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Abstract 

Data-driven damage localization is an important step of vibration-based structural 

health monitoring (SHM). Statistical pattern recognition paradigm based on the 

prominent steps of feature extraction and statistical decision-making provides an effective 

and efficient SHM framework. However, these steps may become time-consuming or 

complex when there are large volumes of vibration measurements acquired by dense 

sensor networks. To deal with this issue, this study proposes fast unsupervised learning 

methods for feature extraction through AutoRegressive (AR) modeling and damage 

localization through a new distance measure called Kullback-Leibler Divergence with 

Empirical Probability Measure (KLDEPM). The feature extraction approach consists of 

an iterative algorithm for order selection and parameter estimation aiming to extract 

residuals in the training phase, and of another iterative process aiming to extract residuals 

only in the monitoring phase. The key feature of the proposed approach is the use at each 

iteration of correlated residual samples of the AR model as a new time series, rather than 

handling the measured vibration response of the structure. This is shown to highly reduce 

the computational burden of order selection and feature extraction; moreover, it 
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effectively provides low-order AR models with uncorrelated residuals. The KLDEPM 

method exploits a segmentation technique to subdivide random data into independent 

sets, and provides a distance metric based on the theory of empirical probability measure 

with no need to explicitly compute the actual probability distributions at the training and 

monitoring stages. Numerical and experimental benchmarks are then used to assess 

accuracy and performance of the proposed methods, and compare them with some state-

of-the-art approaches. Results show that the proposed approach is successful in feature 

extraction and damage localization, with a reduced computational burden.  

Keywords: Structural health monitoring; damage diagnosis; unsupervised learning; 

autoregressive model; feature extraction; Kullback-Leibler divergence. 

 Introduction 

Structural health monitoring (SHM) has recently become a very active research 

area in the civil, mechanical and aerospace engineering fields. It essentially aims at 

assessing the health of structures, or systems in a broader sense, and at detecting any 

possible damage via vibration data1. Damage in a structure can occur because of changes 

in the geometrical configuration or boundary conditions, or because of material 

degradation due to e.g. cracks in concrete, loose bolts and broken welds in steel 

connections, corrosion, and fatigue. All these effects may cause non-recoverable 

variations of the structural stiffness and, therefore, unfavorable vibrations, local failures 

and even collapse. To prevent such events and decrease the high costs of maintenance 

and rehabilitation, if necessary, SHM is becoming a paradigm in our smart-cities age, 

regardless of the site-specific geographical location and economic development. 
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Any SHM strategy can be generally classified according to whether a damage 

diagnosis or prognosis is provided2, 3. The former class can be subdivided on its own into 

three main levels: early damage detection (level 1); damage localization (level 2); and 

damage quantification (level 3). The latter class is instead intended to predict the 

remaining lifetime of the structure4. Early damage detection is conceived as a global 

process that attempts to perceive if the damage is present in the whole structure; on the 

other hand, damage localization and quantification are local procedures, aiming to 

provide a clear snapshot of the damage pattern along with an assessment of its severity. 

Since damage is an inherently local phenomenon, rigorous and robust methods look 

necessary for SHM procedures targeting damage localization.  

Damage diagnosis is generally carried out with model-driven or data-driven 

methods5. The model-driven approach is based on an analytical or finite element model 

of the structure6; due to the discrepancies between the model itself and the real-life 

structure, in which case model updating becomes a mandatory task7-12. Although such an 

approach is often successful in relation to damage diagnosis13-15, some limitations are 

represented by the necessity of a detailed model, of a model updating procedure, and of 

data reduction from raw vibration measurements. It then results to be excessively time-

consuming and makes data-driven techniques appealing as a more feasible option. 

Within the data-driven methods, statistical pattern recognition stands as an 

efficient and powerful framework since it relies upon the direct use of raw vibration (time-

domain) measurements, in terms of excitations and relevant structural responses. The 

relevant framework for vibration-based SHM can be then decomposed into four main 

steps: operational evaluation; data acquisition; feature extraction; and statistical decision-

making, or statistical modeling for feature discrimination2. The last two steps are in need 
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of more research activities, due to their high importance and required effectiveness. 

Feature extraction refers to the process of learning meaningful information from the 

measurements, supposed to be pertinent to damage; such information is represented by 

the so-called damage-sensitive features (DSFs). Statistical decision-making is concerned 

with the implementation of algorithms that handle the DSFs relevant to undamaged and 

damaged conditions, to provide the sought damage diagnosis. As the functional 

relationship between the DSFs and the damaged state is difficult to define by means of 

model-driven procedures, statistical methods are usually adopted in the process of 

decision-making2. 

Dealing with vibration data in the time domain, time series modeling is adopted 

for feature extraction. In this regard, Fassois and Sakellariou16 discussed parametric and 

non-parametric time series representations for vibration-based SHM problems. They 

concluded that although the use of non-parametric representations is simple, parametric 

time series models are more reliable. Application of parametric time series modeling to 

the feature extraction is based on fitting an appropriate mathematical model to the 

measured data and extracting DSFs such as the model residuals. Depending upon the 

nature of the time series (e.g. stationarity vs. non-stationary, linear vs. nonlinear, seasonal 

vs. non-seasonal, etc.) and the type of data acquisition (e.g. input-output vs. output-only), 

a broad range of representations can be adopted to extract significant DSFs. Considering 

linear and stationary vibration data, widely used time-invariant linear models are the 

AutoRegressive (AR)17-19, AutoRegressive with eXogenous input (ARX)20, 

AutoRegressive Moving Average (ARMA)21, 22, AutoRegressive Moving Average with 

eXogenous input (ARMAX)23, 24, AutoRegressive and AutoRegressive with eXogenous 

input (ARARX)25 ones. On the other hand, Vector-dependent Functionally Pooled (VFP) 
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models26, Gaussian Process (GP) time-series models27, Time-Varying AutoRegressive 

Moving Average (TV-ARMA)28, and Trigonometric Box-Cox ARMA Trend Seasonal 

(TBATS)29 are suitable for conditions that time series data are exposed to uncertainties, 

operational and environmental variability, ambient vibration, and seasonal variations. 

Among the time-invariant linear representations, the AR model offers remarkable 

advantages for feature extraction: the model depends only on the response of the structure, 

so that it is appropriate for output-only SHM strategies; the model coefficients 

(parameters) are linked to the inherent structural properties, regardless of the excitation 

sources and their variations30, 31; the coefficients and residuals of the AR model are known 

to be sensitive to damage 30; its implementation looks also simple.  

Feature extraction via time-invariant linear representations is generally obtained 

with coefficient-based and residual-based algorithms16, 32. Having set model orders and 

coefficients for the undamaged state, especially with the latter ones, the time series will 

no longer provide a good fit to the structural response in the damaged state, and residuals 

will increase. Therefore, the great benefit of the residual-based approach is that it does 

not require any order determination and parameter estimation for the damaged, or current 

structural states16.  

