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Rapid Low-Thrust Trajectory Optimization in Deep Space
Based On Convex Programming

Christian Hofmann* and Francesco Topputo'
Polytechnic University of Milan, 20156 Milan, Italy

I. Introduction

OWERING the costs of interplanetary space missions through the use of small satellites (for example, CubeSats)
Lwill be of key importance for solar system science and human space flight. As CubeSats can only provide very low
thrust, new challenges arise. In particular, the guidance design is a complex optimization problem and usually takes
several days or even months to complete. It is always performed on ground, and every deficiency of the algorithm has to
be resolved by the operator. It would be desirable, however, to develop CubeSats that are able to autonomously approach
minor or major bodies in the solar system without human intervention. Shifting the guidance task on board poses a
great challenge as the algorithm must repeatedly recompute the reference trajectory and guarantee a (near-optimal)
solution in real-time. Due to the nonlinear dynamics and low-thrust propulsion characteristics, this results in complex
and computationally burdensome optimization tasks. The criteria of feasibility (convergence to a solution), optimality
(cost function minimization), and sustainability (compatibility with available resources) must be traded off when the
guidance is to be computed on-the-fly. Current techniques focus on optimality due to the large power capabilities of
working stations that allow to compute optimal solutions offline, without the need of having real-time capabilities.
Only little attention has been paid to designing a computationally simple, non-failing algorithm that can potentially be
implemented on board. As a consequence, standard techniques have mainly been used to calculate low-thrust trajectories:
metaheuristics, indirect, direct or feedback-driven methods.
Metaheuristics (optimization algorithms that employ heuristic rules to find an optimal solution, for example evolutionary
algorithms [[1]]) and indirect methods (based on the calculus of variations, see [2,3]]) are generally capable of finding
locally optimal solutions. Yet, they are not suitable for on-board applications as they suffer from poor robustness and
computational difficulties. Although improvements have been proposed during the past years (for example through
smoothing techniques [4]]), the convergence issues remain unsolved.
Feedback-driven methods are computationally simple and hence a popular choice for preliminary trajectory design [5].
Still, they are in general not optimal and do not guarantee convergence. More recent approaches make use of artificial
intelligence techniques to design robust, but less optimal and less flexible on-board guidance schemes [6].

Direct methods transcribe the infinite-dimensional optimal control problem into a (often large-scale) finite-dimensional
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constrained optimization problem [7]. On-board computers, however, lack in general of the computational capability to
solve the full nonlinear program. Still, because of the higher robustness compared to indirect methods, evolutionary
algorithms and similar techniques [8], some studies refined the existing methods to further lower the computational effort
and increase accuracy and reliability [9]. Nevertheless, those solvers cannot guarantee convergence to a local minimum
and still do not operate in real-time. As a consequence, novel sequential convex programming (SCP) methods [10]] have
been developed to overcome these issues. The original nonlinear problem is transformed into an equivalent convex
program that is iteratively solved using sophisticated interior point methods [[11]]. Due to their rapid calculation speed
and the fact that convex programs are shown to converge to the global minimum under certain conditions [12]], such
techniques are a popular choice for real-time applications, especially within the path planning of robots and quad-rotors
[L3L[14]. Because of the high demand for more and more autonomy in aerospace vehicles, tremendous effort was made
to exploit the advantages of convex optimization in aerospace applications. Therefore, power descent landing guidance
[15,[16] and entry trajectory optimization problems [17,|18] have recently been solved using SCP. In this context, an
improved Radau pseudospectral discretization scheme has been applied in [[19] to increase the sparsity of the powered
descent and landing problem, and thus lower the computational effort. In contrast to the majority of researchers that
use a modeling language for convex programming [20] to facilitate the SCP implementation, the work in [21] aims to
improve the computational performance by tailoring the algorithm to the actual flight code requirements.

With regard to low-thrust trajectory design, [22) 23] applied sequential convex programming to solve time- and
fuel-optimal transfers for the first time. Their simple numerical examples show that the computational time can be
reduced considerably compared to standard nonlinear programming (NLP) solvers while still getting near-optimal
solutions with rather poor initial guesses. Yet, no conclusion can be drawn on how SCP performs when more complex
interplanetary transfers are addressed. Moreover, extensive testing would be necessary to assess the robustness against
poor initial guesses. Even simple examples show that bang-off-bang control structures cannot be captured accurately.

This Note presents an improved method based on convex programming to generate complex interplanetary trajectories
for low-thrust spacecraft in deep space. The goal is to have a computationally simple and robust algorithm that produces
near-optimal solutions in little time. Building on the work of [19] and [24]], we employ an adaptive flipped Radau
pseudospectral method to lower the computational time and add a mesh refinement strategy for bang-off-bang control
structures. A shape-based method generates initial guesses of various quality and several numerical simulations assess
the overall robustness of the algorithm.

