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Abstract The value of streamflow forecasts to inform water infrastructure operations has been
extensively studied. Yet, their value in informing infrastructure design is still unexplored. In this work, we
investigate how dam design is shaped by information feedbacks supporting the implementation of flexible
operating policies informed by streamflow forecasts to enable the design of less costly reservoirs relative
to alternatives that do not rely on forecast information. Our approach initially explores the maximum
potential gain attainable by searching and using the most valuable forecast information and lead time. We
then analyze the results? sensitivities relative to existing and synthetic biased forecasts. We demonstrate
our approach through an ex post analysis of the Kariba Dam in the Zambezi River Basin. Results show
that informing dam design with perfect forecasts enables attaining the same hydropower production

of the existing dam, while reducing infrastructure size and associated capital costs by 20%. A forecast-
informed operation of the existing system can instead facilitate an annual average increase of 60 GWh

in hydropower production. This finding, extrapolated to the new planned dams in the basin, suggests

that forecast informed policies could yield power production benefits equal to 75% of the current annual
electricity consumption of the Zambian agricultural sector. The use of biased forecasts substantially
reduces this gain, showing that the ESP forecasts value is marginal and that informed infrastructure
designs are particularly vulnerable to forecast overestimation. Advancing information feedbacks may
therefore become a valuable asset for the ongoing hydropower expansion in the basin.

1. Introduction

Dam design and operation are classically treated as two independent problems. Optimal reservoir capacity
sizing has typically been addressed using a least-cost problem framing, aimed at minimizing total costs
(e.g., Perelman et al., 2013 in the water sector; Rodriguez et al., 2015 in the energy sector). In particular,
the traditional engineering approach (e.g., U.S. Army Corps of Engineers, 1975, 1977) relies on the Rippl
method to identify the optimal dam size based on a sequence of prespecified, desired releases or simple
abstractions of predefined operating policies (e.g., Hall et al., 1969; Montaseri & Adeloye, 1999; Stephenson
& Petersen, 1991). More recent examples (e.g., Bertoni et al., 2019; Geressu & Harou, 2015) show that the
joint design of reservoir size and operation can benefit from the use of state aware control actions that are
dynamic and adaptive to the system conditions being observed. However, these operating rules are general-
ly conditioned on the reservoir level/storage only, while they do not account for other available information
feedbacks, such as streamflow forecasts, which support more flexible and adaptive operations (e.g., Giuliani
et al., 2019; Libisch-Lehner et al., 2019; Nayak et al., 2018).

The value of employing forecasts to enhance the operations of existing infrastructures has long been ac-
knowledged (e.g., Faber & Stedinger, 2001; Kelman et al., 1990; Kim & Palmer, 1997). The theoretically
attainable improvement in performance across operating objectives by the forecast informed system is re-
ferred to as forecast value (Murphy, 1993). Forecast value may change according to the temporal dynamics
of the operating objectives (Denaro et al., 2017). In a water reservoir system primarily operated to satisfy
short-term operating objectives (e.g., flood control), short-term forecasts are likely the most informative
because they provide the system operator with anticipation capacity to create a buffer storage for mitigating
the upcoming flood peak and thus minimizing flood damages (e.g., Raso et al., 2014; Saavedra Valeriano
et al., 2010; Wang et al., 2012; Zhao et al., 2014). Alternatively, reservoirs operated with respect to long-term
objectives (e.g., irrigation water supply) might primarily benefit from seasonal forecasts (e.g., Anghileri
et al., 2016; Block, 2011; K. Georgakakos et al., 2005; Hamlet et al., 2002; Maurer & Lettenmaier, 2004;
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Steinschneider & Brown, 2012; Voisin et al., 2006). When dealing with a multipurpose water reservoir sys-
tem, estimating the associated forecast value becomes more challenging, since both short-term and long-
term operating objectives must be balanced (e.g., Denaro et al., 2017; Fuchs et al., 2018; A. Georgakakos
et al., 2012; Lu et al., 2017; Nayak et al., 2018; Sreekanth et al., 2012; Xu et al., 2015).

Prior studies have also shown that forecast value can change with dam size (e.g., Anghileri et al., 2016;
Graham & Georgakakos, 2010; Sankarasubramanian et al., 2009; Turner et al., 2017; You & Cai, 2008). For
example, the water supply operations of both undersized and oversized dams may become trivial, since in
the former case the reservoir operation cannot cancel the structural deficit of the system, whereas in over-
sized context the operators are generally able to always satisfy demands. Forecasts might therefore have no
value in improving their operations. However, it is important to note that the aforementioned studies assess
the sensitivity of forecast value with respect to few discrete sampled system configurations characterized
by different structural features (e.g., different dam sizes, storage capacity-inflow ratios, storage capacity-de-
mand ratios) chosen in absence of a broader exploration of the coupled planning/operation design space.
Given the complex interdependencies between reservoir dynamics, information feedbacks, and infrastruc-
ture design, the discrete problem decompositions tacit to these sensitivity analyses may bias the resulting
forecast value estimates.

In this study, we investigate the value of streamflow forecasts for informing the coupled design of a wa-
ter reservoir size and its operations. Building on the robust dam design framework proposed in Bertoni
et al. (2019), we assess whether more flexible operating policies informed by streamflow forecasts enable
the design of less costly but operationally effective reservoir systems. We achieve this by first identifying
the most valuable forecast information and lead times for perfect streamflow forecasts across different dam
sizes and operational trade-offs. Then, the selected forecasts are used within the coupled dam design and
operation problem to quantify an upper bound estimate for the associated forecast value. Lastly, we explore
the sensitivity of the forecast value to more realistic forecasts characterized by different biases. We demon-
strate the value of our methodological contribution through an ex post design analysis of the Kariba Dam in
the Zambezi River Basin (ZRB), a region where there are a large number of dams planned in the near future
(World Bank, 2010), motivating the need for innovations in dam design. Kariba is the largest man-made
reservoir in Africa, and the dam's reservoir has the potential for large interannual carry over water volumes
that could benefit from streamflow forecasts to mitigate seasonal and interannual drought anomalies.

In summary, the main contributions of the paper include a methodology for (1) assessing the maximum
potential gain generated by informing infrastructure design with perfect streamflow forecasts; (2) selecting
the most informative forecast information and lead times for different dam sizes and operational trade-offs;
(3) understanding the sensitivity of the forecast-informed infrastructure designs on specific forecast biases
and providing recommendations for improving existing forecast systems.

