrently. Intra-layer parallelism is extracted from the
Memory Subsystem outputs, as the same data are used to compute different output feature-maps.
All datapaths of these blocks flow at a sub-multiple of the clock frequency, whose value depends on
the filter dimension, to allow all the Convolution Kernels to compute data through the time-sharing
technique. When the stride factor is greater than one, the updating frequency dynamically changes
depending on the spatial location of the elements within the FIFO chain. This optimization allows
freezing the FIFOs chain only when the Convolution Kernels must process its output to produce
valid elements while running at a full frequency to skip dummy window elements. Finally, to
orchestrate the data stream, a controller is in charge of handling FIFO read and write enables.

Convolution Kernels. The Memory Subsystem outputs are consumed by a set of Convolution
Kernels that perform the element-wise multiplications between the input feature-map elements
and weights, and accumulate the results. MACC units and MUXs perform this computation: both
these functional blocks work at a full frequency and leverage the datapath slowness to consume
data while sharing computational resources. In particular, each clock cycle of the time-sharing
period is used to multiply the i-th element of the input window. The MUX output is fed to the
MACC unit, which performs the multiplication with the corresponding weight and accumulates
the partial result. After 𝑁 × 𝑁 clock cycles, where 𝑁 × 𝑁 represents the dimension of the stencil –
i.e. , the dimension of the filter –, the accumulator outputs the final result and resets its content.
To enhance data locality, Convolution Kernels can be replicated to compute output feature-maps
in parallel, exploiting intra-layer parallelism. In this case, the same data are streamed to different
MACCs and multiplied with different weights.

Weights Engine. In CNVLs, the same weight window is slid over the whole input feature map.
This pattern improves data locality by saving the weight window in small memories until the input
feature map is completely processed. This solution requires a high peak bandwidth: when a new
set of feature-maps has to be computed, slowness in weight loading from off-chip memory implies
computation stalls. Moreover, depending on intra-FM and intra-layer parallelisms, the number
of weights loaded in each iteration widely varies. Weights are loaded and saved on-chip before
the Memory Subsystem starts to forwards valid data to the Convolution Kernels to avoid stalls.
To properly orchestrate the weight loading, a tailored gearbox engine has been implemented. The
gearbox automatically distributes data from off-chip to on-chip memories, providing weights to
each MACC unit until the input feature-maps are entirely processed. All on-chip memories share
the same controlling structure: memories must be written to store the gearbox data at the beginning
of each Convolution Kernel run and must provide data to the MACC units during the computation.
Suppose the off-chip memory bandwidth is not enough to avoid computational stalls. In that case,
the Memory Subsystem freezes and stops sending data to the Convolution Kernels until the Weights
Engine completes weight loading. From that moment, the Weights Engine starts writing data to
the MACC units, guaranteeing synchronism and coherency with the input datapath.

Accumulation Core. The results of several Convolution Kernels are summed element-wise to
create the output feature-map elements based on intra-FM and intra-layer parallelisms. To this
purpose, the proposed methodology exploits a hierarchical accumulator strategy, where each
hierarchy level performs a partial data reduction until the output feature-map element is generated.

4.2.2 Pooling, Data Movement, and Requantization Cores. The proposed Pooling Core architecture
shares the same memory access pattern of the CNVC. A FIFO chain collects the output feature-maps
produced by one of the Requantization Core, while tailored Pooling Kernels consume its output. The
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Fig. 6. High-level overview of the proposed CNN hardware accelerator

Pooling Kernel does not require specific computational resources, as it just needs one comparator
working at a full frequency to find the maximum value of the window.

The Data Movement cores are HLS-based FSMs, given their simplicity, and handle data movement
inside each stage and counting number of elements and number of iterations missing to end of the
coarse-layer computation. In particular, there are two main cores: Data FSM and Weights FSM. The
Data FSM is interposed between two subsequent CNVLs to perform data collection and reordering
and pre-process data for the subsequent Convolution Kernel, as data between adjacent layers need
to be normalized. Specifically, data coming from the previous coarse-layer are saved on-chip and
distributed to the Convolution Kernel. Data reordering is necessary when the CNVC computes
a fraction of output feature-maps simultaneously. Therefore, data in input to the Data FSM are
composed of fragmented output feature-maps and must be appropriately reordered to feed the
following coarse-layer correctly. TheWeights FSM takes weights from the off-chip memory and
simply perform an element-wise normalization of the CNVC weights.

As discussed in the literature [24–26, 90], CNN inferencewith lower-precision quantized networks
can achieve results comparable to floating-point arithmetic, with an accuracy loss of only a few
percentage points. Quantized networks are beneficial for FPGA devices, as fixed-point arithmetic
exploits reduced bit-width data types than the floating-point one, reducing latency, resource
consumption, and memory bandwidth. As a direct consequence of these considerations, this work
leverages 8-bit integer arithmetics to perform the CNN computations. Indeed, 8-bit quantization
has proven to be the right trade-off between lowering precision and maintaining a level of accuracy
comparable with the uncompressed model and is the quantization choice of several industry leaders
[36, 52] and works in literature [24, 26, 42, 43, 70, 73, 90]. Specifically, the 8-bit quantized data
and weights feed the CNVC, which performs the convolution and outputs data whose bit-width is
larger than 8 bits – i.e. , large enough to avoid overflows during the computation –. As a result, a
Requantization Core is necessary to correctly requantize the output feature-maps to 8 bits.

The Requantization Core is placed after the accumulation hierarchy and performs data requanti-
zation, Rectified Linear Units (ReLU) activation, and biases addition. Indeed, from the Convolution
Kernel input and the Accumulator outputs, data bit-widths have to be increased to avoid overflow
during the computation. Hence, once feature-maps are available, the Requantization Core rescales
these elements at their original bit-widths. Lastly, this core might consume a (negligible) part of
the available DSPs, which depends on the HLS process and the provided directives.

4.2.3 CNN Hardware Accelerator. The proposed architecture follows a classical host-accelerator
scheme where the host – i.e. , the CPU – is responsible for the initial data pre-processing – if
needed – and the final results gathering after hardware acceleration takes place. Data is first sent
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Table 1. List of parameters for ISL and CNN HDL IPs

ISL CNN Parameters DescriptionParameters Convolution Kernel Accumulation Core Pooling Core
D_WIDTH D_WIDTH D_WIDTH_IN D_WIDTH Input data bitwidth
INPUT_DIM - - - Input dimension
PE_LATENCY - - - Number of clock cycles used by the PE to compute the output result
FILTER_SHAPE - - - Shape of the filter (square, cross, ...)
CHAIN_LENGTH - - - Length of SST chain