The Note is structured as follows. Section [[I] states the optimal control problem for space flight and its transcription
into a convex program. In Section [[II} the adaptive flipped Radau pseudospectral method is explained and Section
addresses the mesh refinement method. The results of numerical simulations are presented and discussed in Section [V]
to assess the performance of the proposed method when compared to state-of-the-art solvers. Final remarks are given in

Section [Vl



I1. Problem Formulation
We consider the motion of a spacecraft in the two-body environment with the Sun as the primary and no other

perturbations. The equations of motion are given in Cartesian coordinates by

I v
x=f(x,u)=|y|= —u/r3r +T/m M
m _TVVe

where r = [ry, ry, r]7, v =[vy, Vy, v <17, and m denote the position, velocity, and mass of the spacecraft, respectively.
 is the gravitational constant, T the thrust magnitude, T = [Ty, T, T;]" the thrust components and v, = I;,go the
exhaust velocity of the engine, assumed constant throughout this work (I, is the specific impulse and gg the gravitational

acceleration at sea level). Two different convex optimal control problem (OCP) formulations are considered in this work:

OCPI: Partial Linearization

Using x = [r,v,m]" as state and u = [T, T]" as control variables, we rewrite Eq. (I} to obtain

03x4
v I/m 0 0 0
T
Xx=f(x,w)=|_y/F3c|+| 0 1/m 0 0 =p(x) +B(x)u (2)
T
0 0 0 1/m 0
0 0 0 —1/v

N —
p(x) B(x)

Linearizing Eq. () only partially at X by setting f(x, u) ~ p(x) + B(X)u yields
f(x,u) » A(X)x + B(X)u + q(X) 3)

where A(X) = % s denotes the Jacobian matrix evaluated at the reference point X and q(X) = p(X) — A(X)X is the
constant part of the linearization. This way the current solution is independent of the previous control history u, which
significantly enhances the convergence properties [25]. The convex fuel-optimal low-thrust trajectory optimization
problem can now be stated as follows:

Minimize Jy := —m €]



subject to

x=AX)x+B(X)u+q(X) (5a)
0 <T < Thax (5b)

TP +Ty+T2 <T? (5¢)

Ix—xll} <rer (5d)

x(to) =xo, X(t5)=xy (5¢)
X <x<x,, w<us<u, (5)

where the nonlinear constraint on the thrust 72 + Ty2 +T?2 = T? has been convexified into the second-order cone constraint
in Eq. (5¢). The trust region constraint in Eq. (5d) is enforced to keep the approximation of the real dynamics accurate
enough (that is, solution trajectory close to the reference). The trust region radius r;, depends on the problem and must
be chosen accordingly. xo and X are the initial and final position, respectively. Eq. (5f) defines the lower (subscript /)

and upper bounds (subscript u) for states and controls, respectively.

OCP2: Decoupling States and Controls

As demonstrated in [23]], we can fully decouple states and controls by defining 7 = T/m, T = T/m and z = Inm to

obtain
03x4

v 1 0 0 0
. T ~
x=fXw)=|_y/FPr[+| 0 1 0 0 =p(X) + B (6)

T
0 0 0 1 0
00 0 —-1/ve
L !
p(%) B

The new states and controls are X = [r,v,z]" and i = [1, 7] ", respectively. In contrast to OCP1, the dynamics can be

fully linearized due to this decoupling, and OCP2 reads [23]]

o r
Minimize Jy := / T(t) dt @)

4}



subject to

¥=A@)x+Bu+{X) (8a)
0<7<Thaxe *[1-(z-2)] (8b)
T)% + Ty2 + ‘z’z2 < 72 (8¢c)

Eqs. Gd)-@1) (8d)

with equivalent notation as in OCP1. Note that the constraint on the maximum thrust Te* < T, has been linearized in

Eq. (8b).

Remark I: Since we want to target a specific point in space and not an orbit, we use Cartesian coordinates to eliminate
the two nonlinear boundary constraints sin(8(¢r)) = sin(6y ), cos(6(tr)) = cos(6) on the final position that would be
necessary to keep the number of revolutions free for spherical coordinates. 6(¢y ) and 6 denote the azimuthal angle at
the final time 7 and its target value, respectively.

Remark 2: Although OCP2 results in a fully decoupled system that is expected to show better convergence, Section[[V]
will show that OCP1 reduces the complexity when the bang-off-bang mesh refinement is applied.