The performance of AR models in extracting DSFs, either with coefficient-based 

or residual-based algorithms, is affected by the choice of the model order to enable the 

generation of uncorrelated residuals. From a statistical viewpoint, the so-called accuracy 

and sufficiency of the time series orders depend strongly on the uncorrelatedness of the 

residual sequences33, 34: an inadequate model order would not allow the AR model to track 

the underlying dynamics of the structure, ultimately leading to the extraction of damage-

insensitive features35. The Akaike Information Criterion (AIC) and the Bayesian 



6 

 

Information Criterion (BIC) are well-known techniques for order selection 33; several 

research studies have been recently conducted to propose some alternative, even more 

efficient and effective methods. Broersen36 proposed the use of Combined Information 

Criterion (CIC) and Finite Sample Information Criterion (FSIC), to enhance the capability 

of determining the model order for large sampling data. In connection with operational 

modal analysis via time series modeling, a new order selection method for Vector 

AutoRegressive (VAR) representations was suggested by Vu et al.37, regardless of the 

measurement noise. For SHM problems, Figueiredo et al.35 assessed the influence of the 

AR orders on damage detection, using four different information criterion techniques and 

showing that a low order may provide insensitive features and a weak damage 

detectability. To robustly select the order, with an emphasis on extracting uncorrelated 

residuals, Entezami and Shariatmadar 38 proposed an iterative procedure via the Ljung-

Box Q-test (LBQ), assuring model accuracy and adequacy. Rezaei-Pajand et al.39 also 

presented a two-stage iterative algorithm, to select the model order on the basis of a 

residual analysis through statistical hypothesis tests and signal filtering.  

Although all the above-mentioned order selection techniques have their own 

advantages, it may be questionable to assess whether they are indeed time-saving or time-

consuming. This is especially true by considering the recent advances and improvements 

in sensor technology and data acquisition, overall providing a great opportunity to exploit 

dense sensor networks for most of the SHM applications. Handling vibration datasets 

with high dimensionality, an approach looks efficient if it requires a short computational 

time for order selection, guarantying in the end model sufficiency and accuracy by 

generating uncorrelated residuals. Since order selection directly affects parameter 

estimation and residual extraction, a positive by-product is the computational efficiency 
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of the coefficient-based and residual-based feature extraction algorithms. The other way 

around, high-order models leading to a good fit of the structural output and providing 

uncorrelated residuals may increase the probability of overfitting, which finally causes 

erroneous forecasts 33. An effective order selection approach must be therefore time-

saving, or efficient and generate uncorrelated residuals without any overfitting issue. 

Besides feature extraction, the methodology has to be robust also in terms of 

statistical decision-making for feature discrimination. A reliable way to attain this latter 

goal is to adopt a well-established statistical distance metric to measure the discrepancy 

between different sets of samples. Successful approaches used for damage diagnosis 

relied upon the Mahalanobis-squared distance40, 41, the Itakura and cepstral distances42, 

the Kullback–Leibler divergence (KLD)43, 44, the Kolmogorov-Smirnov statistical test 

(KSTS)45, 46, dynamic time warping47, the multivariate distance correlation31, and damage 

indices such as the Fisher criterion48, Q-statistic and T2-statistic49, and the Deflection 

Coefficient (DC)50.  

All the aforementioned methods can be exploited via machine learning tools, in 

either supervised or unsupervised learning manners 38, 51, 52. Damage diagnosis through 

machine learning is so decomposed into the training (baseline) and monitoring 

(inspection) phases 2. During training, a statistical model or classifier is learned by 

accounting for the training data. In the monitoring stage, one then attempts to make a 

decision based on the learned model and the currently acquired data. The main difference 

between supervised and unsupervised learning algorithms is that the former needs the 

DSFs relevant to the undamaged and damaged conditions to train a classifier, whereas the 

latter is based on DSFs of the undamaged state only to train the classifier. The clear 
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benefit of the unsupervised learning algorithms is that no information (i.e. vibration data 

or DSFs) is required beforehand for any possible damage condition.  

Going more into detail, the capability to locate single and multiple damage states 

characterized by different severity levels, particularly the small ones, plays a prominent 

role in establishing the effectiveness and robustness of the SHM approach. The decision-

making process based on an unsupervised learning strategy must then be fast and 

overcome the main obstacle of accurate damage localization, whenever a large volume of 

DSFs can be extracted from data provided by dense sensor networks.  

Accounting for all the above-mentioned issues and limitations, a fast unsupervised 

learning method is here proposed to locate structural damage within the statistical pattern 

recognition paradigm, by means of an iterative feature extraction approach. The approach 

is based on AR modeling and a novel statistical distance method, named Kullback-Leibler 

Divergence with Empirical Probability Measure (KLDEPM). The proposed feature 

extraction approach consists of: an improved iterative AR model order selection with 

parameter estimation and residual extraction during the training phase; iterative AR 

residual extraction only during the monitoring stage. The major novelty of this approach 

consists of using correlated residual samples of the AR model as a new time series dataset 

in each iteration, in place of the measured vibration response of the structure. It is shown 

that this innovation can considerably reduce the computational time of AR order selection 

and residual extraction; further to that, it leads to low-order AR models that guarantee to 

finally obtain uncorrelated residuals. The proposed KLDEPM method is an enhancement 

of the classical KLD technique, in the sense that random feature samples (i.e. the AR 

model residuals related to the normal and damaged conditions) are subdivided into 

independent segments, and information on the segmentation (in terms of numbers of 
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samples and segments) are accounted for in the distance calculation with the theory of 

empirical probability measure. All these novelties make it an effective distance approach 

for damage identification, and a fast tool for decision-making. Results relevant to a 

concrete beam53 and the IASC-ASCE experimental benchmark structure54 have been used 

to verify accuracy and performance of the proposed method. Both the iterative feature 

extraction and the KDLEPM method turn out to be superior to other available strategies, 

providing reliable DSFs and locating single and multiple damages of different severity. 

The remainder of this paper is organized as follows. Section 2 briefly discusses 

the vibration response modeling by an AR representation. Section 3 presents the proposed 

iterative residual-based feature extraction approach. The novel KLDEPM method is 

detailed in Section 4. The results of feature extraction and damage localization for the 

mentioned examples are presented in Section 5. Finally, Section 6 draws the main 

conclusions of this work. 

 AutoRegressive modeling 

Within the SHM realm, a time series is a sequence of data that actually consists 

of time spaced, successive measurements. Time series analysis is, therefore, a statistical 

tool that is meant for model identification, parameter estimation, model validation of 

forecasting purposes 33. It is also known to be a powerful approach for feature extraction 

from vibration measurements, actually consisting of excitations and/or structural 

responses.  

Assuming that a linear time-invariant representation can fit the structural response 

55, the relevant AR model for a single-output system reads: 
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where: x(t) is the measured vibration response at time t; θ = [θ1,θ2,…,θp] denotes the vector 

of  AR coefficients, or parameters to be estimated; p represents the model order; e(t) is 

an uncorrelated residual sequence (an unobservable random error) that quantifies the 

difference between the measured vibration response and the one predicted by the model. 

In this work, the least-squares technique is used to estimate the coefficients θ of the AR 

model.  

 Iterative residual-based feature extraction technique 

The feature extraction technique here proposed is subdivided into the two stages 

of training and monitoring; on its own, each stage consists of an initial phase and of a 

subsequent iterative phase. In the mentioned initial stages, an optimal AR model order is 

set by an ad-hoc designed order selection method, so that model residuals are provided as 

DSFs to the next iterative phases. The monitoring phase exploits the information provided 

by training and, without dealing with order determination and parameter estimation, 

extracts the residuals of the AR model as the main DSFs for the current structural state. 