- W_WIDTH - - Weight bitwidth
- - ACC_WIDTH - Accumulation bitwidth
- MACC_WIDTH D_WIDTH_OUT - Output bitwidth (if < ACC_WIDTH, data are truncated)
- FM_PARAL FM_PARAL FM_PARAL Intra FM parallelism
- LAYER_PARAL LAYER_PARAL LAYER_PARAL Intra-layer parallelism
- KERNEL_DIM KERNEL_DIM KERNEL_DIM Layer stencil dimension
- DMA_WIDTH - - DMA bitwidth
- NUM_LAYERS NUM_LAYERS NUM_LAYERS Number of layers on a given stage
- SST_FIFO_DEPTH - SST_FIFO_DEPTH Number of elements to be stored in the SST FIFO (at least images/input FMs)
- SST_FIFO_GROUP - - Implement each SST FIFOs as N FIFOs of width D_WIDTH·NUM_KERNEL/N
- MACC_PIPE - - Number of pipeline stages between the SST chain and MACC input
- NUM_MACC_DSP - - Number of MACCs (in total NUM_KERNEL·NUM_MACC) to be implemented using DSPs
- MACC_SPREAD - - Number of MUXs between the SST chain and MACC input
- - KERNEL_GROUP - Number of NUM_KERNEL to be grouped together
- - - POOL_TYPE Max or Min pooling

to the accelerator through a Peripheral Component Interconnect Express (PCIe) interface to copy
both weights and input data to the FPGA external memory. The computation starts when all the
weights are transferred, and the first image is streamed to the accelerator. This transfer happens
only at the beginning of the first computation, after which the weights reside in the FPGA external
memory, and a controller feeds the Weights Engine periodically. This solution allows to easily
process multiple input frames in a batch, a common scenario in real applications, where models are
used to process a collection – sometimes a continuous stream – of frames. As a result, the proposed
acceleration methodology implements inter-layer parallelism: such parallelism is realized when
the accelerator executes layers in a pipelined fashion, which intuitively means that while layer 𝑙 is
computing on a frame, layer 𝑙 − 1 is computing on the subsequent frame in the batch.

This is the general idea beyond inter-layer parallelism, though the actual implementation differs.
Indeed, our architecture allows to cluster subsequent layers into stages according to resource and
performance requirements. Each pipeline stage 𝑠 implements one or more subsequent coarse-layers
and has a certain total latency 𝜆𝑠 . Therefore, the total latency to process a single frame will be∑

𝑠∈𝑆 𝜆𝑠 as the frame needs to pass through all the 𝑆 stages to be fully processed. However, as for a
classical pipeline, at steady state each stage 𝑠 will be processing a different input frame, therefore
increasing the throughput since the slowest stage will give the time-per-frame, i.e. , max𝑠∈𝑆 𝜆𝑠 . It is
thus important to keep max𝑠∈𝑆 𝜆𝑠 as low as possible and balance all 𝜆𝑠∀𝑠 ∈ 𝑆 , as will be detailed in
Section 5. Figure 6 depicts the overall system, showing the accelerator pipelined architecture.

4.3 Parameters of HDL IPs
After providing a high-level description of the ISL and CNN architectures, we detail and summarize
the customizable parameters of the proposed HDL IPs. Table 1 reports the parameters for ISL
(column 1) and CNN (column 2, 3, and 4) IPs along with a brief description. The ISL IPs allow the
user to implement 1D, 2D, or 3D stencil computations with different shapes and describe the PE
behavior (i.e., the calculation). The user can also specify the latency of the PE. The IP relies on this
parameter to synchronize filters, PE, and the output multiplexer, avoiding additional buffering and
data stalls. After defining the configuration parameters, the IP setups the SST infrastructure.
The IPs for CNNs offer a large variety of customizable parameters. In particular, the user can

specify and tailor the behavior of Convolution Kernel, Accumulation Core, and Pooling Core. After
configuring such components, the remaining ones (e.g., the Memory Subsystem) are consequently
adapted. The provided parameters permit tackle different aspects of the resulting architecture. For
instance, parameters like FM_PARAL and LAYER_PARAL enable to increase the level of parallelism,
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and, consequently, the performance. On the other hand, MACC_PIPE and MACC_SPREAD target
timing and place & route phase at the cost of resource usage. Finally, NUM_MACC_DSP is an
example of a parameter oriented to resource balancing. Indeed, it defines the number MACCs to be
implemented using DSPs, while the remaining ones are implemented using LUTs and FFs.

In conclusion, the proposed IPs supply multiple knobs to tune either the ISL or CNN architecture
according to the user’s needs. However, exploring such a large design space may be time-consuming,
especially for CNN designs, given the number of parameters. Therefore, in the next Section, we
describe a resource and performance model to support the design of a CNN accelerator.

5 RESOURCE AND PERFORMANCE MODEL
The proposed design methodology relies on different parallelism levels to efficiently exploit the
available resources and guarantee low latency and high throughput. Given the vast number of
available target platforms and CNN models, a careful analysis of both resources and performance
is mandatory to create an efficient design. Indeed, a proper coarse-layer clustering and intra-layer
parallelism are crucial to balance latency and resource utilization. Since CNVCs represent the key
component of the design (they are the most resource-hungry and the actual performance bound),
determining the number of stages and the degree of internal parallelism takes precedence over other
Cores (their impact on the overall execution time is negligible). DSPs usage is a critical aspect of
CNVC design since they represent the most constraining resource. Thus, the proposed model relies
on their estimation for a good assessment of the feasibility of the design. Thanks to the proposed
time-sharing, just one DSP is needed to perform an entire convolution, independently from the filter
dimension. For a given CNVC, the total DSP usage is a function of the chosen intra-FM parallelism
𝛿 and intra-layer parallelism 𝜅:

𝐷𝑆𝑃𝑐 = 𝛿 · 𝜅 (1)

The designer could also offload part of the MACC computations inside Convolution Kernels to
logic and consequently decrease the number of used DSPs. However, DSPs usage would still be
significant. Hence Equation 1 remains a good approximation for evaluation purposes. The following
Equation estimates the total number of clock cycles 𝜏𝑐 of a given CNVC:

𝜏𝑐 =

{ (𝑚𝑙−1 ·𝑛𝑙−1) ·(𝜌𝑙 ·𝜌𝑙 ) · |𝐹𝑙−1 | · |𝐹𝑙 |
𝛿 ·𝜅 , if 𝜎𝑙 = 1

(𝑚𝑙−1 ·𝑛𝑙−1) ·(𝜌𝑙 ·𝜌𝑙 ) · |𝐹𝑙−1 | · |𝐹𝑙 |
𝛿 ·𝜅 ·𝜎2

𝑙

, if 𝜎𝑙 > 1 (2)

where (𝑚𝑙−1, 𝑛𝑙−1) represent the size –𝑚 rows and 𝑛 columns – of the padded input feature-maps,
𝜎𝑙 the stride, |𝐹𝑙−1 | and |𝐹𝑙 | the cardinalities of respectively the input and output feature-maps
and (𝜌𝑙 · 𝜌𝑙 ) the filter size. The total execution time 𝑇𝑐 will simply be given by dividing 𝜏𝑐 by the
target frequency 𝐻𝑐 :𝑇𝑐 = 𝜏𝑐/𝐻𝑐 . Notice that the term (𝜌𝑙 · 𝜌𝑙 ) stems from the fact that the proposed
implementation uses time-sharing. Equation 2 is valid as long as performance is computation-bound,
i.e. , weights are loaded before the Memory Subsystem starts sending data to the Convolution
Kernels. The following Equation clarifies this requirement:

𝜏𝑤𝑐
≤ (𝜌𝑙 − 1) ·𝑚𝑙−1 · (𝜌𝑙 · 𝜌𝑙 ) (3)

with 𝜏𝑤𝑐
being the total number of clock cycles needed to load a new set of weights 𝜂𝑤𝑐

for a
new iteration. 𝜂𝑤𝑐

depends on the intra-FM and inter-layer parallelisms selected for the CNVC,
i.e. 𝜂𝑤𝑐

= (𝜌𝑙 · 𝜌𝑙 ) ·𝛿 ·𝜅 . The term 𝜏𝑤𝑐
will simply be given by dividing 𝜂𝑤𝑐

by the number of weights
𝜖𝑤𝑐

the Weights Engine can transfer at each clock cycle, under this constraint:

𝜖𝑤𝑐
≥ 𝛿 · 𝜅

(𝜌𝑙 − 1) ·𝑚𝑙−1
(4)
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Fig. 7. Multi-FPGA architecture and custom communication system

In other words, Eq. 4 defines the required off-chip memory bandwidth such that a given stage is
computation-bound. Indeed, if Eq. 4 is not satisfied, then the Memory Subsystem will stall until
every weight is loaded in the corresponding Convolution Kernel.
The designer can attempt a first subdivision into stages using a greedy approach to design the

entire accelerator, clustering coarse-layers according to common features. The first is the size of the
filter of the respective CNVLs, as it allows to reuse the same CNVC to implement different CNVLs.
If the result is still too coarse, the designer can use the number of input and output feature-maps
to break these bigger stages further. The intra-FM parallelism of each stage can be first set to
match the highest number of input feature-maps among all the CNVLs belonging to the related
stage. To obtain the final design, further refinements can be applied, such as swaps of coarse-layers
between stages, tweaking the different internal parallelism, following these principles: minimizing
the highest latency among stages, maximizing the achievable throughput, keeping the stage latency
balanced, and the stages count as high as possible considering a feasible number of DSPs.
The model does not entirely take into account overheads introduced by off-chip memory data

movements or host-to-accelerator transfers. The limited off-chip DDR memory bandwidth can
indeed saturate when large batches are computed and can consequently increase the overall network
latency. Nevertheless, it is crucial to understand that the purpose of the model is to guide the
designer through the implementation process. Small deviations from the actual system performance
are tolerable, especially if they are due to technology-dependent reasons. Moreover, the model can
help estimate when a single FPGA cannot accommodate a specific CNN stage configuration. The
model is resolved through the algorithm described in [58], which just solves the model described
to test the mapping feasibility on a single device. If the single device mapping is unfeasible, a
possible solution is to map the stages on multiple FPGAs according to both the available resources
(especially DSPs) on each device and the model estimations.

6 DISTRIBUTED HARDWARE ARCHITECTURE
So far, we have described optimized hardware accelerators for both ISLs and CNNs. These accelera-
tors are a good fit for a single FPGA system, but their performance can significantly scale when
implemented on multi-FPGA systems. Indeed, a multi-FPGA system represents an efficient way
to boost the performance of hardware accelerators, as demonstrated by both industry [13, 72]
and academic [61, 88] solutions. The computational pattern of both ISLs and CNNs considerably
benefits from a heavy pipelining, as we show in Section 7. For this reason, we implemented a

, Vol. , No. 1, Article . Publication date: .



Enhancing the scalability of multi-FPGA stencil computations via highly optimized HDL components 19

distributed architecture composed of multiple FPGAs interconnected through a ring-based topology.
The interconnection between subsequent FPGAs is implemented through a custom communication
system, named INTERCV7 link. Given the fundamentals described in Section 2.3, this link, depicted
in Figure 7a, is composed of one transmitter interface board Tx, one receiver interface board Rx, and
one high-speed link-interconnect to connect Tx and Rx. We chose the Samtec DCH-08-04.0-T-PF-1-1
High-Speed Press-Fit connector as a link-interconnect, which offers eight 100 ohm differential pair
serial links, each supporting up to a 56Gbsp data rate. With this setup, we successfully transmit data
at the target data rate (i.e., 8Gbps per lane), exploiting different cable lengths ranging from 15 to 30
cm. Both the Tx and Rx boards rely on a FPGA to Link Connector based on a FPGA Mezzanine Card
(FMC) to communicate with the reference nodes: this connection leverages on eight Multi-Gigabit
Transceivers (MGTs) to provide an aggregate peak bandwidth of 8 GB/s to the INTERCV7 link. The
reference clock of each MGT is provided through a jitter cleaner mounted on the custom boards
to enhance the signal integrity. Specifically, the transmission clock is initially generated on the
FPGA fabric, forwarded to the jitter cleaner through the FMC, and routed to the MGT reference
clock through the FMC. The jitter cleaner provides to the TX MGT a clock whose jitter respects the
requirements to obtain an optimal signal transmission through a correct Clock and Data Recovery
(CDR) on the receiver side. Along with the MGTs, the FMC is used to connect several FPGA General
Purpose Input/Outputs (GPIOs), whose purposes vary from setting the jitter cleaner parameters –
such as its reference clock frequency –, to controlling up to eight Light Emitting Diodes (LEDs)
and GPIOs, as well as providing the board power supplies.

To allow the INTERCV7 link to be used by the accelerators, we implemented an IP core, namely
INTERCV7 CORE, which leverages the Xilinx Aurora 64b/66b link-layer protocol to exchange data
among nodes. In particular, the INTERCV7 CORE implements and correctly handles two Aurora
64b/66b IP cores, each providing a simplex communication to perform data reception from the
preceding node and data transmission to the subsequent one. Furthermore, the INTERCV7 CORE
is in charge of configuring the jitter cleaner parameters and status LEDs and performing data
gearboxing to match the accelerator data rate. The total resource usage of the INTERCV7 CORE is
very low, as it consumes roughly 3000 LUTs and 8000 FFs, on a Xilinx Virtex-7 XC7VX485T FPGA.

As Figure 7b shows, one INTERCV7 link performs a simplex connection between two subsequent
nodes of the accelerator, where each node represents one FPGA. We chose a simplex-ring topology
to maximize the throughput between subsequent nodes, creating a deep pipeline that fully exploits
the benchmark computational pattern. Indeed, we devoted all the MGTs offered by the FMC
connector for the simplex communication with the subsequent accelerator nodes. Although other
topologies (e.g., mesh or full-duplex ring) could have been more versatile in terms of communication
possibilities, they would have limited the total bandwidth achievable among subsequent nodes,
thus limiting the overall performance. Moreover, the INTERCV7 link design has been chosen among
a backplane-based one to guarantee modularity to the system. Since each INTERCV7 link is entirely
independent of the others, it allows connecting an arbitrary number of accelerators to the chain.