Remark 3: When nonlinear constraints are linearized about a reference solution, one may encounter infeasible convex
subproblems even though the original problem is feasible. This phenomenon is called artificial infeasibility [26]. An
unconstrained virtual control v € R~ (where n, = 7 is the number of states) is added to the linearized dynamical

constraints in Eq. (3a) and (8a), respectively, to prevent this [12]:

x=AR)x+BXu+qX) +v )

As v is not constrained, the system can always reach a feasible point. The same problem can arise for the linearized

control constraint in Eq. (8b). Therefore, this constraint is relaxed by adding a slack variable > 0:

0STﬁTmaxe_z[l_(z_z)]-'-l7 (1%

Although these terms maintain feasibility, they also result in constraint violations when active. To ensure that v and n

are only used when infeasibility is detected, we incorporate them in our objective function with large penalty parameters



M and Ay,

Minimize J :=Jo+ Z Mo 1Villy + Z A max (0, 1,,) an

meley Mmé€lineq

only for OCP2

where I, and I;,,., denote the set of equality and inequality constraints, respectively. Even though the virtual control
was only active during the first few iterations in our examples, a large and non-decreasing artificial control might result
in a solution that does not satisfy the nonlinear dynamics. In that case, it is often sufficient to modify the initial guess,

the number of nodes or the trust region mechanism.

IT1. Adaptive Pseudospectral Convex Optimization

In order to compute an optimal trajectory, the OCP is to be transformed into a parameter optimization problem.
Pseudospectral methods are a popular choice for solving NLPs because they show spectral convergence, do not suffer
from Runge’s phenomenon, and allow to retrieve the costates from the Lagrange multipliers [27]. In [15}[19] a flipped
Radau pseudospectral method (FRPM) was developed to solve convexified powered descent and landing problems
without adding measures for artificial infeasibility. Instead of keeping a constant number of nodes per segment, we extend
this approach and allow this number to vary, hence resulting in the adaptive FRPM. In contrast to other optimization
tools that use pseudospectral methods to solve NLPs (for example, the General Purpose Optimal Control Software
(GPOPS-II) [28]], Shefex-3 Pseudospectral Algorithm for Reentry Trajectory Analysis (SPARTAN) [29] and Direct and

Indirect Dynamic Optimization (DIDO) [30]]), we adapt the FRPM to convex programs.

A. Adaptive Flipped Radau Pseudospectral Method

The time horizon [#o, ¢ ] is divided into K segments and the equations of motion are collocated at N; nodes in each

segment. Throughout this Note, the notation Xl.(k), Ul.(k) is used to address the ith node of the kth segment of states and

(k

controls at time t; ), wherei =0,1,..., Ny and k = 1, ..., K. Fig. illustrates the discretization and nomenclature. Note

that the initial node is not a collocation point. The dynamics are approximated at the roots of the flipped Legendre—Radau

polynomial, which are defined in the pseudospectral time domain fl.(k) € (—1,1]. The transformation between the

physical ¢ and pseudospectral time domain 7 is given by [19]

0 _ B (), 00
o)y Ze 0 g0, T 2 fori=0,1,...Ne, k=1,...K (12)

N
i N 2 i 2

=t




O,A,O Collocation points of segments 1, k, K
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Fig. 1 Overview of the discretization and nomenclature.

with t,(\?z = 0. An integral constraint is then discretized as
N, K k) _ (k) Ny
/ Lix(),u(r)d — > % > wPLx®, u) (13)
fo k=1 i=1
where wgk) are the Radau quadrature weights [31]]. Similarly, collocating the dynamics yields for each segment k

N (k) _ (k)
x=fx(.u®) — Y DPXY = Bt pXPUM) i= LN (14)
j=0

DEJI.‘) denotes the entry in the ith row and jth column of the Ny X N + 1 differentiation matrix of segment k [32].

B. Discretization of Dynamics
Our goal is to write the dynamics in the linear form Mgy, Y = bgy, so that standard solvers can handle it. We define

the discrete vectors as

Y=[XUv]"

_ 1 2 K _ (D) (D (1) w(2) (K)

X =[xW,x@ _ x®)T = [x{V, X5 s X XX TT s
— (1 2) (KT — (1 (D (D 312 (K)

U=[U",u®, o] = U0, Uy L o]

v=[vD y@ yET = [vi”,vé”, ...,vxl),vgz)...,v](\i)]T



where (-) (k) denotes the column vector of concatenated states, controls or virtual controls of segment k. Note that Xg

and Uy are not collocation points in the FRPM. Adding the virtual control and substituting the linearized dynamics of