2. Case Study Description
2.1. Kariba Dam

The Kariba reservoir is a regulated lake in the transboundary ZRB in southeastern Africa (Figure 1a). Drain-
ing 1.37 million km?, the ZRB is the fourth largest basin in Africa. The river is shared among eight countries,
with Zambia, Zimbabwe and Mozambique encompassing nearly 70% of the entire basin (SADC, 2012).
Hydropower is a main source of electricity within the basin, generated by four major regulated reservoirs
with a total hydropower capacity of 5,145 MW. About 35% of this overall capacity is installed at the Kariba
Dam, built in 1960 and impounding the largest man-made reservoir in Africa with a surface area of about
5,600 km® and a total storage capacity of about 180 km® (65 km® of which are active storage). Kariba Dam
feeds two hydropower plants, the North Bank Station in Zambia and the South Bank Station in Zimbabwe,
for a total nameplate capacity of about 2,000 MW. The two plants are jointly operated by the Zambezi River
Authority under the supervision of the Zambezi Watercourse Commission (ZAMCON), an international
river basin authority established in 2014 with the goal of promoting an equitable and reasonable utilization
of the water resources of the Zambezi Watercourse, including both long-term planning and operational
decisions. The Kariba Dam system is complemented by two irrigation districts, located respectively up-
stream and downstream the reservoir, where major cultivated crops are sugar cane, rice, wheat, and maize
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Figure 1. Panel (a) map of the Zambezi River Basin with Kariba Dam squared in black. Panel (b) schematic
representation of the Kariba multipurpose reservoir system.

(Payet-Burin et al., 2019). Further downstream, the Zambezi River flows in Mozambique and is dammed at
Cahora Bassa, which has an installed capacity equal to 2,075 MW. Two other dams, Ithezi-Thezi and Kafue
Gorge, are instead located in Zambia on the tributary Kafue River and contribute an additional installed
capacity of 1,100 MW.

2.2. Model Description

As shown in Figure 1b, the model of the Kariba reservoir system consists of three main components, the
reservoir with its hydropower plant and two irrigation districts upstream and downstream. A monthly mod-
eling time-step is employed to capture the Kariba reservoir's dynamics through the following water mass
balance equation:

Spp1 =8 i —ha €S, (€))

where s, is the storage at the beginning of month ¢, i,,, is the inflow to the reservoir, r,,; is the volume of
water released and e;-S; is the water evaporated in the time interval [t, ¢ + 1). In particular, e, is the mean
monthly evaporation rate, while S; is the reservoir surface uniquely defined by a nonlinear relation given s..
The actual release 1,4, = f{s;, Uy, i1, €, ¢) is formulated according to the nonlinear, stochastic relation f{-) be-
tween r;,; and the release decision u; (Soncini-Sessa et al., 2007), which is constrained within a certain zone
of operational discretion by the maximum () and minimum y,(«) feasible release functions, due to the
presence of physical (e.g., spillway activation) constraints. Such release functions directly depend upon the
dam size a € A, so the extension of the dam operation discretion space enlarges/shrinks proportionally to
the dam size considered. As for the reservoir release decision u,, at each time step it is uniquely defined from
an operating policyu, = p,__(-), based on a certain set of inputs (e.g., reservoir storage, time, and streamflow

forecasts). The policy Pg,,, belongs to a predefined class of functions, according to which it is parameterized

gres
within the space of the parameters 6,.s € O,5(x). Note that the interdependency between dam size and op-
eration is expressed in terms of the direct dependence of the feasibility set O,(x) of the policy parameters
6res upon the dam size a. The physical dam size, therefore, constrains the space of operational discretion to

reside within a limited range.

Kariba provides storage for two hydropower plants managed by the same operator but with different fea-
tures: the South Bank is equipped with deeper, more efficient yet smaller turbines than the North Bank
(Gandolfi & Togni, 1997). To account for that, in our model we assume the total release r.,, to be split into

¥, = 1., - Afor the North and 5, = r.,, - (1 - A) for the South Bank. A and 1 — A are the normalized tur-
bines efficiencies of the North and South Bank respectively, given the sum of their actual efficiencies (i.e.,
7™ and »°, respectively) equal to one.
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Figure 2. Flowchart of the methodology employed in this study. Each line is colored differently based on the set of
streamflow forecasts it refers to, namely perfect seasonal (blue), perfect interannual (black), and realistic seasonal (red)
forecasts.

As for the two irrigation districts (id = 1,2), they can abstract water @, from the river through regulated
diversion channels. The total demand of the two district is larger than the mean annual inflow entering
the system, which generates a structural irrigation deficit as in average conditions there is no enough water
to cover the demand regardless of the adopted system operation. The volume of water they can abstract is
calculated according to a nonlinear hedging rule (Celeste & Billib, 2009), which allows diverting into the
irrigation canals less water than their corresponding demands in order to account for downstream users:

id
id | id il eoid _yid
id _ mln(qt+l’wt | ,:, ") if 941 <h
+1 = h (2)
min(g4,, w else

where qf‘il is the volume of water available in the river upstream of the id-th irrigation district, and wfd is
the monthly water demand taken from World Bank (2010). As for the time invariant parameters k' and
m' regulating the two diversion channels (id = 1,2), they can be grouped into the vector 8, = [h', m', K%,
m?] € O, These parameters are optimized along with reservoir size and its operations (see Equation 3).

3. Methods and Tools

Our methodology, illustrated in Figure 2, is composed of the following three methodological steps, which
are detailed in the next subsections.

The first step is the generation of streamflow forecasts and the selection of the most informative forecast
information and lead times to be included within the dam design phase (see Section 3.1). Three different
sets of streamflow forecasts are considered, perfect seasonal (blue arrows), perfect interannual (black ar-
rows), and biased seasonal (red arrows) forecasts. The perfect seasonal and interannual forecasts are used to
evaluate the upper bound theoretical value of information at these timescales. The biased seasonal forecasts
are intended to reproduce a more realistic decision making environment, and to disentangle the influence
of different forecast biases on the associated informed infrastructure designs. Then, we select the most in-
formative seasonal and interannual forecasts for different dam sizes, based on their ability to best explain
the target sequence of reservoir releases derived from a theoretical operating policy (i.e., perfect operating
policy, POP) (Giuliani et al., 2015), informed by perfect knowledge of future hydrologic conditions (i.e.,
future reservoir inflows).

The second step of our methodology consists of a joint optimization of reservoir size and operations (see
Section 3.2). In particular, we identify the informed infrastructure design (IID), where operations are in-
formed by the forecast information selected in the previous step. The resulting set of optimal infrastructure
designs is compared with the basic infrastructure design (BID), which represents the lower bound system
performance as the system operations depend upon a basic set of policy inputs traditionally employed in
the literature (e.g., reservoir storage).
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The last step of our procedure is the estimation of the forecast value, namely the performance improvement
that could be attained when including the selected information feedbacks in the infrastructure design (see
Section 3.3). Given the upper bound of the forecast value as the difference between the BID and POP per-
formance, the IID is expected to approach the POP by partially filling this performance gap. The identified
performance improvement represents the forecast value, which is computed for all the considered forecasts,
namely perfect seasonal, perfect interannual, and biased seasonal predictions.

