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Abstract

The role of Pulse Rate estimated from blood pressure
pulse when used as a surrogate for Heart Rate Variability
(HRV) studies has been addressed under different condi-
tions in healthy subjects. However, there is a lack of val-
idation in studies involving patients admitted in the Inten-
sive Care Unit (ICU). Therefore, our study aims at validat-
ing six different possible surrogates for the ECG-derived
tachogram, estimated from the time interval series between
successive onset (O), systolic (S) and diastolic (D) fiducial
points extracted from arterial blood pressure (ABP) and
photoplethysmogram (PPG) waveforms. The validation
is performed by looking at the ability of such surrogates
in providing comparable estimates of the most common
HRV measures. Results show a high agreement between
the ECG-derived and the ABP/PPG-derived series, with
small biases. Results from sub-populations of patients that
showed increases (and decreases) in such measures show
a good ability of these surrogates in tracking autonomic
changes. In addition, differently from PPGO and PPGS ,
ventilated and sedated subjects did not show differences
in estimating HF power from PPGD, indicating diastolic
time intervals as less affected by such procedures.

In conclusion, HRV measures estimated from ABP or
PPG can be reasonably used also in studies on ICU pa-
tients whenever ECG recordings are not available.

1. Introduction

The Intensive Care Unit (ICU) is recognized as particu-
larly suited to the implementation of AI-based monitoring
tools [1]. The availability of a large quantity of data such
as laboratory measures from blood samples, nurses annota-
tions, routinely recorded parameters as drug infusion rates,
up to continuously recorded vital signs such as the electro-
cardiogram (ECG), arterial blood pressure (ABP) and pho-
toplethysmographic pulse (PPG) signal, provide an over-
whelming amount of information that is quite difficult to
be handled by clinicians. Lately, the use of AI tools, such

as Machine Learning (ML), has proved the potential bene-
fits of such techniques in the ICU environment [2, 3]. Pre-
vious important studies have already developed successful
models for the identification of false alarms in the ICU [4]
and detection of atrial fibrillation [5] as well as the identi-
fication of hypotensive events [6].

To further improve ML models and standard statistical
inferences, additional knowledge-based features could be
inferred by appropriately devised mathematical models re-
flecting the subject’s state from the available recordings.
In this regard, Heart Rate Variability (HRV) measures, es-
timated from the ECG or photoplethismographic (PPG)
signals by using knowledge-based cardiovascular models,
provide the ability to track changes in the patients’ auto-
nomic control system [7] reflective of their cardiovascular
state. Previous studies [8, 9] have analyzed the possibil-
ity of using Pulse Rate Variability (PRV) to replace spe-
cific HRV features under different conditions. However,
to our knowledge, no other studies were conducted on the
analysis of HRV parameters from surrogate signals, such
as ABP or PPG, recorded from ICU patients. These pa-
tients are commonly identified as a critical population, of-
ten affected by different pathologies, chronic diseases and
undergoing the administration of vasoactive agents, seda-
tives and mechanical ventilation procedure. Therefore, this
study aims at investigating the validity of using different
sources for estimating HRV measures, when dealing with
ICU data.

2. Methods

2.1. Data and Feature Extraction

The study was performed using ECG, ABP and PPG
waveforms extracted from the freely accessible Medical
Information Mart for Intensive Care (MIMIC-III) Matched
Waveform Database [10].

From the first 24 hours of recordings belonging to 79
distinct patients entered in the ICU, we extracted contem-



poraneous, stationary and noise-free 10 minutes recordings
of ECG, ABP and PPG waveforms (early). A second series
of 10 minute recordings was extracted from those patients
(50/79) that showed high quality recordings (late).

For each patient, after the identification of the R-peaks
on the ECG using a Pan-Tompkins based annotator, we
identified diastolic, pressure onset and systolic positions
following the corresponding R-peak, from both ABP and
PPG waveforms.