Eq. (54) and into Eq. (T4), we get for segments k = 1,...,K

N (k) _ (k)
k k k k Ni 0 < (k o (k k o (k k .
DX +ZD§J3X£‘ ) = AT AKX + BEMHUW + X)) +v! >] i=1,..,Ny  (16)

n=1

X(()k) is the initial state of the kth segment. For k = 1 this is the initial boundary condition x(. Keeping in mind that the
initial states of each segment are not collocated but the final states are collocation points, the following condition holds
true for subsequent segments k > 1:

(k=1) _ (k)
Xy Y =X (17)

Setting A (K) = (tl(\i) - ték)) /2, Eq. (T6) can be rewritten in matrix form to obtain

1) (D (1)
1 1 1 1 1 A( )ql B DIO XO
A | | | I A |
D | 0 0y B \ A(l)qél) - Dé(l))Xo
****** [ ! 0 !
0 i® : D® : 0 : : B® : X
777777 [ | \ ‘
| . I A | ! 5 ! . = (1) (1)
0 | ¢ i®» DO ! B® b o) = (A - DY) Xo
| ! i | |
| [ 2
| | v A(2>q§ )
[ 0 [
B | 8
K) o (K)
A( )qNK
Mdyn bdyn
(13)
with
(k) k) A (k) (k) (k)
DL, — AWA] D)L, Dy In,
(k) (k) k) A (K) (k)
po | Pl Db —AT0AT - Do (19)
(k) (k) k) A (K)
DNkII"x DNkaI"x - Al )ANk_




and

_AOB®k)
1

~A®BY
A A~ k k
B = 10 = D1, DL, D(;ZOI,,X]T (20)

_A(k)Bg\fk)

We introduced the notation Afk) = A()_(i(k)) (B and q accordingly) for the sake of brevity. I, isan, Xn, andI, a
(N ny) X (N ny) identity matrix with N being the total number of collocation points and n, the number of states. As
the initial condition is not a collocation point, Xy is incorporated on the right-hand side of Eq. (I8). Final boundary
conditions, in contrast, can easily be considered by adding another linear constraint such that XI(VI? =Xy, where xy

denotes the desired final state.

IV. Bang-Off-Bang Mesh Refinement
Determining the switching times, that is, the times when the control changes from on to off or vice versa, requires
the costates of the OCP. The estimated switching times are then included in a subsequent optimization process to obtain
a more accurate representation of the discontinuities. [24]] applied this approach to simple NLP problems. To the best of
the authors knowledge, this Note adapts the bang-off-bang mesh refinement to solve complex low-thrust optimization

problems in a convex programming environment for the first time. The complete procedure is depicted in Fig. [2}

Solve OCP on Determine costates Define new mesh: switching
initial mesh and switching times times as segment breaks
Set control values to Include switching times as
Solve new OCP L &
Umin O Umax optimization parameters

Fig. 2 Flow chart of bang-off-bang mesh refinement process.

A. Computation of Costates and Switching Times
After solving the discretized OCP, the resulting Lagrange multipliers A%) € RN«*"x are used to compute the values

of the costates 1K) € RNX"x at the collocation points for each segment [33]):

A9 =—-[DV]T-AD @1
AP
a2k = —5 =L N (22)
w;



The notation (-); . and (-).; indicates the ith row and column, respectively. After rewriting the equations of motion as

[l..’ v, m]T = [V9 g(r) + MTmaxa/m’ _MTmax/Ve]—r (23)

with g(r) = —ur/r3, the throttle factor u = T /Tjay and the thrust direction vector @ = T/T, the Hamiltonian of the

problem can be stated as [34]

Tinax Tnax Tnax
H=""" ATy 47 [g(r) + “ﬂa] Yy L max (24)
Ve m Ve

where minimizing ‘e /totf u(t)dt is equivalent to Eq. (@). Substituting the optimal thrust direction @, = -2, /||, || =

-4, /4, into Eq. (Z4) and rearranging terms yields

T, e
H=ATv+A]g(r) + mx (1 _Yeq, —/lm) (25)
Ve m
—_—
=S

According to Pontryagin’s minimum principle [35]], an optimal trajectory minimizes the Hamiltonian and hence, the
characteristic bang-off-bang control profile in fuel-optimal problems solely depends on the sign of the switching function

S. As a consequence, the switching times (S = 0) and control structure can be computed once the costates are known.

Remark 4: Using the linear formulation of the Hamiltonian H = L+A7f = L + AT (A(X)x + B(X)u + (X)) to calculate
the costates and switching times will yield similar results because a converged SCP solution satisfies the nonlinear

dynamics. We compared both versions in our numerical simulations and did not notice significant differences.