3.1. Generation and Selection of Forecasts

The generation and selection of forecasts step consists of first identifying two arrays of perfect streamflow
forecasts at both seasonal and interannual time scale, from which the most valuable forecast information
and lead times are selected to inform the search for design and operation alternatives. The resulting solu-
tions represent an upper limit of the system performance and allows understanding if the infrastructure de-
sign problem can benefit from forecast information. To assess the sensitivity of the informed infrastructure
design on more realistic forecasts, we then generate a set of biased seasonal streamflow forecasts including
ensemble streamflow prediction (ESP; Day, 1985) as well as synthetic forecasts with different levels of over-
estimation, underestimation, and underdispersion (i.e., underestimation of high flows and overestimation
of low flows) (Cassagnole et al., 2020). The comparison of the results obtained with biased forecasts with the
reference provided by the (ideal) solutions relying on perfect forecasts will also provide recommendations
for improving existing forecast systems in order to make them suitable for informing infrastructure design.
For details about the biased forecast generation, see Section S7 of the supporting information.

The selection of the most valuable forecast information is however not a straightforward process. Since
forecast skill usually degrades with long lead times (Doblas-Reyes et al., 2011), shorter and more accurate
forecast lead times are more often used. Yet, the operational value of forecasts is strictly related to the struc-
tural characteristics of the system considered (e.g., reservoir size) and large dams with an annual carry over
capacity might also benefit from longer, less precise forecast lead times to further enhance their operations.

In order to support this information selection problem, following the Information Selection and Assessment
(ISA) procedure proposed by Giuliani et al. (2015) we use an input variable selection technique. We initially

identify an array E; of perfect seasonal streamflow forecasts for different monthly lead times up to a max-
imum of 7 months ahead. The 7-month lead time is selected to reflect the maximum lead time of existing
seasonal forecast systems, including the European Center for Medium-Range Weather Forecasts (ECMWF)
SEAS5 (Owens & Hewson, 2018) and the NOAA's National Weather Service (Franz et al., 2003). Then,
according to the guidelines in Galelli et al. (2014) and Giuliani et al. (2015), we employ the iterative input
selection (IIS) algorithm (Galelli & Castelletti, 2013b) coupled with Extremely Randomized Trees (Galelli &
Castelletti, 2013a; Geurts et al., 2006). The IIS algorithm is a hybrid model-based/model-free approach char-
acterized by modeling flexibility (i.e., ability to approximate strongly nonlinear functions), computational
efficiency, and scalability with respect to the number of candidate inputs. For each dam size, the IIS algo-
rithm follows an iterative procedure to select the most informative seasonal forecast I} € Ej that best model
a target sequence of reservoir releases representing the optimal operation of the system. This sequence is
derived for a specific dam size from the simulation of an ideal operating policy under the assumption of
perfect knowledge on the future (i.e., perfect operating policy). For further details about the identification
of the target output, refer to both Sections 3.4 and S2 of the supporting information.

Interannual and decadal time frames are particularly relevant for infrastructure planners and water re-
sources managers, potentially bringing added socioeconomic benefits to infrastructure operations (Choud-
hury et al., 2019). Decadal forecasts aim at modeling future climatic conditions over a longer time horizon
(i.e., the next 10-30 years) and their potential value has being recently investigated in the literature (e.g.,
Ham et al., 2014; Schuster et al., 2019; Smith et al., 2019). As a means of theoretically bounding the value of
interannual forecasts to inform the coupled infrastructure design, we generate a second array 2! of perfect
streamflow forecasts up to a maximum lead time of 5 years ahead. This longer forecast horizon might bene-
fit particularly large dam sizes, as they have enough storage capacity to carry over large water volumes one
or more years. These long carry over periods hold the potential to help mitigate the impacts of interannual
anomalies related to global climate oscillations (e.g., El Nifio Southern Oscillation). When informing their
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operations with interannual forecasts, the active storage of large reservoirs may be managed accordingly to
decrease (increase) and make room (compensate) for the large (small) water volumes that will enter the res-
ervoir in the upcoming years, achieving high system performance across the entire evaluation horizon. The
same input variable selection technique described for seasonal forecasts is applied to interannual forecasts,

in order to identify their most informative lead times I! e E for different dam sizes.

3.2. Design Optimization

The infrastructure design consists of a coupled multiobjective optimization of both reservoir size and oper-
ations, which can be formulated as follows:

7" = argmin_ J,
where J, = |gcost g i 3)

subject to equations 1,2

where 7z =l a,py,_ .0, lis the decision vector, including the dam size « € A, the parametric operating policy

Mirr
Pg

res’

and the time invariant parameters regulating the two irrigation diversion channels 6;,. Such decision
variables are optimized with respect to one planning J5* and two management J ’,’}"l, J Z’ objectives, formu-
lated as follows:

+ Minimization of dam construction costs J5" [$] discounted over the lifespan of the project

JCUS[ - c(a) . r
g 1=+t @
where c(c) [$] is the reservoir construction costs that is, proportional to the dam size a, r [yr™'] is the
interest rate set at 0.05 (IRENA, 2012) and L [yr] is the lifespan of the project set at 100 years (ibid.), over
which construction costs are discounted.

+ Maximization of hydropower production J" [TWh/yr]
wa _ 1D NTN N STS S
Jzz = Etg() 5g7(77 hx Q1 11 ht qt+l) (5)

where § is a conversion factor to turn hydropower production into [TWh/yr], n™ and 7° are the turbines
efficiencies of the North and South Bank, g = 9.81 [m/s’] is the gravitational acceleration, y = 1,000

[kg/m’] is the water density, /_t,N and l_z,s [m] are the net hydraulic heads of the North and South Bank
(i.e., reservoir level minus tailwater level), while ¢/, and a., [m? / s] are the turbinated flows at the

North and South Bank. If we focus, for example, on the North Bank, the turbinated flow is calculated as

follows: q,’\fr, = min(r,ﬁ]],c_jN ), where " is the maximum capacity of the turbines at the North Bank and
r,lffl = A -1, is the water flowing through them (for further discussion, refer to Section 2.2). The same
relation holds for the South Bank. In the end, at each time step the total hydropower production is given
by the sum of the productions at the two power plants.