Since order selection and parameter estimation tasks are not tackled in such a monitoring 

stage, the proposed residual-based feature extraction method conforms to unsupervised 

learning. Details of the whole procedure are provided next. 

3.1. Training phase: AR order selection and residual extraction 

The essential step of feature extraction by time series modeling is the 

determination of accurate and sufficient series orders, aiming to lead to uncorrelated 
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residuals 33, 34. The iterative order selection algorithm here proposed is an improvement 

of a former authors’ approach 38; the fundamental principle of the algorithm relies on the 

choice of the AR order, based on the residual analysis via the LBQ hypothesis test. This 

test assesses the correlation among residual sequences as follows: 
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where: n is the number of samples in the residual vector; ρj is the sample autocorrelation 

function at the jth lag (j=1,2,…,L); L represents the number of lags. Test decision is based 

on either the null hypothesis or alternative ones linked to a certain significance level α: 

model residuals are thus considered uncorrelated if 𝑄𝐿𝐵 is less than a critical value (c-

value), or if the test probability value (p-value) is greater than the significance level. 

Although a purely iterative order selection technique is able to robustly set the AR 

model order providing uncorrelated residuals, it may be time-consuming or may yield 

excessively high-order models. With the present approach, correlated residual sequences 

are used as a new time series within the iterative process, in place of the measured 

vibration response; in this way, the order selection turns out to be computationally more 

efficient than with the original (purely iterative) technique. This is because the range of 

correlation decreases at each iteration of the improved method. In other words, the new 

correlated residual samples have less correlation than the residuals of the previous 

iterations and the original vibration signal. This situation allows us to examine fewer 

sample orders and selecting a small order than the purely iterative technique due to 

reducing the correlation of the new time series data (the residual samples) and the 

sufficiency of using small sample orders. Unlike the purely iterative technique, 

furthermore, one does not need to use the original vibration signal at each iteration. As a 
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result, these reasons help to expedite the order determination and enable the improved 

method to be more efficient than the purely iterative technique. In the following, these 

two steps are described in details. 

Initial step: Let x=[x(1) … x(n)]∈ℜn be the vector of measured vibration 

responses of the structure associated with the undamaged or normal condition. AR(1) (i.e. 

an AR model of order one) is fitted to x, in order to extract the model residuals 

Ex=[e(2)…e(n)]∈ℜn-1. Before extracting such residuals, model coefficients 𝛉𝐱1
 are 

estimated by the least-squares technique. Since the residual sequence e(1) for this first-

order model is approximately null, it can be neglected 33. In case of using large volume 

of vibration measurements, featuring n relatively large, the residuals of AR(1) turn out to 

be correlated; hence, Ex is handled as a new series dataset for the subsequent iterative 

step. This is done since, if the residuals are correlated, some information present in the 

original dataset is not captured by the model. It is worth mentioning that, if the analysis 

of AR(1) via the LBQ test allows ascertaining that residuals are uncorrelated, which is 

indeed a rare event, one can respectively adopt p=1 and Ex as model order and main DSF 

for the normal condition. 

Iterative step: By increasing the model order with k = 2,3,…, AR(k) is fitted to 

the correlated residual sequence furnished by the previous step if k=2, or by the previous 

iteration if k>2, in order to extract the new residual vector 

 𝐄𝐱𝑘
=[e(

𝑘(𝑘+1)

2
+1)…e(n)]∈ ℜn-k(k+1)/2. Once again, before residual extraction the least-

squares technique is adopted to estimate the coefficients 𝛉𝐱𝑘
 of the new AR model. Alike 

in the initial step, the first k samples of the residual vector of AR(k) are null and are 

therefore dropped from 𝐄𝐱𝑘 
at the current iteration. If the sequences of  𝐄𝐱𝑘 

satisfy the null 

hypothesis by the LBQ test (QLB≤c-value), the iterative process is terminated; otherwise 
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(QLB>c-value), the model order k is increased and the correlated residual vector is 

exploited as a new dataset (�̂� = 𝐄𝐱𝑘
). When the termination condition is attained, the 

number of iterations provides an optimal and robust AR order, and the relevant 

uncorrelated residual vector 𝐄𝐱𝑘
 can be used as the main DSF for the training phase. 

Model coefficients at each iteration are stored, to be later used in the residual extraction 

during the monitoring phase. For the sake of convenience, Algorithm 1 presents the 

pseudo-code for the initial and iterative steps of the proposed feature extraction method 

in the training phase.  
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Algorithm 1. Initial and iterative steps of the proposed feature extraction method for 

the training phase 

Initialization 

nm=Number of test measurements; 

ns=Number of sensors; 

p0=Minimum AR order (default p0=1); 

pm=Maximum AR order; 
Initial Step 

for i←1 to nm do 

      for j←1 to ns do       

 Read the vector of vibration time-domain samples regarding the normal 

condition for the jth sensor and ith test measurement 

 Estimate the coefficient of AR(p0), θp0 

 Extract the model residuals e(1)…e(n) 

 Implement the LBQ test and obtain the test statistics QKL and its c-value 

              if QLB<c-value then 

 Store p0, θp0, e(2)…e(n) as the optimal AR order, the model 

coefficient, and the main features at the jth sensor and ith test 

measurement 

 Terminate the iterative loop 

             else 
                    Iterative Step 

                    for k← p0+1 to pm do  

 Set 𝑒 (
𝑘(𝑘+1)

2
+ 1) … 𝑒(𝑛) as the new time series data 

 Estimate the coefficients of AR(k), θ1…θk 

 Store the model coefficients θ1…θk for the kth iteration, jth sensor, 

and ith test measurement 

 Extract the model residuals 𝑒 (
𝑘(𝑘+1)

2
+ 1) … 𝑒(𝑛) 

 Implement the LBQ test and obtain the test statistics QKL and its c-

value 

                              if QLB>c-value then 

 Continue the iterative loop 

                             else 

 Store k, θ1…θk, and 𝑒 (
𝑘(𝑘+1)

2
+ 1) … 𝑒(𝑛) as the optimal 

AR order, the model coefficients, and the final features for 

the kth iteration, jth sensor, and ith test measurement 

                            end 

                   end 

            end 

     end 

end 
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3.2. Monitoring phase: residual extraction  

In order to obtain the DSFs relevant to the current structural state, the initial and 

iterative steps previously detailed need to be repeated again to extract the residual 

sequences. 

Initial step: Let y=[y(1) … y(n)]∈ℜn be now the vector of measured vibration 

responses associated with the current structural state. By fitting AR(1) to these data, the 

residual vector Ey=[ε(2)…ε(n)] ∈ℜn-1 is obtained. If the residual vector Ex of the initial 

step of the training phase is used as the main DSF for the normal condition, one can do 

the same with Ey for the current state; otherwise, Ey is used as a new time series in the 

subsequent iterative step. 