The pressure onset was defined as the point at maximum
derivative between the systolic and the previous diastolic
point. Together with the RR interval time series, we ex-
tracted pulse-to-pulse series from the successive time in-
tervals of systolic, diastolic and onset fiducial points, from
both ABP and PPG, thus obtaining six possible surrogates
of the RR interval series, also called tachogram.

The selected HRV measures are: the average (AVNN)
and the standard deviation (SDNN) of successive beat to
beat intervals, the power in the low (LF: 0.04-0.15 Hz) and
high frequency (HF: 0.15-0.45 Hz) spectral bands, in both
absolute and normalized units, LFn = LF/(tot power-VLF)
and HFn = HF/(tot power - VLF), where VLF stands for
power in very low frequency band (VLF: 0.004-0.04 Hz).

The power spectra of the tachogram and its surrogates
are computed by parametric AR modeling of the RR time
interval series of order chosen as the lowest providing
residual white noise according to the Anderson’s test, and
complying with the Akaike’s information criterion.

Additionally, the use of the matched subset allowed also
the extraction of identifiers for mechanically ventilated and
sedated patients, during extracted recording intervals, from
the clinical part of the database.

2.2. Statistical Analysis

The proxy HRV measures extracted from the ABP/PPG-
based surrogates were tested by comparing them with
the corresponding ones extracted from the ECG-based
tachogram (i.e. the gold standard), according to the fol-
lowing methods:
• Correlation Analysis: the correlation between param-
eters estimated from surrogates and the tachogram was
computed and its p-value analyzed. Successively, after a
linear fitting, the adjusted r2 was evaluated.
• Statistical Distribution Analysis: between groups differ-
ence was tested through a Kruskal-Wallis test, after having
assessed non-gaussianity through a Lilliefor’s Test. Post-
hoc analysis with Bonferroni correction was conducted if a
significant difference was found (Tab. 1). In order to inves-
tigate whether surrogates reproduce changes in the mea-
sures, a paired analysis through t-test or Wilcoxon signed-
rank test, according to the data distribution, was conducted
between indices extracted from the second series of record-
ings (late) and the previous ones (early).

ECGR ABPO ABPS ABPD

LF [s2] 0.19 0.19 0.19 0.18
(x10−2) (0.02-0.58) (0.03-0.58) (0.03-0.61) (0.03-0.62)
HF [s2] 0.17 0.27 0.27 0.26
(x10−2) (0.03-0.80) (0.06-0.86) (0.05-0.94) (0.06-1.1)
LFn [nu] 0.27 0.24 0.23 0.24

(0.17-0.47) (0.14-0.39) (0.13-0.39) (0.12-0.40)
HFn [nu] 0.30 0.38 0.37 0.36

(0.2-0.48) (0.26-0.55) (0.25-0.54) (0.25-0.56)
LF/HF 0.73 0.60 0.55 0.54

(0.40-1.80) (0.28-1.05) (0.25-1.03) (0.28-1.05)
AVNN [s] 0.74 0.74 0.74 0.74

(0.62-0.88) (0.62-0.88) (0.62-0.88) (0.62-0.88)
SDNN [s] 0.02 0.02 0.02 0.02

(0.01-0.03) (0.01-0.03) (0.01-0.03) (0.01-0.03)
ECGR PPGO PPGS PPGD

LF [s2] 0.19 0.24 0.24 0.21
(x10−2) (0.023-0.58) (0.055-0.66) (0.053-0.66) (0.057-0.63)
HF [s2] 0.17 0.49*** 0.37 0.35
(x10−2) (0.03-0.80) (0.21-1.43) (0.14-1.19) (0.11-1.13)
LFn [nu] 0.27 0.16*** 0.22 0.24

(0.17-0.47) (0.06-0.25) (0.10-0.30) (0.12-0.35)
HFn [nu] 0.30 0.36 0.38 0.41

(0.2-0.48) (0.23-0.48) (0.28-0.52) (0.28-0.55)
LF/HF 0.73 0.38*** 0.54* 0.57

(0.40-1.80) (0.24-0.60) (0.25-0.75) (0.29-0.88)
AVNN [s] 0.74 0.74 0.74 0.74

(0.62-0.88) (0.62-0.88) (0.62-0.88) (0.62-0.88)
SDNN [s] 0.02 0.02* 0.02 0.02

(0.01-0.03) (0.02-0.03) (0.01-0.03) (0.01-0.03)

Table 1. Median and interquartile range (in brackets) of
each HRV measure coming from the tachogram and its sur-
rogates (order of magnitude below the corresponding mea-
sure). Statistical difference from the tachogram is marked
with * (p<0.05), ** (p<0.01) and *** (p<0.001).