* Minimization of total squared irrigation deficit J%" [—] normalized with respect to the squared irrigation
demand of each district

irr _
J; =

1
H (=0 id=1 wid

H-1 2 id _ id 2
Yy [max(w, a,H,O)] )

where wid and afil are the monthly irrigation water demand and abstraction for the id-th irrigation dis-
trict respectively.
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At first, we identify the BID by solving problem 3 with basically informed operating policies associated to
alternative dam sizes. Such policies are informed with a basic set of policy inputs (s, t, q;), consisting of the
reservoir storage s; (state of the system), the month of the year ¢, and the previous month inflow q;, namely
u, = py_(s,,1,q,). By conditioning their operations on a minimum number of variables that can be observed

res

at time ¢, the resulting basic infrastructure designs represent our lower bound system performance.

Then, we solve problem 3 to identify the IID, conditioning the operating policies Pg,,. associated to alter-

0/'83'
native dam sizes upon an enlarged set of policy inputs, consisting of storage s;, month ¢, previous month
inflow gq;, along with the forecast information I/ € 2/ (with f = [s, i]) selected in the previous step of our
procedure. The resulting informed infrastructure designs differ from the basic only in the formulation of
the operating policies associated to different dam sizes, which are now dependent upon an enlarged set of

policy input conditioning the resulting decision u,, namely u, = p(s,,t,q,,I,f ).

We solve both the basic and informed infrastructure design problems by adopting the approach proposed in
Bertoni et al. (2019), where evolutionary multiobjective direct policy search (EMODPS; Giuliani et al., 2016)
is expanded to search for optimal reservoir sizing in addition to the optimal operations of both the reservoir
and the two irrigation diversion channels. EMODPS indeed allows solving the multiobjective joint design
of infrastructure size and operations in a single optimization run. This makes EMODPS preferable with
respect to other approaches, including model predictive control, that can benefit from forecast informa-
tion but would be computationally more demanding as they would require multiple optimization runs to
explore different dam sizes in a nested approach (Bertoni et al., 2020) and different tradeoffs by using dif-
ferent scalarization values to reduce the dimensionality of the objective space (Soncini-Sessa et al., 2007).
EMODPS is a parameterization-simulation-optimization approach (Guariso et al., 1986; Koutsoyiannis &
Economou, 2003; Oliveira & Loucks, 1997) that searches candidate parameterized operating policies Pg,,, in

the space of the parameters 6,,s € Oy via multiobjective evolutionary algorithms (MOEAs). MOEA-based
search identifies the set of Pareto approximate policies (i.e., trade-off solutions) whose performance in any
single objective can only be improved at the cost of one or more other objectives (Coello Coello et al., 2007).

Finding the optimal reservoir operating policy p;m is therefore equivalent to finding the associated optimal

policy parameters 9:”. The coupled design of reservoir size and operation problem (see Equation 3) must
be solved over a complex search space to identify the optimal decision vector 7, formed by both continuous
(i.e., policy parameters 6, and irrigation diversion parameters 6;,) and discrete (i.e., dam size «) decision
variables. The water reservoir operating policy is parameterized as a nonlinear network of Gaussian radial
basis functions (for further details about the mathematical formulation of the parameterized operating

policy, refer to Section S1 of the supporting information).

The search tasks are implemented using the self-adaptive Borg MOEA algorithm (Hadka & Reed, 2013),
since it has been proven to be highly robust across a wide number of challenging multiobjective problems
by meeting or exceeding the performance of other state-of-the-art MOEAs (Reed et al., 2013). The Borg
MOEA employs multiple global probabilistic search operators for mating, selection and mutation, whose
probability of being selected during the optimization phase is linked to their demonstrated ability of gen-
erating quality solutions. In particular, we use the hierarchically parallelized version of the Borg MOEA,
termed the multimaster Borg MOEA (Hadka & Reed, 2015), which has proven to be successful in complex
reservoir control problems (e.g., Giuliani et al., 2018; Quinn et al., 2018; Salazar et al., 2017). The multimas-
ter Borg MOEA exploits communication across multiple master-worker parallel implementations of the
Borg algorithm, improving both the algorithm's reliability across random seed trials and the performance of
the worst seeds, without degrading the best seeds (Hadka & Reed, 2015).

In addition to the BID and IID formulations, we have to determine the target output of the IIS procedure
described in Section 3.1. This is achieved by solving the management side of the joint optimization problem

3 with respect to the two management objectives (i.e., J " in Equation 5,7 in Equation 6), for a fixed dam
size & and irrigation diversion parameters @,,. For further details about the mathematical formulation of the
optimization problem, refer to Section S2 of the supporting information. This pure management problem
is solved via deterministic dynamic programming (DDP; Bellman, 1957) for different dam sizes identified

under basic infrastructure design and with respect to the full, deterministically known trajectory of external
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drivers (i.e., streamflows) over the entire evaluation horizon H. For each dam size, we therefore obtain an
optimal operating policy, from which we derive a target sequence of optimal release decisions (i.e., target
output of the corresponding IIS procedure) that an ideal system operator would follow under deterministic
knowledge on the future (refer to Section 3.4 for further details). Given that this policy is identified under
perfect knowledge of the future (i.e., POP), it represents the upper bound system performance.

3.3. Forecast Value

Prior literature has defined forecast value as the operational value of employing forecasts to enhance system
operations, namely their effectiveness in supporting decisions (Anghileri et al., 2016; Turner et al., 2017),
and quantified in terms of performance improvement in the system operation objectives (Murphy, 1993).
In this study, we first assess the theoretical upper bound of attainable forecast value by estimating the
maximum space for improvement—also known as expected value of perfect information (EVPI)—that is,
in principle attainable under the assumption of full and perfect (deterministic) information on the future
when operational decisions must be made (Giuliani et al., 2015, for further details, refer to Section S2 in the
supplementary material). When dealing with single-objective problems, the single management objective
considered assumes one scalar value for the POP and the BID, making it trivial to quantify the difference
between these performance bounds. For multiobjective problems, the resolution of problem 3 yields a set of
Pareto optimal or approximate alternatives. Following Zitzler et al. (2003), we use finite set theory to quanti-
fy the candidate space for multiobjective performance improvement, using the hypervolume (HV) indicator
that measures the volume of objective space dominated by a Pareto set. The HV measure has the benefit of
capturing both convergence (“proximity to the best known solutions”) and diversity (“representation of the
full extent tradeoffs”). The EVPI is calculated as the difference in hypervolume between the ideal optimal
Pareto front (i.e., the POP performance) and the approximation set attained using only information on the
reservoir storage (i.e., the BID performance), where the Pareto front associated to the higher hypervolume
is the better. As a rule, the larger the EVPI, the more the system can benefit from including more forecast
information during its joint optimization of candidate designs and operations.