Iterative step: The iterative procedure in this step is governed by the variable 

order r=2,3,…,k. By using the model coefficients 𝛉𝐱𝑟
 estimated in the training phase, at 

the rth iteration the residuals of AR(r) are extracted. If r = k, the residual vector 𝐄𝐲𝑟
= 

[ε(
𝑟(𝑟+1)

2
+1)…ε(n)] ∈ℜn-r(r+1)/2 is used as the DSF for the current structural condition; 

otherwise, the iterative process continues by choosing 𝐄𝐲𝑟
as the new time series data (�̂�). 

For simplicity, Algorithm 2 provides the pseudo-code for the initial and iterative steps of 

the proposed feature extraction method in the monitoring stage.
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Algorithm 2. Initial and iterative steps of the proposed feature extraction method for 

the monitoring phase 

Initialization 

nm=Number of test measurements; 

ns=Number of sensors; 
Load 

Read the optimal AR orders, the model coefficients for all sensors and all test 

measurements from Algorithm 1 

if the optimal AR order=p0 or k=1 then 
  Initial Step 

    for i←1 to nm do 

          for j←1 to ns do       

 Read the vector of vibration time-domain samples regarding the damaged 

state for the jth sensor and ith test measurement 

 Fit AR(p0) to the vibration time-domain samples 

 Extract the model residuals ε(p0+1)…ε(n) as the main features for the jth 

sensor and ith test measurement 

          end 

    end 

else 
      Iterative Step 

      for i←1 to nm do 

            for j←1 to ns do 

 Set k as the optimal AR order at the jth sensor and ith test measurement  

                   for r← p0+1 to k do 

 Fit AR(r) using the known model coefficients θ1…θr regarding the 

rth iteration obtained from Algorithm 1 

 Extract the model residuals 𝜀 (
𝑟(𝑟+1)

2
+ 1) … 𝜀(𝑛) 

                         if r=k then 

 Store 𝜀 (
𝑟(𝑟+1)

2
+ 1) … 𝜀(𝑛) as the main features of the damaged 

state at the jth sensor and ith test measurement 

 Terminate the iterative loop at the iteration r 

                        else 

 Set 𝜀 (
𝑟(𝑟+1)

2
+ 1) … 𝜀(𝑛) as the new time series data 

 Continue the iterative loop by a new value for r 

                        end 

                   end 

            end 

      end 

end 
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 A novel statistical distance measure for damage localization 

4.1. Kullback-Leibler Divergence (KLD) 

The KLD technique proposed by Kullback and Leibler in 56 is a well-known 

statistical distance metric. It is a non-symmetric measure of the difference between two 

probability distributions, or better between two probability density functions. If Px and Py 

are the probability distributions of the random samples 𝐄𝐱𝑘 
and 𝐄𝐲𝑟

, the general 

formulation for the KLD reads: 
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Since Px and Py are both positive, Eq. (3) always provides a positive distance or 

divergence measure. In practical terms, DKL=0 means that the two probability 

distributions have the same behavior, and any deviation from the zero value is 

representative of dissimilarity between them.  

4.2. Kullback-Leibler Divergence with Empirical Probability Measure (KLDEPM) 

Unlike the conventional KLD technique, the main advantage of the KLDEPM 

method is that one does not need to compute the probability distributions of the data. The 

key features of this method are the segmentation of random samples and the adoption of 

an empirical probability measure 57. The calculation of the empirical probability measure 

directly depends on the way data samples are segmented. 

The strategy used in the proposed KLDEPM method is based on the maximum 

entropy approach. The residual vector 𝐄𝐲𝑟 
is arranged with entries in ascending order, in 

such a way that it begins with the minimum residual value and ends with the maximum 
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one. Subsequently, the rearranged vector 𝐄𝐲𝑟 
is divided into m sub-vectors in the following 

way: 
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where i=2,3,…,m-1. In Eq. (4), Ny denotes the number of samples within each segment 

of 𝐄𝐲𝑟 
, empirically given as the square root of the total number of samples in each residual 

vector, that is: 
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Accordingly, the number of segments turns out to be  𝑚 =
𝑛−

𝑘(𝑘+1)

2

𝑁𝑦
.  Since both Ny and m 

have to be positive integers, one needs to round off the outcomes of Eq. (5) to the nearest 

integer. Once vector 𝐄𝐲𝑟 
has been segmented, the segmentation procedure is repeated 

almost the same for the vector 𝐄𝐱𝑘
, since it is not necessary to arrange it in ascending 

order. Next, the sequences of 𝐄𝐱𝑘 
that fall into the domains of C1,C2,…,Cm are 

determined, given that Nx represents now the number of samples in each segment. 

Let �̂�x and �̂�y be the empirical probability measures of the residual 

vectors 𝐄𝐱𝑘
and 𝐄𝐲𝑟

, respectively. On the basis of the information on the segmentation 

provided by Ny, Nx, and m, such measures for the ith segment are given by: 
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where Nxi denotes the number of samples of 𝐄𝐱𝑘 
belonging to the segment Ci. It is worth 

remarking that only the first m-1 segments of the residual vector 𝐄𝐲𝑟 
have the same 

number of samples; for the last segment, the empirical probability measure is written as 

follows: 
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Having obtained the empirical probability measures, the KLDEPM is formulated as: 
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The great advantage of the proposed KLDEPM method, as detailed here above, is 

that it computes the distance between the two random datasets via the information given 

by segmentation and empirical probability measures, without directly handling the 

random samples as with the classical KLD technique. Since all the values obtained with 

the segmentation are positive, �̂�KL is positive as well. Ideally, a zero distance would 

denote a similarity between the residual vectors relevant to the normal and current 

structural states, which practically means that damage has not occurred. 

4.3. Unsupervised learning strategy 

In order to locate damage by means of a univariate distance method such as the 

KLDEPM, the distance must be computed between the residual vectors for the 
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undamaged and damaged conditions at each sensor location. Considering Ns sensors 

deployed over the structure, one can build a damage localization vector by assembling 

the �̂�KL values associated with all the sensors as follows: 
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An efficient and rigorous way for the localization of damage is to define a 

threshold limit for the distance values obtained from all the sensors. Let the training phase 

consist of Nc normal conditions, where Nc represents e.g. the number of measurements 

during the training period: the distance between the residual vectors related to each 

normal condition and all the other ones is computed according to Eq. (10) at all sensor 

locations. The obtained distance matrices Tl∈ℜ𝑁𝑠×𝑁𝑐 for each undamaged state, where 

l=1,2,…,Nc, are then gathered in a global distance matrix T∈R𝑁𝑠×𝑁𝑐
2
. A threshold limit is 

next defined, based on the upper bound of the 95% confidence interval for each column 

of T, according to: 

 
2

t 2 , t=1,2,...,  T
T α c

s

σ
ρ μ Z N

N
   

where μT and σT are the mean and the standard deviation of each column of T; Zα/2 is the 

confidence coefficient, equal to 1.96 for the 95% confidence interval under an α=0.05 

significance level. The mean value of the entries of ρ=[𝜌1 … 𝜌𝑁𝑐
2] finally represents the 

threshold limit for damage localization. In this regard, the sensor locations with the 

distance values more than the threshold limit are identified as the damaged areas of the 

structure. This means that the sensors should be arranged close to the possible damaged 

areas to ensure the damage sensitivity. Under such circumstances, an optimal and accurate 

sensor placement is of paramount importance to locate damage. On the other hand, it 
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should be mentioned that the strategy of finding the sensor location with distance value 

larger than the threshold limit is often valid for non-complex structural systems. This is 

because the damage localization procedure cannot simply be boiled down to tracking the 

location of a larger discrepancy in sensed signals or their damage indicators. Damage in 

structural systems may manifest in complex forms depending on the system's complexity, 

boundary conditions, and localized nonlinear elements. Therefore, this strategy needs 

possible extensions and combinations with further SHM localization criteria.  