B. Optimization of Switching Times

The solution to OCP1 and OCP2 is only an approximation as states and controls are known only at the nodes.
Therefore, any direct method can intrinsically not determine a discontinuous control structure accurately. The costates
and switching times (that is, the zeros of ) are also only estimations. The values of the switching times can be refined
by incorporating them into the optimization process to eventually obtain an accurate bang-off-bang control.
We define the vector of all switching times as Ts = [#5,1, 5.2, ... ts, j]T and divide the trajectory into K = j + 1 segments
where j is the number of switching times. Thus, each 7, lies on the corner of a segment as shown in Fig. [3] The factors
A for the time transformation then become

e 1 — 1 oo —Ig ty —tg, i
R T e (26)
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Fig.3 2D illustration of switching times 7, and segments s*) for some state x and control « curves.

and cause the formerly convex dynamical constraints in Eq. to become nonconvex. Introducing and linearizing

PLOONCY)
X = MTf(x u) = f(x,u, t(k) (k)) 27

atx, u, t(k) (k) ylelds

~AR LI 7Gx+ B a7 7w To 750 ) + Ty (R 750 70 )ty
(28)

+q(x,a, t(k) (k))

The Jacobian matrices A (X, @, t(k) (k)) = B(x a, t(k) (k)) = af , To(X, 1, t(k) (k)) = and T, (x 1, t(k) (k))

_of (k)

= 1y are evaluated at the reference point X, o, 7, (k) . The constant part q(X, @, t ik )) is given by f — Ax — Bii -

11



Tofo - T rIn, where the dependencies are omitted for the sake of brevity. The new matrix representation is now

~(1 1
qi : _DE()) - Xo
‘ ‘ ‘ ‘ ‘ ~(1) (1)
-D) - X
DY | 0| B0 S NP
ffffff - ! 0 [ [
- ~ [ ~ | |
0 i@ ;D@ | B® | |u .
‘ \ : : I, : T |- = dy, _DNko'XO 29)
[ [ [ v @
I o 4
DK B&K) | | T,
~(K)
qdy,
N ~
1C/[dyn ? bdyn

The matrices D), 1) and BX) are similar to those in Eq. with the only difference that the factor A %) is already

included here. Furthermore, T = [T, T® ..., T®)]T with

-1 T TP T4
TW = : 0o, T®= : : ol..... T® =19 : (30)
) @ 5 (K)
_Tf N1 _TO,Nz -T f.N> _TO,NK

and T;kz refers to Ty (Xi(k>, [_Ji(k), f(()k), f(fk)) (T(()i.) equivalently). As the (estimated) switching times are known, the

thrust magnitude can be predefined based on the sign of the switching function:

T=0 if §$ >0
(€1}

T = Thmax if § <0

This is done by setting the upper and lower bounds of T accordingly. The linear constraint 7o < t51 < ... <ty <ty is

added to ensure the correct order of the switching times.

Remark 5: Although the formulation of OCP2 for optimizing T could have been used in the bang-off-bang mesh
refinement procedure, approximating the performance index in Eq. with Eq. (T3) results in an additional nonconvex
constraint. This can be avoided by simply employing OCP1.

Remark 6: We fully linearize Eq. because we predefine the control u based on the sign of the switching function.
Therefore, oscillations due to large changes of u are avoided and the convergence does not deteriorate.

Remark 7: Note that a similar mesh refinement strategy as in [36] can be used to increase or decrease the number of

12



nodes in a continuous segment or subdivide such a segment in several intervals. This may be beneficial in terms of

computational effort when there are only few switching times.

V. Numerical Simulations

We simulate two fuel-optimal transfers to compare our sequential convex programming algorithm with results in the
literature and the optimization framework GPOPS-II in combination with the Sparse Nonlinear OPTimizer (SNOPT)
[28. 37]]. Note that GPOPS-II solves the full nonlinear program whereas our SCP algorithm solves the convexified
version. To ensure a fair comparison, no mesh refinement procedures are applied in the calculations with SCP and
GPOPS-II.
The SCP algorithm is based on [[12,[38]]. Since feasibility is more important than optimality, a step is accepted as long
as the actual cost decrease is greater than zero, even if the predicted decrease is negative. This may result in a higher
fuel consumption during intermediate iterations, but drives the state and control vectors towards a feasible trajectory
with respect to the nonlinear dynamics. When the feasibility threshold €. is reached, the algorithm switches back to the
original formulation and accepts the step only when both the actual and predicted decreases are positive. It converges
when €. and €4 (cost decrease) are lower than predefined values. The resulting second-order cone program is internally
solved by the open source Embedded Conic Solver (ECOS) [[11]]. The number of (major) iterations and computational
time are compared. All simulations are performed in MATLAB version 2018b on an Intel Core i5-6300 2.30 GHz
Laptop with four cores and 8 GB of RAM.
A constant maximum thrust and specific impulse are assumed. Furthermore, two-body dynamics without any additional
perturbations are considered. The values of all physical constants are given in Table[I] additional SCP parameters in
Table@]where pi i, Bi (i =0,1,2) are parameters to adjust the trust region size [38]. All variables are scaled with LU
(1 LU = 1 astronomical unit), TU, VU, ACU and MU, respectively. In order to test the robustness against poor initial
guesses, a simple cubic interpolation and a shape-based Fourier series method [39] are used to generate guesses of
different quality. In all simulations, SCP1 and SCP2 refer to solving OCP1 and OCP2, respectively.