Figure 7b also shows the complete distributed hardware architecture. The host CPU communicates
with the acceleration engine through a PCIe interface. To this purpose, we implemented a multi-
threaded application to bridge the communication of data buffers between the host code and the
PCIe driver residing in kernel space. This application is in charge of allocating the number of
packets, and the packet dimension, for proper data communication through the PCIe interface.
The FPGA-to-host packet dimension is then forwarded to a HDL-written PCIe controller engine,
which prepares suitable packets on the accelerator side and implements watchdogs to transmit
dummy data in case of hardware stalls. The host processor can also reside inside the Master FPGA
as soft-core. In this case, the host processor and the acceleration engine communicate through the
off-chip DDR memory. The soft-core handles Direct Memory Access (DMA) interfaces to load/store
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data directly from/to the board off-chip DDR memory. This approach is more performing than
the PCIe-based one, as the bandwidth offered my the onboard DDR is larger than the PCIe Gen2
x8 provided by the target device. As a downside, the FPGA resources used by the DDR-based
solution are more significant than the PCIe-based one. In both cases, the Master FPGA is in charge
of handling the communication with the host processor and hosting part of the accelerator logic
and an INTERCV7 link. A series of Slave FPGAs are then serially connected to form the daisy-chain
and contain both the accelerator logic and the INTERCV7 CORE.
In the proposed work, the CNN experimental results are collected exploiting the PCIe-based

interface. In contrast, the ISL architecture relies on the Xilinx Microblaze soft-core to forward data
to the acceleration engine. This choice permits to extract performance from both the considered
accelerators fully. Indeed, even though a host could offload a single stencil-based problem or a
batch to the multi-FPGA system via PCIe, the high bandwidth exploited by the soft-core based
solution allows better to validate the ISL accelerator performance in terms of scalability. The CNN
accelerator can instead exploit full performance even in smaller off-chip data bandwidth, as the
adopted time-sharing approach highly lowers the off-chip bandwidth requirements.

6.1 Bandwidth Analysis
We analyzed the bandwidth of the proposed multi-FPGA architecture on a system composed of
a set of Xilinx Virtex VC-707 evaluation board, each containing a Virtex-7 VX485T FPGA. These
FPGAs are daisy-chained through the INTERCV7 link to create a scalable computing pipeline, and
the Master board also exposes a connection with the host processor. As stated before, the host
processor can either reside on-chip (as a soft-core) or be an external CPU communicating with
the Master board via PCIe. The proposed architecture is intrinsically scalable since the number of
compute engines added to the chain is theoretically infinite. Each node is completely independent of
its neighbors, as each FPGA couple is connected through an independent INTERCV7 link. If needed,
as in the CNN architecture, both the Master and the Slave accelerators can rely on the off-chip
DDR memory to load and store coefficients or partial results, streamed by the host processor at the
beginning of the first application execution.
Each INTERCV7 link exploits 8 lanes, capable of providing an aggregate peak bandwidth of

roughly 8 GB/s. On top of the physical MGTs, the INTERCV7 link uses the XilinxAurora 64B/66B IP
core to perform Serial In Parallel Out (SIPO) and Parallel In Serial Out (PISO) data conversions, data
encoding, decoding and data scrambling. The 64B/66B data encoding introduces a 3% transmission
overhead, as detailed in [31]. For this reason, the inter-FPGA peak bandwidth is 7.75 GB/s. This
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Table 2. ISL benchmarks

Benchmark Computation Problem Chained
size iterations

Jacobi-1D [8, 23] 1/3 · (𝐴[𝑖 − 1] +𝐴[𝑖] +𝐴[𝑖 + 1]) 1.04 × 106 362

Jacobi-2D [8, 23] 1/5 · (𝐴[𝑖 − 1] [ 𝑗] +𝐴[𝑖] [ 𝑗 − 1] +𝐴[𝑖] [ 𝑗] +𝐴[𝑖] [ 𝑗 + 1] +𝐴[𝑖 + 1] [ 𝑗]) 1024 × 1024 191

Jacobi-3D [68] 1/7 · (𝐴[𝑖 − 1] [ 𝑗] [𝑘] +𝐴[𝑖] [ 𝑗 − 1] [𝑘] +𝐴[𝑖] [ 𝑗] [𝑘 − 1] +𝐴[𝑖] [ 𝑗] [𝑘]+ 64 × 64 × 64 102
𝐴[𝑖] [ 𝑗] [𝑘 + 1] +𝐴[𝑖] [ 𝑗 + 1] [𝑘] +𝐴[𝑖 + 1] [ 𝑗] [𝑘])

Heat-1D [8, 71] 0.125 · (𝐴[𝑖 + 1] − 2.0 · 𝐴[𝑖] +𝐴[𝑖 − 1]) 1.04 × 106 198

Heat-2D [8, 71] 0.125 · (𝐴[𝑖 + 1] [ 𝑗] − 2.0 · 𝐴[𝑖] [ 𝑗] +𝐴[𝑖 − 1] [ 𝑗])+ 1024 × 1024 890.125 · (𝐴[𝑖] [ 𝑗 + 1] − 2.0 · 𝐴[𝑖] [ 𝑗] +𝐴[𝑖] [ 𝑗 − 1]) +𝐴[𝑖] [ 𝑗]

bandwidth is in line with other works in the literature, like [48], whose multi-FPGA communication
subsystem leverages on QSFP+ transceiver links available on Terasic DE5A-NET boards. Figure 8a
shows the average bandwidth reached by the system, considering a chain whose length ranges
from one – i.e. , loopback configuration – to four nodes. Moreover, the packet length needed to
saturate the chain bandwidth increases with the number of the chained FPGAs. This is because
each INTERCV7 link adds an average of 0.528𝜇𝑠 latency to the chain, whose value affects the
overall bandwidth with small packet length. While Aurora 64B/66B supports up to 16 lanes, each
FMC connector on the Xilinx Virtex VC-707 Evaluation board exposes 8 MGTs, and is the most
equipped connector of the target platform; for this reason, the achieved inter-FPGA communication
bandwidth coincides with the maximum allowed by the evaluation board.

7 EXPERIMENTAL SETUP AND EVALUATION
The experimental evaluation targets the system described in Section 6. We used INTERCV7 links to
chain various Xilinx Virtex VC-707 boards, as shown in Figure 8b: one master FPGA handling both
the communication with a host system through a Gen.2 x8 PCIe and part of the computation, and
multiple slave FPGAs. Each FPGA is equipped with 303600 LUTs, 607200 FFs, 1030 Block RAMs
(BRAMs) and 2800 DSP. The host system exploits an Intel i7-6700 Central Processing Unit (CPU)
processor equipped with 32 GB of DDR4 RAM and runs Centos 7. We relied on the Vivado 2017.2
HLx design suite to obtain the final bitstream and extract power consumption estimates.

7.1 ISL Experimental Results
The proposed micro-architecture is designed to provide a set of templates able to compute several
stencil algorithms. Hence, the same component can be used to create all the stencil algorithms
having the same data dimension - i.e. , 1D, 2D, or 3D - and the same stencil shape. This experimental
evaluation considers 5 of the most common ISL algorithms found in literature, having a total of
three different data dimensions and three stencil shapes. In particular, we selected and adapted the
following benchmarks from Polybench [23], Parboil [68], and Pochoir [71]: Jacobi-1D, Jacobi-2D,
Jacobi-3D, Heat-1D, and Heat-2D. For each benchmarks, we considered both a single-FPGA and a
multi-FPGA system composed of four boards. Table 2 reports the computation performed by each
benchmark, the problem size, and the number of iterations we chained on 4 FPGAs. We empirically
measured the number of SSTs each board could accommodate according to the number of resources
required by a single SST, the I/O IPs, and the softcore (for the master FPGA).