 Applications 

5.1. A numerical concrete beam 

To verify the accuracy and performance of the proposed methods, a numerical 

benchmark model is first considered as shown in Fig. 1. This benchmark was constructed 

by Kullaa et al.53 as a realistic simulation of a simply supported concrete beam, cracked 

at the mid-span cross-section and featuring a length of 5m and a height of 0.5m. The beam 

was modeled in ABAQUS58, space discretized with 4-node two-dimensional finite 

elements. At the beam ends, the constraints were provided at the neutral axis. For 

excitation purposes, a uniform transverse random load was applied to the top surface. 

  

(a) (b) 

Fig. 1. The numerical benchmark model of a concrete beam: (a) sensor locations and damaged 

area, (b) element mesh in the vicinity of the crack 53 

Damage location 
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Fifteen sensors were supposed to be mounted on the top surface of the beam, to 

measure the time histories of the acceleration in the transverse (vertical) direction. The 

measurement period was assumed to last two seconds, to include 4001 samples. A noise 

featuring a 30 dB signal-to-noise ratio was added to the digital acceleration records, as 

obtained with the finite element analyses. The histories were low-pass filtered at 1000Hz, 

in order to keep five vibration modes of the structure possibly excited in the test results. 

The crack at the bottom of the beam mid-span was used to simulate a single 

damage state: crack lengths of 10, 30, 50, and 100mm are used in this work to varying 

the amount of damage. For each damage scenario, twelve test measurements are 

considered, so that the first ten ones are relevant to the undamaged condition, while the 

information provided by the last two varies depending on the crack length. To have the 

same amount of data in the undamaged and damaged conditions, the structural states and, 

therefore, the corresponding measurements are arranged as shown in Table 1; 

accordingly, the acceleration response at each sensor location always contains 8002 data 

samples. The healthy states are thus assumed to be five, whereas the damage cases, at 

varying damage level, are the remaining four ones. As a sample, Fig. 2 shows the 

acceleration responses at the sensor 8 in Cases 1 and 5. 

Table 1. Structural conditions relevant to the numerical concrete beam 

Case no. Label 
Measurement no. Damage level/crack 

length (mm) 

1 

Healthy 1-2 - 

Healthy 3-4 - 

Healthy 5-6 - 

Healthy 7-8 - 

Healthy 9-10 - 
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2 Damaged 11-12 10 

3 Damaged 11-12 30 

4 Damaged 11-12 50 

5 Damaged 11-12 100 

 

 

Fig. 2. The acceleration responses of Sensor 8: (a) Case 1, (b) Case 5 

Before moving to the results related to damage detection, the reasons for choosing 

the AR representation are discussed. An effective way to identify the appropriateness of 

this model is through the Leybourne-McCabe (LMC) hypothesis test 59: in essence, this 

test assesses the null hypothesis that a univariate time series conforms to an AR process, 

against the alternative hypothesis relevant to a non-stationary AutoRegressive Integrated 

Moving Average (ARIMA) process. In other words, if the test statistics QLM is smaller 

than a c-value, which refers to as before to the null hypothesis, one can argue that the time 

series is stationary and the AR model is suitable to represent it.  
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Fig. 3. Stationarity assessment and AR model identification by the LMC hypothesis test: (a) 

Case 1, (b) Cases 2-5 

Fig. 3 shows the LMC test statistics for the healthy and damaged conditions. It 

can be seen that all the test statistics are smaller than the c-value, which amounts to 0.1460 

under a 5% significance limit; all the acceleration time histories in all the cases can then 

be considered stationary processes conforming to AR ones. Accordingly, the AR model 

for feature extraction is assumed accurate for SHM purposes. The other reason that may 

help to verify the choice of AR modeling is to use the Box-Jenkins methodology33, which 

presents a graphical model identification approach. It utilizes the autocorrelation function 

(ACF) and partial autocorrelation function (PACF) of time series data and identifies a 

suitable time series model among the AR, MA, and ARMA representations. In this regard, 

if the samples of ACF have an exponential decay form or behave as a sine wave without 

any trend in being zero and the samples of PACF gradually cut off after a specific lag, 

these indicate that time series data conform to the AR process. This means that the most 

proper time series model is AR. In contrast, if the samples of both the ACF and PACF 

have exponential decay forms or treat as sine waves, one can conclude that the ARMA 

model is suitable for the time series data.  
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With these descriptions, Fig. 4 illustrates the ACF and PACF plots of some 

vibration signals of the concrete beam for the first two tests (i.e. the measurements 1-2) 

of Case 1. As can be seen, all samples of the ACF behave as sine waves, while the samples 

of the PACF gradually cut off approximately after 50 lags. These observations confirm 

that the AR representation is suitable for modeling the acceleration responses. It needs to 

mention that the same conclusion can be reached for the other vibration signals in other 

cases.  

 

Fig. 4. Graphical model identification between the AR and ARMA representations by the Box-

Jenkins methodology in Case 1: (a) ACF at Sensor 4, (b) PACF at Sensor 4, (c) ACF at Sensor 

8, (d) PACF at Sensor 8, (e) ACF at Sensor 11, (f) PACF at Sensor 11 

Using the test measurements for Case 1, Fig. 5(a) shows the identified AR orders 

at all sensor locations, as obtained with the proposed two-stage order selection method. 

To demonstrate the superiority of this method, the orders obtained with the original 
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iterative approach and the BIC technique are shown in Fig. 5(b) and 5(c). It can be seen 

that the range of the AR orders obtained with the improved method is upper bounded by 

26, whereas the original approach and the BIC technique provide results with orders up 

to 52 or 65, respectively.  

To further show how the improved order selection method yields low-order AR 

models, still preserving their adequacy and accuracy by generating uncorrelated residuals, 

Fig. 6 illustrates the variations of the LBQ test statistics with the number of iterations for 

the exemplary results related to sensors 5 and 14 and the measurements 9-10 of Case 1, 

see Table 1. Using a 5% significance level, in this case, the c-value turns out to be 

31.4104: graphs show that the obtained orders, namely k=20 for sensor 5 and k=26 for 

sensor 14, enable the AR models to generate uncorrelated residuals, with outcomes of the 

LBQ test smaller than the c-value. For more evaluations, Fig. 7 indicates the statistics for 

analyzing the uncorrelatedness and Gaussianity (normality) of the residual samples in 

Cases 1-5. In this regard, the LBQ test is applied to investigate whether the residual 

samples are uncorrelated. For the problem of Gaussianity of the residuals, the Anderson-

Darling (AD) hypothesis test60 is applicable. The outputs of this test are similar to the 

LBQ test, in which case if the AD test statistics to be smaller than the c-value, one can 

infer that the residual samples are Gaussian. 
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Fig. 5. AR model orders for all test measurements relevant to Case 1, as obtained with (a) the 

proposed method, (b) the original iterative method, and (c) the BIC method 

 

Fig. 6. LBQ test statistics for the test measurements 9-10 of Case 1: (a) Sensor 5, (b) Sensor 14 
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Fig. 7. Analysis of the residual samples of the AR models in Cases 1-5 of the numerical beam: 

(a) assessment of the residual uncorrelatedness by the LBQ test, (b) assessment of the residual 

Gaussianity by the AD test 

As can be seen in Fig. 7(a) and 7(b), the statistics of both the LBQ and AD tests 

are smaller than the c-values under the 5% significance level. These observations prove 

the uncorrelatedness and Gaussianity of the residual samples extracted from the AR 

models. Regarding the computational efficiency for the AR order selection, Fig. 8(a) 

shows the computational time of the improved and original iterative algorithms, and of 

the BIC approach, obtained by using the acceleration time histories from all the sensors. 