• Bland-Altman Plots: eventually, in order to fully evalu-
ate the agreement between methods in estimating the pa-
rameters of interest, a Bland-Altman analysis was carried
out on measures extracted from each surrogate against the
same measures extracted from the tachogram (Table 2).

3. Results

Correlation analysis shows that HRV measures com-
puted from the ABP/PPG-based series are highly corre-
lated with the respective measures computed from the
tachogram. The lowest correlation (0.62) and adjusted r2

(0.38) are found only for LF/HF estimated from PPGO,
while a correlation greater than 0.7 and r2 >0.52 is found
in all other cases. All HRV measures are significantly
correlated with those extracted from the tachogram (p <
0.001).

The median and the interquartile range computed for
each measure are shown in Table 1. Of note, measures
from ABP surrogates do not show any statistical difference
with respect to tachogram. Conversely, LFn, SDNN and
HF measures show statistical difference when estimated



Figure 1. HF power estimated through RR intervals (E-R)
and its surrogates, invasive blood pressure (A-) and pho-
toplethysmogram (P-) onset (O), systolic (S) and diastolic
(D) time interval series, for a sub-population of patients
(25) under sedation and ventilation (right) and for those
(54) who are neither sedated nor ventilated (left). Statisti-
cal significance between surrogates is indicated as follows:
* p<0.05, ** p<0.01, *** p<0.001.

through PPGO while no significant differences are found
for PPGS and PPGD. In light of these differences, we
investigated whether HF power shows similar behaviors
when dividing the population into two groups according
to major confounders for heart rate variability and partic-
ularly for HF measures, ventilation and sedation; the first
group including subjects neither ventilated nor sedated and
the other group with ventilated and sedated subjects. Re-
sults show significant differences only in the sedated and
ventilated population and HF power in this last population
results much lower than the other, as shown in Fig. 1.

Additionally, all indices extracted both from tachogram
and surrogate series showed statistically significant differ-
ence (p<0.01 for LF/HF and HFn estimated from PPG-
derived measures and p<0.001 for ABP-derived series)
when considering a subgroup of subjects that showed an
increase from early to late conditions, and also signifi-
cant differences (p<0.05 for indices estimated from PPG-
derived measures and p<0.001 for ABP-derived series)
when a decrease is observed.

Table 2 shows the Bland-Altman 95% limits of agree-
ment between variability measures from surrogates and the
respective ones from the tachogram.

4. Discussions

The presented study assesses whether PRV measures ex-
tracted from ABP and PPG beat to beat interval time series
are good surrogates of HRV measures by looking at their
agreement with those extracted from the tachogram.

Results in the correlation analysis show a very high cor-
relation between HRV parameters from all surrogates and
the ground truth. At the same time, results obtained look-
ing at the distributions of the estimated measures with re-

ABPO ABPS ABPD

LF [s2] 0.12±0.68 0.23±1.0 0.38±2.6
(x10−3)
HF [s2] 0.12±0.45 0.18±0.82 0.29± 1.90
(x10−2)
LFn [nu] -0.05±0.15 -0.05±0.18 -0.05± 0.16

HFn [nu] 0.05±0.14 0.04±0.16 0.04±0.12

LF/HF -0.33 ±0.99 -0.35±1.09 -0.30±0.91

AVNN [s] 0.07±1.06 0.15±1.03 0.0076±1.51
(x10−4)

SDNN [s] 0.07±0.62 0.10 ±0.73 0.28±2.02
(x10−2)