Table 3 shows the performance and power efficiency – normalized against the software baseline
– we obtained using the maximum number of iterations for 1 and 4 FPGAs. We experimentally
extracted results for both Jacobi-1D, Jacobi-2D and Jacobi-3D, while we computed the performance
of Heat-1D and Heat-2D starting from the Jacobi-1D and the Jacobi-2D execution times. The
estimation performed on Heat-1D and Heat-2D is fair, as we implemented the algorithms starting
from the same components used to compute Jacobi-1D, Jacobi-2D, and both Jacobi and Heat share
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Table 3. ISL results and comparison with related works

Benchmarks
Architecture Jacobi-1D Jacobi-2D Jacobi-3D Heat-1D Heat-2D

Type Model and Freq. Designed Norm. Pow. Eff. Norm. Pow. Eff. Norm. Pow. Eff. Norm. Pow. Eff. Norm. Pow. Eff.
Technology [MHz] with Perf. [GFLOPS/W] Perf. [GFLOPS/W] Perf. [GFLOPS/W] Perf. [GFLOPS/W] Perf. [GFLOPS/W]

Baseline [6] CPU (1 thread) Xeon E5-2680 v2 (32nm) 2800 C 1 - 1 - 1 - 1 - 1 -
Optimized [6] CPU (40 threads) Xeon E5-2680 v2 (32nm) 2800 C 22.08 - 5.30 - 6.90 - 12.44 - 14.62 -

[78] 1 FPGA ADM-PCIE-7V3 (20nm) 200 HLS - - 31.59 - - - - - - -
[12] 1 FPGA Virtex-7 XC7VX485T (28nm) 200 HLS - - 6.67 - 0.88 - - - - -
[51] 2 FPGAs Virtex-7 XC7VX485T (28nm) n.a. HLS - - 8.94 4.64 1.90 0.82 - - - -
[61] 1 FPGA Stratix III EP3SL150 (65nm) 133 HDL - - 9.74 1.52 10.67 1.31 - - - -
[61] 9 FPGAs Stratix III EP3SL150 (65nm) 133 HDL - - 74.61 1.3 78.81 1.07 - - - -
[14] 1 FPGA ADM-PCIE-KU3 (20nm) 250 HLS - - 30.12 - 10.32 - - - - -

This Work 1 FPGA Virtex-7 XC7VX485T (28nm) 200 HDL 61.87 4.23 46.06 7.01 22.10 3.33 17.02 3.15 15.86 6.8
This Work 4 FPGAs Virtex-7 XC7VX485T (28nm) 200 HDL 261.42 4.52 171.22 5.91 60.33 2.40 70.46 3.73 60.42 5.51
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a similar latency on the PEs in terms of clock cycles. We performed software benchmarks running
code from [6] on a server-grade dual-CPU system consisting of 2 Intel Xeon E5-2680 v2 with 380GB
of RAM. The baseline is single-thread, while the optimized one runs on 40 threads. The employed
benchmarks exploit the polyhedral compiler Pluto [7, 9, 10] with diamond tiling enabled [6], with
the best tile size found by empirical analysis. Regarding [12, 14, 51, 61, 78], we reported their best
results for the common benchmarks presented in their works, and, when available, the power
efficiency. We excluded works like [76, 77], as they use variants of the selected benchmarks.

The proposed hardware accelerators perform largely better than the optimized CPU implemen-
tation [6], even on a single FPGA. Our solution also considerably outperforms [12, 51], which rely
on the SST micro-architecture to compute ISLs too, in terms of both performance and scalability.
Indeed, while [12] is able to chain up to 8 Jacobi-3D timesteps on a single chip, the proposed acceler-
ator hosts 24 iterations on the master FPGA. When tiling is applied, [78] shows performance similar
to our single-FPGA. However, this optimization causes performance degradation when the number
of fused iterations increases, mainly driven by port contention on the on-chip memory, limiting
scalability to multiple devices, as performance can be quickly bound by data movement. Moreover,
our solution performs better than the related works when considering multi-FPGA results: indeed,
although Sano et al. [61] use 9 FPGAs (we use 4), they only reach a 1.3× speedup for Jacobi-3D,
while they get a 2.3× slowdown for Jacobi-2D. In terms of power efficiency, the proposed approach
surpasses all the other works [51, 61] both in the single and multi-FPGA case. It is worth to note
that the previous works target either our very same FPGA family (Xilinx Virtex 7 ) [12, 51, 78], or
similar devices [14, 78], which allow a fair comparison. Although Sano et al. [61] employ older
technology, they achieve significant results on Jacobi-3D, both on 1 and 9 FPGAs, thanks to their
HDL implementation. Therefore, our performance comes primarily from our HDL-based approach
and secondly from improved technology. Finally, Figure 9 reports the resource usage of the master
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Table 4. Parameters of the AlexNet network (estimated execution times with a clock frequency of 200MHz)

Stage Coarse-Layer Input Output Input Output Filter Pad Stride Intra FM Intra Layer DSPs Clock Coarse-Layer Stage
FMs FMs Size Size Size Paral. Paral. Cycles Ex Time [ms] Ex Time [ms]

0 1 3 96 227 27 121 0 4 3 96 288 392909 1.96 1.96
1 2 96 256 27 13 25 2 1 96 16 1536 399776 2.00 2.00

2
3 256 384 13 13 9 1 1

128 16 2048
108000 0.54

1.894 384 384 13 13 9 1 1 162000 0.81
5 384 256 13 13 9 1 1 108000 0.54

FPGA (accelerator and I/O IPs) and shows the linear relation between resource usage and the chain
length inside the acceleration engine.

7.2 AlexNet Design Space Exploration
To validate the proposed work, we first chose AlexNet, one of the most implemented CNNs in the
literature. Thanks to its relatively large number of CNVLs, the feature-extraction stage of AlexNet
can benefit from a multi-FPGA acceleration and fully exploit the flexibility of the IP library, as
several layers use different hyperparameters. Besides, AlexNet architecture contains CNVLs with
different filter dimensions, requiring the instantiation of multiple stages, as stated in Section 4.2.
The proposed architecture performance tightly depends on the parallelism applied to each coarse-
layer. AlexNet can be divided into 5 coarse-layers, each one composed of a convolutional, an
activation, and a requantization layer, and, if available, also a pooling layer. The first coarse-layer
requires an 11 × 11 filter, the second a 5 × 5, and the remaining ones a 3 × 3. The parallelism
imposed on each coarse-layer must be selected to guarantee almost the same latency for all stages
while maximizing the available chip resources. This is a crucial design choice to avoid resource
wasting and computational stalls on faster layers, which may need to wait for data from slower
ones. We can directly evaluate the latency of each stage using Equation (2). When we apply this
expression, it is worth considering that the sum of the DSPs each stage requires – i.e. , the sum of
Equation (1) applied to each layer – must be less or equal to the number of DSPs available on the
target architecture. For the AlexNet network, the choice of intra-layer and intra-FM parallelism is
driven in particular by layer 1, which is the performance bottleneck, a consequence of the size of
its input feature-maps and the size of its filter.
The associated stage is completely parallelized, while the other stages are just set to achieve a