For SCP, the same definition of feasibility as in SNOPT is used:
Cmax = max viol; /[[x|| < e (32)

with 7 being the i/th nonlinear constraint violation and x is the solution vector. Moreover, we define the final position Ar

and velocity error Av as

Ar = “r([f )propagated - r(tf )solver||2 (33)

Av = “V(tf )propagatcd - V(tf )solver”2 (34)
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where the subscript propagated defines the final position (velocity) when the full nonlinear equations of motion are
propagated with the obtained controls. The subscript solver refers to the final position (velocity) that is obtained with

SCP and GPOPS-II, respectively.

Table 2 Parameters of our SCP algorithm [38].

Table 1 Physical constants in all simulations.

Parameter Value
Parameter Value Penalty weight A 1.0
Gravitational constant y 1.32712 x 10! km?/s? Penalty weight u 1.0
Gravitational acceleration gg  9.80665 x 1073 km/s? Trust region rg 1.0
Length unit LU 1.49597 x 103 km [00, 015 p2] [0.01,0.25,0.9]
Velocity unit VU Vu/LU km/s @y, a1, @ [1.3,1.5,1.5]
Time unit TU LU/VU s Bo, B1, B2 [1.3,1.5,1.5]
Acceleration unit ACU VU/TU km/s? € 107°
Mass unit MU m € 107

Max. iterations 500

A. Earth to Venus Transfer
The Earth to Venus rendezvous transfer is investigated in [40] with an indirect method. Boundary conditions along

with other relevant parameters are summarized in Table [3]

Table 3 Simulation values for Earth-Venus and Earth-Dionysus transfers [4, 40].

Parameter Earth - Venus Earth - Dionysus

Initial position [ry, ry, 7,17, LU [0.9708,0.2376,~1.6711 x 107°]T  [~0.0243,0.9833,~1.5117 x 107°]7
Initial velocity [vy, vy, v.]7, VU  [~0.2545,0.9687,1.5040 x 107°]7  [~1.0161,-0.0285, 1.6955 x 1070] 7

Initial mass m(zy), kg 1500 4000
Final position [ry, ry, rz]jf, LU [-0.3277,0.6389,0.0277]" [-2.0406,2.0518,0.5543]7
Final velocity [v,, vy, vz];, vu [-1.0509, —0.5436,0.0532] " [-0.1423,-0.4511,0.0189] "
Final mass m(ts ), kg free free
Maximum thrust 7%, N 0.33 0.32
Specific impulse I, s 3800 3000
Time of flight 77, days 1000 3534

1. Comparison with GPOPS-II

The trajectory is discretized in 15 segments with 10 nodes each. Each run is repeated ten times and mean values for
computational times are reported. CubicX (simple cubic interpolation with X revolutions) and FFSX (fully optimized
Fourier-series approach with X revolutions, considered more accurate) denote initial guesses of different quality. A

representative trajectory is illustrated in Fig. [fa]and shows the large discrepancy between the initial guess and final

14



solution. Note again that no mesh refinement is considered. The results in Table 4] show that both SCP algorithms

~SCP solution ) --Before mesh refinement|
~Initial guess 0.31 i —After mesh refinement | 1]
S :Ea“h ik Intermediate points
0 Venus =z | i before mesh refinement

502 I
2 e
£ i
01 i
11

1 0 \ 1L n L N HE

0 200 400 600 800 1000
Time, days
(a) Earth to Venus transfer trajectory (b) Thrust magnitude before and after mesh refinement

Fig.4 Example of Earth to Venus trajectory and thrust profile before/after mesh refinement.

required considerably fewer iterations compared to GPOPS-II. As a consequence, the computational times are also
lower, but less significant (only by a factor of two to five). The final masses m () of GPOPS-II are always lower than
SCP masses. When compared to final masses computed with an indirect method (last row in Table[)), it is evident that
the values obtained with SCP agree well regardless of the initial guess. Also note that in almost all cases the number of
iterations in SCP1 is lower than that in SCP2. As expected, the behavior of computational times is similar.