PPGO PPGS PPGD

LF [s2] 0.70±2.20 0.70±2.90 0.40±1.60
(x10−3)
HF [s2] 0.61±2.06 0.55±2.49 0.31±1.46
(x10−2)
LFn [nu] -0.14± 0.23 -0.09± 0.19 -0.06±0.16

HFn [nu] 0.03±0.136 0.04±0.15 0.05±0.13

LF/HF -0.70±1.79 -0.54±1.46 -0.46±1.27

AVNN [s] 0.48±3.0 0.58±3.34 0.33±2.10
(x10−4)

SDNN [s] 0.66±1.81 0.48±1.99 0.32±1.45
(x10−2)

Table 2. Average difference and limits of agreement with
95% confidence intervals of the Bland-Altman analysis.
For each feature the order of magnitude is shown between
brackets below the corresponding measure (when brackets
are not shown, no rescaling is assumed).

spect to the reference ones show that, differences in the HF,
LFn can be found for PPGO and differences in LF/HF for
both PPGO and PPGS , indicating that caution has to be
taken when using such surrogates. This results may be as-
sociated with marked respiratory and strongly influenced
autonomic activities on PPG signal. This difference is not
significant when diastolic successive points are used, pos-
sibly indicating these points as more stable (i.e. less af-
fected by such effects) than previous ones. Respiratory
incidence on HF power was investigated looking at only
the sub-population of sedated and ventilated subjects, sug-
gesting that HF power derived from PPGO may be influ-
enced by such interventions (see Fig. 1). Indeed, it may be
attributed mainly to the ventilation, i.e respiration, which
strongly affects the PPG measurement, while the observed
reduction in absolute HF power with respect to the not ven-
tilated and not sedated population may be associated with
the sedation procedure.

Results obtained in presence of changes in HRV indices
suggest that the estimated measures are able to properly
track significant changes as the HRV measures computed



Figure 2. The figure shows increasing LF (left) and
HF (right) powers, from early to late conditions, com-
puted through RR interval (E-R) and its surrogates, inva-
sive blood pressure (A-) and photoplethysmogram (P-) on-
set (O), systolic (S) and diastolic (D) time interval series,
for 26 and 29 patients, respectively. The trend remains sig-
nificant (p < 0.001) for all surrogates in both panels.

from the tachogram do. An example can be seen in Fig.
2, where subsets of subjects that showed an increase in LF
and HF powers are shown.

Additionally, the Bland-Altman analysis shows a rea-
sonably good overall agreement between surrogates and
the reference measures with very small positive biases
when estimating LF, HF, AVNN and SDNN indices. Con-
versely, a small negative (positive) bias for LFn (HFn) for
surrogates from both ABP and PPG signals can be ob-
served. This bias is always bigger for the latter than the
former. Moreover, a strong negative bias can be observed
in the estimate of LF/HF with ABP (∼ 0.3) and PPG sur-
rogates (∼ 0.5) with the previously observed trend. Confi-
dence intervals show a small dispersion of all indices, with
the only exception of LF/HF ratio which is strongly influ-
enced by the use of surrogates. These results suggest that
the use of these surrogates may underestimate (overesti-
mate) the sympathetic (vagal) activity on the autonomic
control in modulating the heart activity. Finally, diastolic
surrogates from PPG recording showed smaller biases and
confidence intervals than other PPG-derived indices.

Our findings agree with those obtained by previous stud-
ies with subjects under different conditions as rest, tilt and
mental stress [8, 9] and expand them toward a population
with a high variability and in very unstable and critical
conditions as ICU patients are.

In conclusion, despite some accountable differences be-
tween surrogates and original HRV measures, we can
consider ABP-derived HRV measures as good surrogates
of autonomic activity estimated by ECG in ICU patients
while caution has to be taken for PPG-derived ones, among
which those extracted from the diastolic time intervals
(PPGD) appear to be less affected by ventilation and se-
dation procedures.

Future studies will deeply investigate the role of differ-

ent treatments and procedures on HRV surrogates.
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