Fig. 8(b) provides instead a comparison among the times needed for the complete process 

of residual-based feature extraction, by allowing for the datasets of measurements 1-2 of 

Case 1 for the training period and of measurements 11-12 of Case 2 for the monitoring 

phase. In the plot, the data relevant to the main steps of AR order selection, parameter 

estimation and residual extraction during training, and residual extraction during 

monitoring are detailed. These results have been obtained by running the analyses with 

Matlab R2017a on a PC featuring an Intel™ Core i7-3770, 3.40–3.90 GHz CPU and 16G 

RAM. 
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Fig. 8. Comparison among the method-dependent computational times relevant to (a) AR order 

selection, and (b) complete feature extraction process (RBFE: Residual-Based Feature 

Extraction) 

Fig. 8 clearly points out that the proposed method is more efficient than the other 

techniques, as far as the AR order selection is concerned; the other way around, it is less 

efficient than the others as for the residual extraction in the monitoring phase. Anyway, 

the proposed method generally provides a faster feature extraction since it does not feature 

a further parameter estimation step in the training phase, which is shown to be relatively 

time-consuming for the conventional approach. As the process of order selection has the 

highest influence on the overall computational time of feature extraction, the novel 

iterative algorithm thus represents a time-saving unsupervised learning strategy for 

feature extraction. 
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Fig. 9. Case-dependent segmentation of the residual vectors at all sensor locations: (a) number 

of segments; (b) number of samples of 𝐄𝐲𝑟
 in the first m-1 segments; (c) number of samples of 

𝐄𝐲𝑟
 in the last segment 

By adopting the model order and coefficients obtained in the training phase, the 

residual vectors 𝐄𝐱𝑘
and 𝐄𝐲𝑟

 at each sensor are extracted and respectively used as the main 

DSFs for the healthy and damaged conditions. The setting of Ny and m on the basis of 

segmentation depends on the number of the residual sequences, which is equal 

to √𝑛 − 𝑘(𝑘 + 1) 2⁄ ; referring to the example in Fig. 6(a), the order k of the AR model at 

sensor 5 results to be 20, so that the number of samples within each segment and the 

number of segments are rounded to Ny=m=88. Fig. 9 collects the results in terms of Ny 

and m values at all sensor locations; here the group numbering along the vertical axes 



31 

 

refers to the healthy cases reported in Table 1. Finally, also the number Nx of samples 

related to the residual vectors in the normal conditions have to be set; as an example, Fig. 

10 shows exemplary values for the residual vectors relevant to sensors 1-4 and to the first 

measurement of Case 1. 

 

Fig. 10. Number of samples in 𝐄𝐱𝑘
based on the segmentation of 𝐄𝐲𝑟 

in the first measurement of 

Case 1 relevant to (a) sensor 1, (b) sensor 2, (c) sensor 3, and (d) sensor 4 

This setting is then used in Eqs. (7)-(11), to compute the empirical probability 

measures for all the segments, and the distance quantities via KLDEPM at all sensors for 

damage localization. In this example, the single vertical crack shown in Fig. 1 is located 

near sensor 8, hence the attempt is to assess whether the proposed KLDEPM method is 

able to identify such location as the damaged area. For comparison purposes, damage 

localization is performed also by the classical KLD method and by the state-of-the-art 
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KSTS technique. On the basis of the methodology for threshold estimation described in 

Section 4.3, the threshold values for the KLDEPM, KLD, and KSTS methods are 

respectively set as 0.1007, 0.2171, and 0.0361. The sensor location associated with a 

distance value greater than these threshold levels is accordingly identified as the damaged 

area: Fig. 11 illustrates the results of damage localization obtained with the three methods, 

wherein the mean value of the distances between the residual vectors referring to the 

damaged and to all the normal conditions is used to identify it. 

 

Fig. 11. Damage localization in the numerical beam, as obtained with the (a) KLDEPM, (b) 

KLD, and (c) KSTS methods 

As reported in Fig. 11, all the distance quantities furnished by KLDEPM and KLD 

exceed the threshold limits at sensor 8, so these methods prove successful in locating the 

damage at a varying severity level. Although the same outcome is reported by KSTS for 



33 

 

Cases 3-5, it can be seen that this technique fails in identifying the location in case of 

small damages (as Case 2 corresponds to a 10mm crack length), giving rise to a false-

negative damage indication or type II error. Fig. 11 also conveys the important conclusion 

that one of the main reasons for achieving the accurate damage localization with any 

distance method (except Case 2 with the KSTS technique) is due to the high sensitivity 

to damage of the AR model residuals obtained with the proposed feature extraction 

method.  

 

Fig. 12. Comparison among KLDEPM, KLD, and KSTS methods, in terms of the 

computational time for damage localization in the numerical beam  

Besides the issue of damage identification, results related to the computational 

times of damage localization are compared in Fig. 12. The proposed KLDEPM method 

is shown to be much faster than the others, and it thus results to provide the best 

performance also in this regard. The classical KLD technique requires instead the largest 

computing time, while the KSTS technique is a bit less computational demanding, though 

it must be borne in mind that it also leads to the erroneous damage localization in Case 2. 
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Overall, Figs. 11 and 12 lead to the conclusion that the proposed KLDEPM method is 

able to locate damage by means of a fast unsupervised learning strategy. 

5.2. A four-story steel structure 

The experimental datasets of the second phase of the IASC-ASCE benchmark 54 are 

now exploited, to verify the robustness of the proposed method in the presence of multiple 

damage cases. The benchmark consists of a scaled four-story steel structure, made of a 2-

bay-by-2-bay steel frame with a size of 2.5×2.5×3.6m, as shown in Fig. 13(a). The 

members were hot-rolled grade 300W steel, with a nominal yield strength of 300 MPa. 

The columns and floor beams respectively featured B100×9 and S75×11 cross-sections. 

For each bay, the bracing system consisted of two diagonal threaded steel rods with a 

diameter of 12.7mm. To make the mass distribution realistic, slabs were placed in each 

bay with a mass of 1000kg at the first, second and third floors, and of 750kg at the fourth 

floor. 