In many cases, GPOPS-II obtained different trajectories and solutions with oscillations in the control structure. The
latter results in larger Ar and Av values (order of 1072 to 107> LU and VU, respectively) compared to SCP (order of
1073 to 10™* LU and VU, respectively). Apparently, GPOPS-II could not determine fuel-optimal solutions accurately in
the performed simulations with poor initial guesses. This might be an example of the Lavrentiev phenomenon that
occurs in adaptive pseudospectral methods where the control is discontinuous; the interested reader is referred to [41]]

for details.

2. Bang-Off-Bang Mesh Refinement

As the virtual control and slack variables were zero in all converged SCP simulations, the solutions are locally
optimal [12]]. This is also evident from the characteristic bang-off-bang control structure. Although it is captured quite
accurately, there are a few intermediate control values that are neither O nor 7p.x. After refinement, however, the control
represents the on-off structure more precisely (see Fig. b)) and agrees very well when compared to an indirect method

(see, for example, Fig. 3 in [40]).

3. Perturbed Initial Condition

Each component of the initial condition is randomly perturbed by values between -100.000 km and +100.000 km
(position) and -1 km/s and +1 km/s (velocity). The robustness of our algorithm is then tested by calculating 1000
trajectories and counting the number of converged cases, iterations and computational time. A simple cubic interpolation

is used to generate (poor) initial guesses. The perturbed initial conditions are illustrated in Fig. [5a]
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Table 4 Results of Earth to Venus transfer on the initial mesh.

nitia ( 1 ll )i C2 ubiC3 ubl’ C4 S3 F S
Element

GPOPS-1I 500" 137 291 135 492 136
Iterations SCP1 28 24 32 37 20 26
SCP2 43 31 46 35 30 34
GPOPS-1I 44.9 13.1 24.3 13.4  45.1 14.9
Comp. time, s SCP1 54 7.1 8.4 94 6.1 6.8
SCP2 9.1 7.3 10.5 7.8 7.6 7.6
GPOPS-1I 943 1278 1066 978 1275 1184
SCP1 1038 1287 1245 1038 1290 1258
m(ty), kg
SCP2 1038 1289 1254 1038 1290 1258
m(ty ), kg, from indirect method [40] 1007, 1036, 1260, 1291

* Tteration limit reached without convergence.

The results are reported in Table [5] (where averaged values + 1o~ are shown) and Fig. [5] (where the error bars indicate
maximum and minimum values). Despite the very large displacements, both SCP algorithms converged in all cases and
could determine final masses that are very close to a locally optimal one of 1290 kg as reported in [40]. Still, more
iterations were required on average than in the unperturbed case. Computational times, in contrast, are similar. Overall,

SCP1 and SCP2 yielded very similar results.

Table 5 Overview of results after 1000 simulations for Earth to Venus transfer.

Method  Total simulations ~Converged cases ~ Avg. # iterations ~ Avg. comp. time,s Avg. m(tr), kg

SCP1 1000 1000 384+£93 83+20 1284 + 19
SCP2 1000 1000 41.6 £ 129 83+29 1285 + 19

B. Earth to Asteroid Dionysus Transfer
A more complex example represents the low-thrust transfer from Earth to asteroid Dionysus in [4] with a flight time
of 3534 days (see Table[3). Several revolutions with significant changes in semi-major axis (Aa = 1.2 LU), eccentricity

(Ae =0.52) and inclination (Ai = 13.5°) are needed to reach the target.

1. Comparison with GPOPS-II
As ty is considerably higher in this example and to test the performance in case of more nodes, the number of
segments is increased to 25 with 10 nodes each.

Fig. [6a] demonstrates the complexity of this example where several revolutions are needed. The discrepancy between
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Fig. 5 Perturbed initial condition and comparison between SCP1 and SCP2 after 1000 simulations for Earth
to Venus transfer.

GPOPS-II and SCP1 and SCP2 becomes clearer because GPOPS-II often reached the iteration limit without finding an
optimal solution (see Table[6). Again, SCP required up to one order of magnitude fewer iterations and less computing
time than GPOPS-II. Moreover, final masses of SCP are close to values obtained with an indirect method (last row in
Table[6)) and also notably higher than those of GPOPS-II. GPOPS-II would require many more iterations to reach a
similar optimal value (if at all). The trajectories and control histories obtained with both methods are again different and
the oscillations in the controls obtained with GPOPS-II increased. In all cases, the values of Ar and Av are (slightly)
bigger compared to the Venus transfer. In contrast to the previous example, the number of iterations for SCP2 is lower

compared to SCP1, whereas the computational times are again similar.