The EVPI is then expected to be partially covered by the informed infrastructure design, filling the perfor-
mance gap between the perfect (upper bound) and basic (lower bound) solutions and drawing its system
performance as close as possible to the POP. Such performance improvement corresponds to the actual
forecast value and is calculated as the difference in hypervolume between the informed and basic infra-
structure designs.

3.4. Computational Experiment
Our computational experiment has the following structure:

* Perfect seasonal streamflow forecasts: forecasts of Kariba inflows from 1974 to 2005 computed over seven
different lead times, ranging from 1 to 7 months ahead. In addition to the cumulative future streamflow,
both the minimum and maximum over 7 months are also included (see Table 1). The minimum future
streamflow allows to acquire perfect knowledge on the most severe drought that will affect the system in
the next 7 months. The maximum future streamflow allows to acquire perfect knowledge on the maxi-
mum flood peak that will enter the Kariba Dam in the next 7 months

Both the BID and IID formulations are solved using the multimaster Borg MOEA algorithm (see Sec-
tion 3.2), which is based on an epsilon dominance archiving, requiring the users to specify a numerical
precision for each optimization objective below which they are insensitive to changes in performance. We

use epsilon dominance values equal to 0.06 for %, 0.01 for J%", and 4.8-10° for J5", representing the signif-
icance of precision that is, considered consequential in evaluating decision trade-offs. Each optimization
problem was run for 10 random seeds in order to improve solution diversity and avoid randomness depend-
ence, using a 4-master implementation. Each seed was runup to one million function evaluations, proved to
be sufficient by visual inspection of search progress, with little variability across seeds (refer to Section S3 of
the supporting information). The remainder of the multimaster Borg MOEA algorithm's parameters were
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set using the defaults recommended in prior studies (Hadka & Reed, 2015; Salazar et al., 2017). For each
computational experiment, the final set of Pareto approximate system configurations was computed as the
reference set of nondominated solutions obtained across the 10 optimization trials. The experiments were
run on the Cube Cluster at the Cornell Center for Advanced Computing, running CentOS 7.6 across 32
compute nodes with Dual 8-core E5-2,680 CPUs at 2.7 GHz, 128 GB of RAM, using 192 cores per island for
a total of 3,840 computational hours.

4. Results and Discussion
4.1. Influence of Dam Size on the EVPI

In order to quantify the actual value of forecasts and their effectiveness in enhancing dam design, we must
first find the maximum space for improvement that is, theoretically attainable with full and perfect (i.e.,
deterministic) foresight, namely the EVPI. This represents the upper bound system performance. A small
space for improvement means that the potential gain in system performance achievable by using stream-
flow forecasts is negligible (and the converse for a large space for improvement).

Figure 3 shows the performance for three different dam sizes, namely small S (stars, panel (a)), medium
M (diamonds, panel (b)), and large L (circles, panel (c)), in terms of hydropower production (J*) and ir-
rigation deficit (J'), and the associated EVPI obtained by comparing BID results exploiting only standard
storage information (orange) and the POP baseline with perfect foresight (gray). For each dam size, the
corresponding EVPI is calculated as the difference in hypervolume between basic and Perfect solutions
(gray shaded area) and reported in the bottom right corner of each panel. The EVPI increases from 0.54
to 0.62 as we move from small to large dam sizes. Larger reservoirs provide an increased active storage ca-
pacity and operational flexibility to carry over significant water volumes across different temporal scales
(i.e., from intramonthly to interannually). The operations of large dams might thus benefit more from
additional information on future hydro-climatic conditions of the system (e.g., future streamflows accu-
mulated over several months). Moreover, regardless of dam size, the gray shaded area (i.e., EVPI) shrinks
as we move from a hydropower preference (top right) to an irrigation focus (bottom left) in the objective
space. When the reservoir is operated to maximize hydropower, information on future hydrologic condi-
tions is needed every month of the evaluation horizon to always keep the reservoir full to sustain constant
releases while minimizing spillages. An irrigation focused operating policy is dominated by the need to
meet the target irrigation demands with a maximum peak in August/September. Since there is a structur-
al deficit in the system (see Section 2.2), the information on the amount of water entering the reservoir
in subsequent months is less valuable and better informing reservoir operations can never achieve zero
deficit.

In each of the three panels in Figure 3, we highlighted three different operational preferences: increased
hydropower (H), compromise (C) and an emphasis on irrigation (I) (black squares). Our evaluations of the
value of streamflow forecasts in the subsequent results are based on these nine solutions.

4.2. Forecast Informed Infrastructure Design Using Perfect Seasonal Forecasts

After assessing the EVPI as well as the potential benefits that are achievable when hydropower strongly
shapes solution preferences, we now identify via IIS the most informative seasonal forecasts I} € E; for the

three target trade-offs for each of the three dam sizes (Figure 3). Independent of dam size and operation-
al performance trade-offs, the most informative variables selected always provide information on future
streamflow extremes (i.e., maximum or minimum future streamflows) rather than on the cumulated water
volume entering the reservoir over different monthly lead times. In particular, hydropower focused policies
are best informed by the maximum future streamflow over 7 months qM7, for all three dam sizes, whereas
the minimum streamflow over the same period qm?7, is selected in the case of the irrigation-prone solutions
(more details on the results of this information selection phase can be found in Section S4 of the supporting
information). We employ these two variables separately as the first, most informative input to be included
in the informed infrastructure design phase in addition to reservoir storage and time. Results show that the

BERTONI ET AL.

90f 19



I . Yedy

NIv Water Resources Research 10.1029/2020WR028112
; (a) Small'S S (b) Medium M 1 (c) Large L
3 $ g:= -
POP POP
08" 0.8 —é 08
_EO.G 0.6 0.6
7 H H
0.4 0.4 0.4
c
0.2 0.2 £ 0.2
. [ 0.54| | | 059 |
34 35 36 37 38 39 4 34 35 36 37 38 39 4 34 35
Jhvd [TWh/yn]

Figure 3. The objective space performance comparisons of the basic infrastructure designs (orange) and the corresponding perfect operating policies (gray) for
each of the three dam sizes selected, namely small S (stars, panel (a)), medium M (diamonds, panel (b)), and large L (circles, panel (c)). The gray shaded area
represents the expected value of perfect information, also reported in the bottom right corner of each panel. Arrows indicate the direction of preference in the

objectives.

solutions informed with the maximum inflow outperform the ones with the minimum inflow (see Table S2
of the supporting information).