The structure was excited in different ways; in this work, account is taken of the 

experimental responses obtained with an electro-dynamic shaker mounted on the top level 

of the structure. Acceleration time histories caused by this excitation were measured by 

the 15 accelerometers shown in Fig. 13(b), at a frequency of 200Hz; each file of 

acceleration response thus consists of 24,000 samples. The accelerometers located on the 

east and west frames measured the accelerations along the strong axis, or north-south (N-

S) direction: sensors 1, 4, 7, 10 and 13 were placed on the west side, while sensors 3, 6, 

9, 12, and 15 were placed on the east side, with numbering moving from the base and 

going up to the fourth floor. Accelerometers 2, 5, 8, 11, and 14 were instead placed in the 
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vicinity of the central columns, again with numbering from the base to the fourth floor, 

to measure the accelerations along the weak axis or east-west (E-W) direction. 

 

 

(a) (b) 

Fig. 13. (a) The four-story steel structure of the IASC-ASCE SHM benchmark problem54; (b) 

details of the structure plan for the base, first, second, third, and fourth floors 

Acceleration time histories acquired with the sensors 1-3 mounted on the base are 

not incorporated in this analysis since they do not provide relevant information 

concerning the dynamic behavior of the structure. Nine damage scenarios were simulated 

for this structure, by removing some braces from the east side and southeast corner (first 

damage pattern) or by loosening bolts at the beam-column connections of the east side 

(second damage pattern). The five damage scenarios belonging to the aforementioned 

first damage pattern are considered next, as detailed in Table 2. For example, Fig. 14 

shows the excitation force and acceleration responses at the sensor 9 in Cases 1 and 2. 

Table 2. Healthy and damaged conditions of the IASC-ASCE structure (Phase II) 

Case no. Label Description 

1 Healthy Fully braced configuration – No damage 



36 

 

2 Damaged All braces removed from floors 1-4 at the east side  

3 Damaged All braces removed from floors 1-4 at the southeast corner 

4 Damaged Braces removed from floors 1 and 4 at the southeast corner 

5 Damaged Braces removed from floor 1 at the southeast corner 

 

Fig. 14. (a) The excitation force, (b) the acceleration response at the sensor 9 in Case 1, (c) the 

acceleration response at the sensor 9 in Case 2 

First of all, the LMC hypothesis test is employed to assure the accuracy of the 

adopted AR model for feature extraction. Fig. 15 collects the LMC test statistics at all 

sensors for Cases 1-5. Using a 5% significance limit, the c-value is now equal to 0.1460; 

the plot shows that all the values of QLM are smaller than this test c-value, so that once 

again all the measured acceleration responses can be assumed stationary and compatible 

with an AR process. Furthermore, Fig. 16 shows the plots of the ACF and PACF for the 
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graphical model identification via the Box-Jenkins methodology for some vibration 

signals of Case 1. It is seen that the samples of the ACF (the left plots) are similar to sine 

waves without any trend in being zero. By contrast, one can discern that the samples of 

the PACF (the right plots) gradually cut off approximately after more than 50 lags. These 

observations demonstrate that the most suitable time series model between AR and 

ARMA for the vibration signals is AR. It is worth remarking that the same conclusion 

can be achieved for the other responses. 

 

Fig. 15. Stationarity assessment of the AR model identification by the LMC hypothesis test 

To handle different normal conditions in the training phase, which look essential 

for the threshold estimation, the acceleration responses associated with Case 1 are 

randomly contaminated by five different noise levels. In this way, five different 

acceleration datasets for the healthy state of the IASC-ASCE structure are built, and they 

can be considered equivalent to five normal conditions or five test measurements for Case 

1 in the training stage (Nc=5). Fig. 17 gathers the orders of all the AR models furnished 

by the improved and original iterative methods as well as by the BIC technique, handling 

the mentioned five measurements for Case 1. The results show that the improved method 
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gives rise to orders smaller than the other techniques also in this analysis. Overall, the 

BIC technique turns out to be always the worst one in terms of performance. 

 

Fig. 16. Graphical model identification between the AR and ARMA representations by the Box-

Jenkins methodology in Case 1: (a) ACF at Sensor 6, (b) PACF at Sensor 6, (c) ACF at Sensor 

12, (d) PACF at Sensor 12, (e) ACF at Sensor 14, (f) PACF at Sensor 14 
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Fig. 17. AR model orders for all the five measurements relevant to Case 1: outcomes (a) of the 

proposed method, (b) of the original method, (c) and of the BIC method 

 

Fig. 18. LBQ test statistics for the first measurement of Case 1: (a) Sensor 9, (b) Sensor 15 
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Fig. 19. Analysis of the residual samples of the AR models in Cases 1-5 of the IASC-ASCE 

structure: (a) assessment of the residual uncorrelatedness by the LBQ test, (b) assessment of the 

residual Gaussianity by the AD test 

The proposed order selection method is able to guarantee model accuracy with 

uncorrelated residuals: Fig. 18 depicts the LBQ test statistics for the two lowest and 

highest AR orders, respectively obtained with the first measurement at sensors 9 and 15. 

In the two cases, the QLB value at iterations 20 and 36 becomes smaller than the c-value 

threshold, which amounts to 31.4104 for a 5% significance limit; similar conclusions are 

arrived at for all the other locations and measurements. Moreover, Fig. 19 shows the 

statistics of the LBQ and AD tests for analyzing the uncorrelatedness and Gaussianity of 

the residual samples regarding all sensors in Cases 1-5. Once again, it is seen that all 

statistics are smaller than the tests’ c-values, which approve that the extracted residual 

samples are uncorrelated and Gaussian. 

Figs. 20 and 21 illustrate the computational time relevant to the AR order 

selection, and to the complete process of residual-based feature extraction. In Fig. 20, the 

vibration responses from all the sensors in the five measurements of Case 1 are adopted 

to compute the time needed for the determination of the AR orders. As for Fig. 21, the 
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acceleration datasets of Case 2 and the first measurement of Case 1 only are handled to 

set the computational time of residual extraction in the training and monitoring phases.  

 

Fig. 20. Computational times for AR order selection in the IASC-ASCE structure, as obtained 

with the improved, original and BIC methods 
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Fig. 21. Computational times for the complete process of feature extraction in the IASC-ASCE 

structure (RBFE, Residual-Based Feature Extraction): comparison among the performances of 

the improved, original and BIC methods 

Results show that the improved order selection method needs very little 

computational effort if compared to the other approaches. The new residual-based feature 

extraction method provides also a better performance against the conventional approach. 

As already shown for the cracked beam, the step of residual extraction in the monitoring 

stage requires more time than with the conventional technique, due to the repeated 

iterative process for residual extraction. This may be a problem for SHM applications 

because the feature extraction in the training phase can be practically performed only for 

one time in advance, while during the monitoring phase, the feature extraction requires to 

be fast implemented for more than one time as long as the damage detection is required. 

Nevertheless, it should be mentioned that the improved method possesses several 

advantages such as determining a small and adequate order for the AR model, 

simultaneously obtaining the model order, coefficients, and residuals in the training 

phase, and providing a total short time for a complete feature extraction, all of which 
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enable the improved method to be a time-saving unsupervised learning strategy for 

feature extraction.  