similar latency. Specifically, since the first layer has a total of 3 input feature-maps and 96 output
feature-maps, even setting both intra-layer and intra-FM parallelism to their maximum value –
i.e. , 96 and 3 respectively – the total number of DSPs assigned to the first CNVL is, applying
Equation (1), equal to 288. A small number of input feature-maps on the first CNVL is a typical
case on CNNs, as they represent the three RGB channels of the input image. If some subsequent
layer in the network has the same filter dimension as the first layer, we can mask this bottleneck
by merging multiple coarse-layers in a single stage. However, this masking cannot be applied in
AlexNet since the first and the second CNVLs have different filter dimensions. As a result, the first
stage, namely S0, is only composed of the coarse-layer of the first layer and exploits the maximum
allowable intra-FM and intra-layer parallelism. As stated in Section 5, the sizing of the remaining
cores is directly inferred from the parallelism imposed to the CNVC, since it consumes most of the
resources and is the biggest contributor to the total stage latency.
The second stage S1 consists of the second coarse-layer, as its convolutional stage is the only

one that implements a 5 × 5 filter: in this case, both intra-layer and intra-FM parallelism has been

2It refers to the implementation of a single convolutional stage, and not the entire network.
3It refers to the last three convolutional stages, each evaluated separately, and not the entire network.
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Table 5. AlexNet results and comparison with related works

Device and Designed Precision Frequency Power DSP Batch Latency Throughput Power Eff.
Technology with [MHz] [W] Util. Size [ms] [GOPS] [GOPS/W]

[80] Arria 10 GT1150 (20nm) HLS 32-bit float 239.62 - 3036 - 4.05 406.1 -
[41] Zynq XCZU9EG (16nm) HLS 16-bit fixed 200 23.6 2520 64 - 1006.4 42.64
[44] Stratix V GXA7 (28nm) HDL 16-bit fixed 100 - 512 - 9.92 134.10 -
[84] Stratix V GXA7 (28nm) HDL 16-bit fixed 200 - 512 - - 780.60 -
[64] Arria 10 GX115 (20nm) HDL 16-bit fixed 200 - 3036 - - 265.36 -
[64] Zynq XC7Z020 (28nm) HDL 16-bit fixed 150 - 220 - - 20.16 -
[4] Arria 10 A10-1150 (28nm) HLS 32-bit float 303 - 1476 - - 13822 -
[74] Zynq XC7Z045 (28nm) HLS 16-bit fixed 125 - 900 - 8.22 161.98 -
[79] Zynq XC7Z045 (28nm) HDL 16-bit fixed 100 - 900 - 12.30 108.25 -
[22] Zynq XC7Z045 (28nm) HDL 16-bit fixed 250 9.48 - - 10.20 116.5 12.3
[85] UltraScale KU060 (20nm) HLS 16-bit fixed 200 - 2760 - - 163.00 -
[86] Virtex-7 VX485T (28nm) HLS 32-bit float 100 18.6 2240 - 22.01 61.62 3.31
[70] Stratix V GS D8 (28nm) HLS 8-bit fixed - 19.1 727 - 20.1 72.4 3.80
[87] Intel QuickAssist QPI (28nm) n.a. 32-bit float 200 13.18 224 - 24.04 83 6.30
[40] Virtex-7 XC7VX690T (28nm) n.a. 16-bit fixed 156 30.2 2144 - 2.56 565.94 18.74
[42] Virtex-7 XC7VX690T (28nm) HDL 16-bit fixed 100 24.8 1436 - - 222.1 8.96
[90] ADM-PCIE-8K5 (20nm) HDL 16-bit fixed 220 22.9 4854 - - 1633 71.31
[2] Virtex-7 XC7VX485T (28nm) HDL 16-bit fixed 200 26.91 2304 - 0.20 3331.63 123.81
[88] 4x Virtex-7 XC7VX690T (28nm) n.a. 16-bit fixed 150 126 - 16 104 825.6 6.55

This Work 2x Virtex-7 XC7VX485T (28nm) HDL 8-bit fixed 200 32.18 4182 48 2.14 1106.54 34.39

tuned to obtain a latency similar to the one of S0. A convenient design rule is to set the intra-FM
parallelism equal to the number of input feature-maps of the CNVL. Thus avoiding data replication
on the Data Movement FSMs or an additional accumulation stage to get a set of output feature-maps.
Therefore, the S1 intra-FM parallelism has been set to 96 and, by applying Equation (2) to its CNVC,
the resulting intra-layer parallelism to match the S0 latency is 16. By applying Equation (1), S1
consumes a total of 1536 DSPs. The remaining coarse-layers can be implemented either with three
separate stages or with a single stage that clusters them. Since treating the three stages separately
would require three concurrent DDR accesses to perform weights loading, leading to sub-optimal
results of DDR bandwidth and resource utilization, they have been clustered in one stage S2, as
these three layers share the same filter dimension. A feedback mechanism, composed of MUXs
and DEMUXs has thus been implemented to reuse the same CNVC to compute both the third, the
fourth, and the fifth coarse-layers. Since these three layers have different input feature-map counts
– i.e. , 256, 384, and 384 respectively –, a feasible solution has been to impose intra-FM parallelism
of 128 and accumulate the partial CNVC outputs to obtain the output feature-maps. In other words,
several iterations – i.e. , two for the third layer and three for the remaining – of the CNVC are
needed to obtain a set of valid output feature-maps. To match the total S2 latency with the other
pipeline stages, its intra-layer parallelism has been set to 16, for a total DSP count of 2048.

Table 4 summarizes the details about each stage, along with the DSP count and the estimation of
the needed clock cycle, obtained from Equation (1) and Equation (2) respectively. This configuration
needs a total of two FPGAs: the first – i.e. , the Master – implements S0 and S1, as well as the
communication with the host system through the PCIe interface; the second FPGA – i.e. , the Slave
– implements the stage S2. Following the performance model (Section 5), each stage should compute
a complete image in, at most, 2.00 ms, considering a working frequency of 200 MHz; hence, at
steady-state, the created pipeline should produce a new result every 2.00 ms. Indeed, the pipelined
execution of the staged architecture reduces the time-per-frame to the slowest stage latency.