Perfect interannual streamflow forecasts: in addition to the set of seasonal forecasts in Table 1, we also
consider interannual perfect forecasts of Kariba inflows from 1974 to 2005. In particular, we add the
median of future streamflows over 12, 24, 36, 48, and 60 months ahead. Other temporal aggregation
metrics used to characterize streamflow forecasts, such as the cumulative future streamflows, as well as
the maximum and minimum over subsequent months, usually provide exact information on the amount
of water that will enter the system in the near future. Therefore, their skill rapidly degrades with longer
lead times (Doblas-Reyes et al., 2011). Due to the multiyear time resolution associated to interannual
forecasts and the difficulties related to their exact estimate, we use the median to characterize them be-
cause it provides a rough estimate of the water volume entering the system in the next years, suggesting
whether the upcoming years will be rather wet/dry in median

Basic infrastructure design: BID solutions are designed via EMODPS over the 1974-2005 evaluation hori-
zon. Based on Bertoni et al. (2019), three dam sizes are selected such that they uniformly cover the entire
set of optimal system configurations identified under basic information, namely a small S = 128 km?, a
medium M = 148 km”® and a large L = 188 km® dam size. Note that this includes an alternative that is,
very similar to the existing Kariba Dam's size (188 vs. 180 km’, respectively)

Perfect operating policy: POP solutions are designed via DDP over the 1974-2005 evaluation horizon
for each of the three dam sizes selected (for further details, refer to Section S2 of the supporting infor-
mation). Since DDP requires to solve a single-objective problem, we use the weighting method (Saaty
& Gass, 1954) to convert the 2-objective problem discussed in Section 3.2 into a single-objective one
via convex combinations. The operational trade-offs between the hydropower production and irrigation
deficit objectives are explored by varying the weights used for aggregating the objectives. For each dam
size, three target POPs associated to three different target trade-offs between the two management objec-
tives are used as target outputs of the IIS procedure to identify the most informative forecast lead times.
Since the Pareto front extremes are not particularly interesting in a realistic decision making problem as
they focus on a single objective only, we selected a hydropower-prone and irrigation-prone tradeoffs that
attain a performance in hydropower production and irrigation deficit close to the corresponding extreme
solutions while also partially accounting for the other objective

Information selection: for each target POP trade-off to be explained and each dam size, the IIS algorithm
is used to select the most informative forecast lead times that mostly explain the target sequence of opti-
mal releases. At first, we perform a regression on a sample data set consisting of the Kariba storage s, and
month of the year t. Being these two variables highly correlated with the target output to be explained,
they would overshadow the real contribution of other potentially informative variables if jointly consid-

ered in the information selection phase. Then, the IIS algorithm is run on the set Z; of perfect seasonal

BERTONI ET AL.

10 of 19



Y od |
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2020WR028112

Table 1 streamflow forecasts presented in Table 1 to select the most informative
Set of Perfect Seasonal Streamflow Forecasts Calculated Over Different lead times and temporal aggregation metrics (i.e., maximum and mini-
Lead Times mum over 7 months) I} € E; explaining the model residuals of s; and ¢.
Name Description Period The same procedure is then repeated for the set of perfect interannual

qls...q7, Cumulative future streamflow over 1,...,7 months 1974-2005
qm7, Minimum future streamflow over 7 months 1974-2005

qM7, Maximum future streamflow over 7 months 1974-2005 .

streamflow forecasts =/, where the IIS algorithm must select the most
informative lead times only I € = since interannual forecasts are char-
acterized by the median of future streamflows over multiple years

Informed infrastructure design: 1ID solutions are designed via

(a) small's

EMODPS over the 1974-2005 evaluation horizon. In order to esti-
mate the forecast value, for each set of solutions we analyze the same
three dam sizes selected under basic information from the set of op-
timal, informed system configurations

Figure4 compares the associated forecast value obtained by BID (orange) and IID (cyan) solutions for the
small S (stars, panel (a)), medium M (diamonds, panel (b)), and large L (circles, panel (c)) dam sizes in
terms of J™ and J™ (the full Pareto approximate set of IID is illustrated in Figure S4 of the supporting infor-
mation). For each dam size, the forecast value is computed as the difference in hypervolume between basic
and informed solutions (cyan shaded area), whereas the gray shaded area represents the residual space for
improvement that is, not yet explained. Regardless of dam size, the informed system performs better than
the basic, moving closer to the set of POPs.

For large dam sizes, the forecast value is characterized by a +32% hypervolume increase from 0.38 (basic)
to 0.50 (informed), covering about 20% of the corresponding space for improvement. This corresponds to
a +80 GWh/yr hydropower production increase and no changes in terms of irrigation deficit on average
across all the basic and informed solutions. As for medium dam sizes, the forecast value is the smallest, with
a +22% hypervolume increase from 0.41 (basic) to 0.50 (informed), covering about 15% of the corresponding
space for improvement. This corresponds to a +42 GWh/yr hydropower production increase and a 0.05 nor-
malized irrigation deficit decrease on average across all the basic and informed solutions. In the end, small
dam sizes are associated to the highest forecast value, with a +33% hypervolume increase from 0.46 (basic)
to 0.61 (informed), covering about 28% of the corresponding space for improvement. This corresponds to a
0.13 normalized irrigation deficit decrease and no changes in terms of hydropower production on average
across all the basic and informed solutions.

Such improvements are particularly evident in the hydropower focused region of the objective space, which
was already expected to attain the highest enhancement when including informative variables in infrastruc-
ture design. Here, the cyan shaded area is larger and the gray shaded area shrinks accordingly. In particular,
if we fix a specific high level of hydropower production (e.g., /¥ ~ 3.84 TWh/yr), a 20% reduction in capital
costs could be attained by designing a medium dam operated with forecast information (i.e., cyan diamond

(b) Medium M (c) Large L
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Figure 4. Comparison of the two objective tradeoffs that result from the basic infrastructure designs (orange), the informed infrastructure designs (cyan) and
perfect operating policies (gray) for each of the three dam sizes selected, namely small S (stars, panel (a)), medium M (diamonds, panel (b)), and large L (circles,
panel (c)). The cyan shaded area represents the forecast value, whereas the gray shaded area corresponds to the residual space for improvement to still be filled.
Arrows indicate the direction of preference in the objectives.
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Figure 5. Panel (a) Two objective performance trade-offs for the medium M dam size, where the BID (orange), IID (cyan), and POP (gray) solutions associated
to a hydropower-prone operating policy H are squared in black. Panel (b) monthly cyclo-stationary level trajectories for the three solutions highlighted in panel
(a). Dotted lines bound the 5-th and 95-th percentiles of the monthly levels, whereas bold lines identify the monthly cyclo-stationary average. Panel (c) monthly
cyclo-stationary inflow trajectory of the Kariba Dam. The shaded area is bounded by the 5-th and 95-th percentiles of the monthly inflows, whereas the bold
line identifies the monthly cyclo-stationary average. The red dotted line corresponds to the inflow trajectory of a dry year (i.e., 1994). Panel (d) monthly level
trajectories for the three solutions highlighted in panel a during a dry year (i.e., 1994). The cyan shaded area covers the distance between the BID and IID level
trajectories.

in Figure 4b), that produces the same hydropower as that of a larger reservoir informed with the basic set of
policy inputs (i.e., orange circle in Figure 4c). Given this fixed level of hydropower production and a large
dam size (Figure 4c), the informed infrastructure design (cyan) is able to produce 0.06 TWh/yr (60 GWh/
yr) more hydropower than the corresponding basic solution (orange), moving from a 3.84 to a 3.90 TWh/
yr absolute value in the hydropower objective performance. This improvement is particularly significant
as it corresponds to more than 25% of the yearly average electricity consumption by the agriculture sector
in Zambia, where the Kariba Dam is located, recorded over the 2014-2017 period IEA (2019). It is also im-
portant to notice that this hydropower improvement is attained at no additional cost for irrigation, as the
irrigation deficit remains unchanged.