Once the residuals of the AR model at each sensor have been extracted for the 

undamaged and damaged conditions, their sensitivity to damage is assessed. To this aim, 

the L2-norms of the residual vectors 𝐄𝐱𝑘 
and 𝐄𝐲𝑟 

at all sensors are computed, and the 

results are collected in Fig. 22; here, the samples in the range 1-60 belong to the 

measurements during training, while the subsequent samples 61-108 are related to 

monitoring. As the L2-norm values relevant to the damaged conditions highly increase in 

comparison with the values referring to the normal conditions, a confirmation is provided 

of the sensitivity to damage of the residuals extracted with the proposed feature extraction 

method. 

Figs. 23 and 24 show details of the segmentation of the residual sequences for 

Cases 2-5, in terms of the number of segments, and the number of samples within all the 

m segments. In the following, the number of samples (Nx) of 𝐄𝐱𝑘 
is determined as shown 

in Fig. 24 for some exemplary sensor locations. It is to note that the black areas in Fig. 23 

are related to the information provided by sensors 1-3 mounted on the base of the 

structure, which as mentioned earlier has not been considered in the procedures for feature 

extraction and damage localization. 
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Fig. 22. L2-norm of the residuals in the training (1-60) and monitoring (61-108) phases 

 

Fig. 23. Measurement-dependent segmentation of the residual vectors at all sensor locations: (a) 

number of segments, (b) number of samples of 𝐄𝐲𝑟
 in the first m-1 segments, (c) number of 

samples of 𝐄𝐲𝑟
 in the m-th segment 
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The KLDEPM method is adopted to locate damage, providing the results reported 

in Fig. 25; for comparison, Figs. 26 and 27 collect the same results, as obtained with the 

KLD and KSTS techniques. In these graphs, thresholds respectively amount to 0.0234, 

0.3577, and 0.0461 for the KLDEPM, KLD, and KSTS methods. As before, the mean 

distance values between the residual vectors relevant to each damaged state and to the 

normal conditions are computed, to provide the results in terms of damage identification. 

 

Fig. 24. Number of samples in 𝐄𝐱𝑘 
based on the segmentation of 𝐄𝐲𝑟 

, for the first measurement 

of Case 1 at (a) sensor 4, (b) sensor 8, (c) sensor 11, and (d) sensor 14 
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Fig. 25. Damage localization in the IASC-ASCE structure by the proposed KLDEPM method: 

(a) Case 2, (b) Case 3, (c) Case 4, and (d) Case 5 

 

Fig. 26. Damage localization in the IASC-ASCE structure by the classical KLD technique: (a) 

Case 2, (b) Case 3, (c) Case 4, and (d) Case 5 
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Fig. 27. Damage localization in the IASC-ASCE structure by the KSTS technique: (a) Case 2, 

(b) Case 3, (c) Case 4, and (d) Case 5 

Regarding Cases 2 and 3, Figs. 25(a)-(b), 26(a)-(b) and 27(a)-(b) show that the 

damage locations (DLs) are correctly identified by the three methods at the east side of 

floors 1-4, since the distance values at sensors 6, 9, 12, and 15 exceed the threshold. For 

Cases 4 and 5, in Figs. 25(c)-(d) and 26(c)-(d) it is seen that both the KLDEPM and KLD 

methods succeed in locating the damaged areas at the southeast corner of either floor 1 or 

4. These outcomes are related to distance values exceeding the threshold at the sensors 6 

and 15 for Case 4, and at the sensor 6 for Case 5. Fig. 27(c) shows for Case 4 that KSTS 

can also identify the damage locations at the sensors 6 and 15, but a false-positive damage 

indication (Type I error) is observable at sensor 5, which is instead an undamaged location 

(UDL). This technique is also incapable of identifying the damaged area in Case 5, due 

to the reported false-negative indication (Type II error) at sensor 6 shown in Fig. 27(d). 

Furthermore, Fig. 28 compares the time required for damage identification via the three 
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distance approaches: the best performance is provided again by the KLDEPM method. 

Thus, also in this case it emerges as a fast decision-making process within an 

unsupervised learning strategy for damage localization. 

 

Fig. 28. Comparison among the KLDEPM, KLD, and KSTS methods, in terms of the 

computational time for damage localization in the IASC-ASCE structure  

In most cases of SHM problems, the environmental and operational variability 

conditions are inevitable50. To indicate the effects of these conditions on the procedures 

of feature extraction and damage localization, it is assumed that Case 5 is an undamaged 

state with the environmental variability attributable to the reduction in stiffness by 

removing the only braces on one bay at the first story of the IASC-ASCE structure. Note 

that this assumption was already used by Entezami and Shariatmadar37. In fact, the basis 

of this assumption comes from the simulation of the environmental variations by reducing 

the structural stiffness, which was simulated on the laboratory frame of the Los Alamos 

National Laboratory in the USA31. Under such circumstances, the normal conditions are 

Cases 1 and 5 (Nc=2), which are applied to estimate a threshold limit for damage 

localization. All the steps of feature extraction (i.e. AR order determination, parameter 
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estimation, and residual extraction in the training and monitoring phases) are 

implemented to locate damage in Cases 2-4 as shown in Fig. 29, where the dashed lines 

are the threshold limit equal to 0.0544. As can be discerned, the same accurate results as 

Fig. 25 are observable in Fig. 29. This means that the proposed methods succeed in 

extracting reliable features and accurately locating damage in Cases 2-4 even under the 

simulated environmental variability.  

 

Fig. 29. Damage localization in the IASC-ASCE structure using the proposed KLDEPM 

method by considering the simulated environmental variability: (a) Case 2, (b) Case 3, (c) Case 

4 

 Conclusions 

An innovative feature extraction approach, through AR modeling and a statistical 

distance method termed KLDEPM, has been proposed to locate structural damage based 

on an unsupervised learning strategy. The proposed method consists of an improved AR 

order selection, an iterative residual extraction algorithm for the training stage and another 

iterative residual extraction process for the monitoring phase. The KLDEPM method is 

based on the theory of empirical probability measure and rests on a segmentation of the 

residual sequences into independent sets. A numerical concrete beam and the IASC-

ASCE benchmark structure have been considered, to assess the accuracy and performance 
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of the proposed method. Comparative analyses with alternative state-of-the-art 

procedures have been conducted, to testify the superior performance of the offered 

method.  

The results of feature extraction have shown that the improved order selection 

method guarantees the accuracy and sufficiency of the AR model by generating 

uncorrelated residuals, and also provides model orders smaller than those obtained with 

the alternative techniques. Accordingly, this method results to be less computationally 

demanding, also because the process of order selection has the highest influence on the 

total time required for feature extraction. By means of the L2-norms in the undamaged 

and damaged conditions, the residuals of the AR model extracted from the proposed 

feature extraction approach have been confirmed to be highly sensitive to damage. 

In the statistical decision-making process for damage localization, results have 

proven that the KLDEPM method is capable of locating damage of varying severity, 

particularly for scenarios featuring small damage levels. Since the same conclusion has 

been obtained with the (less computationally efficient) classical KLD technique, the 

statistical distance measuring the discrepancy between two datasets by a logarithmic 

function has shown to be a reliable tool for damage identification. The comparative 

analysis has also confirmed that KLDEPM is superior in locating small damages, with 

Type I and Type II errors never observed.  

One can then conclude that the proposed feature extraction and KLDEPM 

methods can be efficient and successful for SHM purposes, particularly regarding damage 

localization, with the great advantage of working within the frame of an unsupervised 

learning strategy.  
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