7.3 AlexNet Experimental Results
We evaluated AlexNet with an increasing image batch, ranging from 1 to 48 images, as the obtained
latency remains constant when larger batches are applied (Figure 10a). The multi-FPGA system
implements the CNVLs, while the host CPU executes the FCLs. The purpose of the CPU part
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Fig. 10. Results of the proposed AlexNet implementation

is to complete the network flow to check the correctness of the classification. Thus, the latency
measurement accounts only for the execution of the CNVLs, as it is the focus of this work.
At first, the host processor sends all the network weights through the PCIe interface. We do

not consider this DDR initialization time when we measure the latency because it happens only
once. After sending all the weights, the host starts to offload consecutive images to the acceleration
engine and waits until all images have been processed. The average execution time is 5.85 ms for a
batch size of one, representing the total pipeline latency, and it is perfectly in line with the sum of
the execution times reported in Table 4. As the batch size increases, the computational pipeline
fills up and increments the system throughput. The implemented network produces a valid set of
output feature-maps every 2.14 ms at steady state, which deviates from the performance model by
an additional 7%, probably caused by the off-chip data movement or host-to-accelerator overhead.
Figure 10b reports resource and power consumption of both the master and the slave FPGAs,

and takes into account the resource utilization of the whole design, from the I/O interface to the
accelerator. DSPs represent the critical resource. Indeed, as estimated through Equation (1), the first
CNVC uses 288 DSPs, the second consumes 1536 DSPs while the third, hosted on the Slave FPGA,
employs 2048 DSPs, with a total of 3872 DSPs to perform the convolution. The Requantization
Cores use the remaining DSPs for requantization and bias addition.
Table 5 shows a comparison with the highest-performing subset of the works discussed in

both Section 3.2 and state-of-the-art surveys [25, 75]. Results in terms of throughput – i.e. , Giga
Operations per Second (GOPS) – have been evaluated as the total number of performed operations
over the average execution time. The number of operations accounts for both the Convolution and
the Requantization Cores. The performance reported in Table 5 refer to CNVLs only.

The proposed work outperforms, throughput-wise, the majority of the works reported in Table 5,
but [2, 4, 90]. The throughput reported in [4] is the average result obtained by implementing each
CNVC independently on the target FPGA, without considering FPGA reconfiguration time, which
can take several tens of milliseconds. Ahmad et al. [2] followed a similar approach, implementing a
convolution engine and evaluating its performance on the last three layers of AlexNet separately. On
the other hand, we believe that the throughput difference between our work and [90] mainly relies
on the different technology of FPGA. Indeed, the ADM-PCIE-8K5 board features a KU115 FPGA,
which comprises two dies of resources. As a result, it offers almost as many DSPs as two Virtex-7
XC7VX485T (5520 versus 5600). Moreover, the KU115 FPGA features an Ultrascale architecture,
more recent and performing than the one available on our board. Finally, it is worth to notice that
works like [2, 4, 41] achieve a high throughput also thanks to the Winograd transformation, which
simplifies complex operations and increases the efficiency of CNVL computations. The obtained
results clearly show the advantages of the inter-layer parallelism as, once the computational pipeline
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Table 6. Parameters of the VGG16 network (estimated execution times with a clock frequency of 200MHz)

Stage Coarse-Layer Input Output Input Output Filter Pad Stride Intra FM Intra Layer DSPs Clock Coarse-Layer Stage
FMs FMs Size Size Size Paral. Paral. Cycles Ex Time [ms] Ex Time [ms]

0 1 3 64 224 224 9 1 1 3 64 2048 510760 2.55 7.662 64 64 224 224 9 1 1 128 16 1021520 5.11

1 3 64 128 112 112 9 1 1 128 16 2048 519840 2.60 7.804 128 128 112 112 9 1 1 128 16 1039680 5.20

2 5 128 256 56 56 9 1 1 128 16 2048 538240 2.69 8.076 256 256 56 56 9 1 1 256 8 1076480 5.38

3 7 256 256 56 56 9 1 1 256 8 2048 1076480 5.38 8.268 256 512 28 28 9 1 1 256 8 576000 2.88
4 9 512 512 28 28 9 1 1 512 4 2048 1152000 5.76 5.76
5 10 512 512 28 28 9 1 1 512 4 2048 1152000 5.76 5.76

6
11 512 512 14 14 9 1 1 512 4 2048 327680 1.64

4.9212 512 512 14 14 9 1 1 512 4 2048 327680 1.64
13 512 512 14 14 9 1 1 512 4 2048 327680 1.64

is filled up, it can provide high performance. Indeed, using multiple batch of images is a common
scenario for this type of application.

7.4 VGG16 Design Space Exploration
After evaluating AlexNet, we estimated the performance our CNN micro-architecture could reach
on another well-known CNN, namely VGG16. As stated in Section 7.2, all the filters of VGG16
share the same dimension. This feature implies that we can approach the implementation of
VGG16 on FPGA in two ways. On the one hand, we could leverage the shared filter dimension
and implement the whole network with only one stage on a single FPGA. On the other hand, we
could exploit the multi-FPGA system and implement VGG16 with multiple stages. According to
our model, if we wanted to instantiate an optimal and balanced configuration of VGG, we would
need 7 FPGAs. Unfortunately, we do not own that amount of FPGAs to evaluate this solution;
therefore, we decided to estimate the performance of a 7-FPGA system using our model. This
approach is a general solution in the literature to make performance projections, especially when
the required hardware is not available [61, 85]. However, it is crucial to notice that we could also
implement VGG16 either on a single board system, as stated before, or on a 4-FPGA system, as we
did for the ISLs. Nevertheless, this would not allow us to fully exploit the potential of our CNN
micro-architecture or the performance scaling of a multi-FPGA system.

We can divide VGG into 13 coarse-layers, each one comprising a convolutional, an activation, a
requantization, and a potential pooling layer. Each coarse-layer requires a 9×9 filter. We followed an
approach similar to the one applied to AlexNet and imposed proper parallelism on each coarse-layer
to balance the latency of each stage and maximize resource usage. We estimated the latency of
each stage with Equation (2). We completely parallelized the first coarse-layer, which requires a
relatively small amount of DSPs, i.e. , according to Equation (1). Given the small latency of the
first coarse-layer (2.55 ms), we combined it with the following coarse-layer and created stage 0
(S0). Hence, we tuned the intra-layer and intra-FM parallelism of the second layer according to the
available DSPs. S0 requires 2048 DSPs and its latency is 7.66 ms. We applied a similar approach for
what concerns the following coarse-layers and balanced their parallelism to maintain a latency
similar to S0. In particular, it was possible to distribute equally coarse-layers from 3 to 8 in three
stages (S1, S2, and S3). On the other hand, we implemented coarse-layers 9 and 10 in two different
stages (S4 and S5), due to the number of required DSPs and their latency. Finally, S6 contains the
remaining three coarse-layers. This option was possible thanks to the similar structure of these
coarse-layers and the relatively small latency we obtained. This configuration would need a total
of seven FPGAs, one for each stage. In particular, the Master FPGA would implement not only
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Table 7. Estimated VGG16 results and comparison with related works

Device Designed Precision Frequency Power DSP Batch Latency Throughput Power Eff.
with [MHz] [W] Util. Size [ms] [GOPS] [GOPS/W]