—SCP solution - A —
-“Initial guess 0.3r ik 11 4 3
___ ®Earth i ;
0.4 "~ #Dionysus z i :
N =021 [} f
—02 3 it : ° 1 :
N E i --Before mesh refinement ‘ ]
0 011 —After mesh refinement | | ‘ i
I ‘ Intermediate points A
5 5 0 ? : 4 befor(f mesh re}finehment b
0 0 500 1000 1500 2000 2500 3000 3500
y, LU 5 -5 x, LU Time, days
(a) Earth to Dionysus transfer trajectory (b) Thrust magnitude before and after mesh refinement

Fig. 6 Example of Earth to Dionysus trajectory and thrust profile before/after mesh refinement.

2. Bang-Off-Bang Mesh Refinement

Even in this more complex transfer, the mesh refinement can accurately determine a control structure without
intermediate points (see Fig. [6b). This clearly shows that low-thrust fuel-optimal problems can be solved with convex
optimization to high accuracy. Note that we increased the number of nodes to show that the procedure also works if the

accuracy is to be enhanced.
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Table 6 Results of Earth to Dionysus transfer on the initial mesh.

I ]al Guess o ( 5 C(; I I S
nit (:ub] C4 ub]( i Cubl
I llemellt

FFS5 FFS6
GPOPS-II 500" 500" 500" 500 370 311
Iterations SCP1 40 52 45 31 25 26
SCP2 46 61 116 42 43 35

GPOPS-II 97.3 131.8 1099 330.8 1172 762

Comp. time, s SCP1 20.9 31.5 25.2 164 141 144
SCP2 26.6 33.0 77.9 258 295 225

GPOPS-II 1984 1706 1843 2083 1964 1547

m(ty), kg SCPI1 2352 2614 2586 2404 2445 2312
SCP2 2247 2617 2528 2445 2491 2249

m(ty), kg, from indirect method [4]] 1980, 2227, 2465, 2672, 2718

* Tteration limit reached without convergence.

3. Perturbed Initial Condition

We proceed as in the previous section and perturb the initial condition (cf. Fig. [7a); the results are summarized in
Table[/| Compared to SCP1 that converged in all simulations, SCP2 was not able to find a feasible solution in one case
(maximum constraint violation of only 103 vs. the required tolerance of 107°). It is noticeable that this time SCP2 on
average needed 15 iterations more than SCP1. The computing times behave accordingly. In summary, in all cases both
algorithms perform in this perturbed environment better than GPOPS-II with the nominal Xy when poor initial guesses

are provided (see Fig. [7b). This again demonstrates the excellent robustness of the developed method.

Table 7 Overview of results after 1000 simulations for Earth to Dionysus transfer.

Method  Total simulations ~Converged cases  Avg. # iterations ~Avg. comp. time,s Avg. m(tr), kg

SCP1
SCP2

1000 1000
1000 999

553 +£12.0
70.5 £20.0

273+6.7
36.5 £ 12.2

2561 + 72
2600 + 58

VI. Conclusion
This work developed a refined version of the sequential convex programming algorithm that can be used for solving
low-thrust trajectory optimization problems. Adding an adaptive flipped Radau pseudospectral scheme, a bang-oftf-bang
mesh refinement strategy and measures to avoid virtual infeasibilities proved effective in terms of accuracy, computational
effort and optimality when compared to the literature and state-of-the-art solvers. A simple cubic interpolation and a
more accurate shape-based approach to generate initial guesses of various quality illustrated the high robustness of the

approach. This was shown in orbital transfers from Earth to Venus and Earth to asteroid Dionysus.
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Fig. 7 Perturbed initial condition and comparison between SCP1 and SCP2 after 1000 simulations for Earth
to Dionysus transfer.

The method is a promising first step towards autonomous guidance in real space missions. Its rapid speed together with
its demonstrated excellent robustness make it suitable for preliminary trajectory design and also real-time applications
where high accuracy is not crucial. Therefore, it is intended for deep-space cruise where less accurate solutions with
two-body dynamics are acceptable. In contrast to related work that focused mainly on machine learning methods, the
autonomous guidance problem was addressed using numerical optimization techniques. Instead of relying on the quality
of training data, the proposed SCP algorithm can react to the environment because it actually calculates new trajectories.
Although nonlinear programming methods may in general be superior in terms of accuracy, the simulations show that

the proposed algorithm can be faster and more reliable while maintaining a sufficient level of optimality.
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