To further understand the effects of streamflow forecasts on enhancing the reservoir system design, we
analyze the system dynamics achieved under a hydropower focused policy, where we have observed the
greatest improvement. Figure 5 displays the system dynamics for medium dam sizes in terms of levels (pan-
el b), inflows (panel ¢) and dry year levels (panel d) trajectories associated to the basic (orange), informed
(cyan), and perfect (gray) solutions MH highlighted in panel a (for other dam sizes, refer to Section S5 in
the supplementary material). In particular, the selected IID solution is the one closer to the BID and POP
solutions according to the Euclidean distance metric. Since the maximum future streamflow over 7 months
gM7, allows the system operator to acquire perfect knowledge on the flood events that will occur in the
near future, he/she is able to keep the reservoir levels about 2 m higher than the basic and closer to the
perfect trajectories without spilling (Figure 5b). This leads the informed solution to a +2% further increase
in hydropower production with respect to the basic one, approaching the performance achieved under POP
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Figure 6. Panel (a) Two objective performance trade-offs for the large L dam size, where the BID (orange), IID (cyan),
1ID under interannual forecasts (blue), and POP (gray) solutions associated to a hydropower focused operating policy
H are squared in black. Panel (b) monthly cyclo-stationary level trajectories for the four solutions highlighted in panel
(a). Dotted lines bound the 5-th and 95-th percentiles of the monthly levels, whereas bold lines identify the monthly
cyclo-stationary average.

(Figure 5a). On the contrary, since BID relies on the reservoir storage and time only, the system operator
does not have any information on the future streamflows entering the reservoir. Being afraid of spilling
and consequently wasting possible production, the operator keeps the reservoir levels very low, without
exploiting the full hydropower potential of the dam. This is particularly evident during dry years (e.g., 1994),
when low reservoir levels contribute to further decreasing hydropower production under basic infrastruc-
ture design (Figure 5d). Since less water enters the reservoir (red dotted line in Figure 5c), releases must be
reduced in order not to further lower the levels and thus the hydropower potential, causing production to
be decreased even further.

4.3. Forecast Informed Infrastructure Design Using Perfect Interannual Forecasts

To this point, our analysis has considered the value of an array of perfect seasonal streamflow forecasts over
different monthly lead times up to the maximum lead time of seasonal forecasts provided by weather fore-
cast centers. However, it is also interesting to assess whether interannual streamflow forecasts contribute
any further benefit particularly for large dam sizes, which can carry over large water volumes year-to-year.
Even if interannual forecasts are not yet very accurate, their skill is expected to considerably increase in the
near future (e.g., Nicoli et al., 2020; Redolat et al., 2020). To this end, we employ the IIS algorithm to iden-
tify the most informative lead times I! out of an additional set of perfect interannual streamflow forecasts
E!. The full details for our analysis of the interannual perfect information selection phase can be found in
Section S4 in the supplementary material. In addition to the maximum future streamflow over 7 months
qM?7, the IIS algorithm selected the median of future streamflows over the next 12 months qmed12,, as an
additional, not negligible informative variable to be included in the informed infrastructure design phase
for all dam sizes.

Figure 6a displays the performance of large L dam sizes in terms of /™ and J™ achieved under basic (or-
ange), informed under seasonal forecasts (cyan), informed under interannual forecasts IID—IA (blue) in-
frastructure designs and perfect operating policies (gray). Interannual forecasts coupled with qM7, bring
particular advantages in the hydropower focused region of the objective space, allowing the IID—IA alter-
natives to approach the POP set. This information allows the system operator to acquire perfect knowledge
not only on the magnitude of the upcoming flood peak, but also whether the next year will be wet or dry
relative to the median. The operator is therefore confident in storing more water and keeping the levels
higher without spilling, consequently increasing hydropower production and reducing irrigation deficit.
However, this operating strategy can be applied to large dam sizes only, for which interannual forecasts are
valuable as they can store significant water volumes and carry them over interannually. Adding interannual
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forecasts does not bring any additional benefits in the irrigation-prone area, where the potential improve-
ment is extremely limited.

Figure 6b investigates the reservoir dynamics under the LH solutions marked in panel a and conditioned
over distinct information. As expected, under IID—IA the reservoir levels are about 2.5 and 0.5 m higher
than the basic and seasonally informed respectively on average, moving closer to the perfect trajectories.
Such difference is not big enough for allowing IID—IA to further increase hydropower production with
respect to the seasonally informed system, yet it is sufficient for storing more water needed to satisfy the
irrigation demand, attaining a 20% reduction in the irrigation deficit. When compared with the basic sys-
tem, however, the difference in the reservoir levels is significant, allowing IID—IA to achieve a 2% higher
hydropower production and a 15% lower irrigation deficit. The value of the interannual forecasts becomes
particularly evident when transitioning from wet to normal years, while the performance of BID is compa-
rable to the both IID and IID—IA during periods with limited interannual variability (see Figure S6 of the
supporting information).

4.4. Forecast Informed Infrastructure Design Using Biased Forecasts

This section explores how much the results discussed so far, which rely on the assumption of having per-
fect forecasts, degrade when using seasonal streamflow forecasts characterized by different biases, includ-
ing ESP forecasts as well as synthetic forecasts with different levels of overestimation, underestimation,
and underdispersion. These three specific biased were selected because they are expected to impact on
the informed infrastructure design relying on the maximum streamflow over the next 7 months. For the
infrastructure design, we employ the same settings of the IID analysis presented in Section 4.2, where the
information used in the optimal infrastructure design is limited to s;, ¢, and qM7,.