[74] Zynq XC7Z020 (28nm) HLS 16-bit fixed 125 - 220 - 633.01 48.53 -
[74] Zynq XC7Z045 (28nm) HLS 16-bit fixed 125 - 900 - 239.5 155.81 -
[64] Zynq XC7Z020 (28nm) HDL 16-bit fixed 150 - 220 - - 31.35 -
[24] Zynq XC7Z045 (28nm) n.a. 16-bit fixed 150 9.63 900 - - 187.8 19.5
[24] Zynq XC7Z020 (28nm) n.a. 8-bit fixed 214 3.5 190 - - 84.3 24.09
[85] UltraScale KU060 (20nm) HLS 16-bit fixed 200 - 1058 - - 310 -
[85] Virtex-7 XC7VX690T (28nm) HLS 16-bit fixed 150 - 2833 - - 488 -
[64] Stratix V SGSD5 (28nm) HDL 16-bit fixed 200 - 3180 - - 157.39 -
[64] Arria 10 GX115 (20nm) HDL 16-bit fixed 200 - 3036 - - 390.02 -
[44] Stratix V GXA7 (28nm) HDL 16-bit fixed 150 - 512 - 87.874 352.244 -
[44] Arria 10 GX115 (20nm) HDL 16-bit fixed 200 - 3036 - 42.984 720.154 -
[80] Arria 10 GT115 (20nm) HLS 16-bit fixed 231.85 - 3036 - 26.854 1171.304 -
[84] Stratix V GXA7 (28nm) HDL 16-bit fixed 200 - 512 - - 669.104 -
[41] Zynq XCZU9EG (16nm) HLS 16-bit fixed 200 23.6 2520 32 - 2601.3 110.22
[43] Arria-10 GX 1150 (20nm) HDL 8/16-bit fixed 150 21.2 1518 - 47.974 645.254 30.43
[54] Intel QuickAssist QPI (28nm) n.a. 32-bit fixed 200 8.04 256 - 142.3 229.2 28.5
[65] Virtex-7 XC7VX690T (28nm) HLS 16-bit fixed 150 25 1376 - - 5704 22.8
[65] XCVU440 (20nm) HLS 16-bit fixed 200 26 1376 - - 8214 31.57
[70] Stratix V GS D8 (28nm) HLS 8/16-bit fixed 120 19.1 - - - 136.5 7.15
[87] Intel QuickAssist QPI (28nm) n.a. 32-bit float 200 13.18 224 - - 123.48 9.37
[89] Arria10 GX1150 (20nm) HLS 16-bit fixed 385 37.46 2756 - - 17904 47.78
[73] Virtex-7 XC7VX485T (28nm) n.a. 8-bit fixed 160 - 2688 - 46.9 660 -
[90] ADM-PCIE-8K5 (20nm) HDL 16-bit fixed 235 - 4318 - - 2011 -
[2] Virtex-7 XC7VX485T (28nm) HDL 16-bit fixed 200 26.91 2304 - 8.47 3623.95 134.67
[1] Virtex-7 XC7VX485T (28nm) n.a. 32-bit fixed 200 36.32 2736 - 28.05 1094.3 30.13
[88] 6x Virtex-7 XC7VX690T (28nm) n.a. 16-bit fixed 150 160 - 2 200.9 1280.3 80.02

This Work 7x Virtex-7 XC7VX485T (28nm) HDL 8-bit fixed 200 - 18432 - 8.846 3669.396 -

S0 but also the host system through the PCIe interface. According to the performance model, the
steady-state pipeline at 200 MHz should produce a new output every 8.26 ms, i.e. , the latency of
the slowest stage. Table 6 details the parameters of the discussed configuration of VGG.
Please note that it would theoretically be possible to improve the performance of VGG further.

For instance, we could map each coarse-layer to a different FPGA and design a 13-FPGA system.
However, this configuration would unbalance the pipeline of stages.

7.5 VGG16 Experimental Results
Table 6 reports the latency estimation of each stage of our multi-FPGA pipeline for VGG. When the
batch size is one, the average estimated execution time is 48.23 ms. As shown in Section 7.3, the
performance model well estimates the latency for a batch size of one; hence, we can assume this
value is realistic. When the computational pipeline fills up due to bigger batches, our architecture
time-per-frame should converge to 8.26 ms, reaching a steady-state throughput of 3926.24 GOPS.
Even in this case, we measured the throughput results as the total number of performed operations
over the estimated execution time. However, the experimental results on AlexNet in Section 7.3
indicate the performance model deviates from real latency at a steady-state for about a 7%. Therefore,
to conduct a fair comparison with the works in the literature, we added a conservative correction
of 7% to the estimated steady-state latency, obtaining 3669.39 GOPS.

Table 7 reports the performance of various state-of-the-art approaches discussed in Section 3.2
along with our estimation. We do not include power and power efficiency values, nor we estimate
them since the design does not run effectively. Most of the works employ 16-bit quantization, while
others (including ours) 8-bit. As described in Section 4.2.2, 8-bit quantization is generally a clear
bound to ensure negligible accuracy loss for both AlexNet and VGG. In general, the performance

4It refers to the overall network, and not just the convolutional part.
5It refers to the single convolutional stages, each evaluated separately, and not the entire network.
6It includes an additional 7% correction.
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in Table 7 regards CNVLs only. A footnote indicates when an entry applies to the overall network.
As noticed for AlexNet, approaches like [2, 41, 90] confirm their high throughput, particularly the
ones exploiting Winograd transformation [2, 41]. For instance, the convolution engine proposed by
Ahmad et al. [2] reaches a remarkable throughput, but such an outcome depends on the separate
evaluation of the accelerator on groups of VGG16 layers. Nonetheless, we can see that our work
surpasses the state-of-the-art works in Table 7 in terms of throughput. This result significantly
depends on the scalability of the multi-FPGA system and the large number of required DSPs, as it
would not be feasible to use such an amount of DSPs on a single FPGA. Finally, even though our
throughput is only an estimation, it shows that efficient and scalable multi-FPGA can help achieve
meaningful performance when applied to heavy pipelined computations like ISLs and CNNs.

8 CONCLUSIONS
Stencil-based computations represent a common computational kernel involved in a wide range of
applications, such as ISLs and CNNs. This work presents a set of HDL IPs, build upon the SST micro-
architecture [51], to compute ISLs and CNNs on FPGA, exploiting fine-grained optimizations aimed
to improve performance, while guaranteeing scalability and flexibility. This work also proposes
a distributed hardware architecture, composed of a chain of FPGAs that communicate through
custom interconnection PCBs exploiting an intra-node bandwidth of 7.75 GB/s. The multi-FPGA
system allows to scale further the performance of both ISLs and CNNs.

The experimental evaluation of ISLs shows that our solution is competitive with the optimized
CPU version [6] when running a single FPGA, reaching an average speed-up of 3.43×, while largely
outperforms both software [6] and multi-FPGA [61] approaches when scaling to multiple boards,
by an average factor of 12.54× and 1.53×, respectively. Regarding CNNs, this work proposes a
multi-FPGA implementation of the AlexNet network, which exploits several parallelism degrees
and specific architectural optimizations. The obtained results show an overall time-to-image of
2.14 ms, and throughput of 1106.54 GOPS, in line with the literature. Finally, we estimated the
performance we could achieve by designing VGG16 on the proposed multi-FPGA system. The
estimated throughput reaches 3669.39 GOPS, theoretically outperforming literature works.
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