Figure 7a displays the skill of the different biased forecasts. Here, skill is computed as1 — RMSEg / RMSE,
, where S is the considered forecast system, while C is the streamflow climatology. This skill analysis
shows that all the considered forecasts have a positive skill, i.e., they all outperform the streamflow cli-
matology in terms of RMSE. Overestimated forecasts are the least skilful, while both underestimated
and underdispersed forecasts attain relatively high values of skill. The skill of ESP forecasts is instead in
between, suggesting the need of investigating the value of this realistic forecasts in informing the infra-
structure design.

A summary of the 10 IID experiments using biased forecasts is reported in Figure 7b, which illustrates
the values of hypervolume metric for the different forecast systems for small (left panel), medium (middle
panel) and large (right panel) dam sizes. Valuable forecasts should be characterized by hypervolume values
higher than the ones of BID solutions, possibly getting as close as possible to the POP ones. Similarly to the
results obtained with perfect seasonal forecasts (Figure 4), the highest forecast value is again obtained for
small dams, with an average 0.12 increase in hypervolume relative to the BID solutions (+27%). The average
forecast value for medium and large dams is instead equal to 0.05 (+12%) and 0.07 (+19%), respectively.
Medium dam sizes are therefore the most impacted by streamflow forecast biases, probably because they
have not a sufficient storage capacity to buffer large flood water volumes and must be carefully operated in
order to avoid spilling and thus wasting water that could have been used for both hydropower production
and irrigation supply.

Interestingly, these results show that the ranking of the forecast systems based on skill (panel a) dif-
fers from the one based on forecast value (panel b). While underdispersed forecasts with Pbias equal
to —6% are the most skilful forecasts, they never generates the highest hypervolume metric, which is
obtained either using underestimated forecasts with —30% Pbias (small and medium dams) or under-
dispersed forecasts with —10% Pbias. Conversely, overestimated forecasts that have the lowest skill
do not necessarily attain the lowest hypervolume metric that is, obtained using the ESP forecasts for
all dam sizes. This result can be explained by the learning ability of the operating policy that allows a
partial detection of the systematic biases of the synthetic forecasts and the mitigation of their negative
impacts on operational decisions. The larger variability of ESP forecast errors (see the scatterplots in
Figure S7 of the supporting information) is instead less interpretable by the operating policy and gen-
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Figure 7. Analysis of forecast skill (panel a) and forecast value (panel b) for ESP forecasts and synthetic forecasts with different levels of overestimation,

underestimation, and underdispersion.

erates lower system performance. Finally, it is worth noticing that the forecast value of ESP is positive
only in the case of small dams, while this system does not yield any advantage for medium and large
dams, confirming the need of advancing existing forecast systems to allow making the most of seasonal
streamflow forecasts.
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5. Discussion and Future Research

Despite the proposed methodology is general and transferable to other contexts, the numerical results illus-
trated in the previous section refer to the specific model and experimental settings described in Section 3. In
particular, we demonstrate the value of forecast information for infrastructure design assuming a stationary
future, where both inflow and demands as well as the preferences of the system operator remain unvaried
over time. While in the context of this work we decided to perform the analysis over historical conditions
to allow comparing our findings with the existing Kariba Dam, in a future work it would be interesting to
assess the robustness of our results against future, deep uncertainties, which Bertoni et al. (2019) showed to
be highly impacting on the system dynamics, in order to provide recommendations regarding the ongoing
planning of new dams in the basin.

Moreover, our study focuses on the sizing of a single reservoir according to the widely adopted pro-
ject-by-project planning approach Schmitt et al. (2018). Kariba is however part of a multireservoir network
controlling a large share of the water flowing along the Zambezi River, which will be further expanded in
the next decades. Extending our analysis to assess the value of forecast information in planning new reser-
voirs as part of a coordinated network is also warranted.

Another future research direction will be to test the value of the information provided by an existing
forecast system, such as the multimodel and multiproduct seasonal hydrological streamflow forecast-
ing platform available for the Upper Zambezi (Roy et al., 2017; SERVIR Water Africa-Arizona Team
(SWAAT), 2019) or the Global Flood Awareness System - seasonal (Emerton et al., 2018), which might
improve the performance of the ESP forecasts. Since most existing systems provide probabilistic fore-
casts, it could be relevant to assess the sensitivity of the resulting informed infrastructure designs on how
the decision maker is interpreting the forecast ensemble depending on its level of risk aversion (Giuliani
et al., 2020).

Our work can also be extended to other catchments located in different hydro-climatic regions and charac-
terized by different planning and management challenges, in order to assess further interrelations between
dam sizes, operational trade-offs, and forecast value. However, any application of our approach will require
a continuous monitoring of the forecast skill to timely capture potential changes in forecast accuracy in-
duced by the evolution of the large-scale climatic teleconnections that are the main source of predictability
at the seasonal time scale (Dutta & Maity, 2018; Kumar et al., 1999; Zhang et al., 2019).

6. Conclusions and Future Work

This paper investigates the value of streamflow forecasts in informing the coupled design of a water reser-
voir size and its operations, exploring their interdependencies and how information feedbacks shape the
resulting infrastructure designs. The approach is demonstrated through an ex post design analysis of the
Kariba Dam in the ZRB, where we investigated if forecast information could allow the discovery of a less
costly and more efficient design solutions with respect to the existing reservoir.

Our results show that the operation of large dams characterized by a wide operational discretion space
and aimed at maximizing hydropower production is expected to benefit more from seasonal forecasts than
smaller dams serving irrigated agriculture. In particular, the same hydropower production levels of a dam
operated with no forecasts can be designed with a 20% reduction in capital costs (i.e., 20% smaller reservoir).
Dam size being the same, forecasts allow an increase of 60 GWh/yr hydropower production in a dam large
as the existing Kariba, corresponding to more than 25% of the yearly average electricity consumption by the
agriculture sector in Zambia (IEA, 2019). This hydropower improvement is attained at no additional cost for
irrigation, as the irrigation deficit remains unchanged.

Extrapolating these figures to the new planned dams (Mupata 1,200 MW, Mhpanda 1,350 MW, and Batoka
1,600 MW), which will cumulatively add more than double the installed power in Kariba (1,830 MW),
might increase this rate to 75 %. It is worth mentioning that our approach is portable to the design of other
infrastructures, including the planned expansion of the irrigation districts in the ZRB that could also benefit
from a more flexible and efficient operation of the water supply system.
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In the end, when tested over realistic streamflow forecasts characterized by different biases, the design of
the Kariba reservoir system is shown to not significantly benefit from ESP forecasts. At the same time, our
results suggest that the informed infrastructure design is particularly sensitive to overestimation biases.
This finding, combined with the large potential value obtained with perfect streamflow forecasts, represents
avaluable insight for driving future research efforts aimed at advancing existing forecast systems.
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