
On the use of Set Membership theory for
global optimization of black-box functions

Lorenzo Sabug Jr., Fredy Ruiz, and Lorenzo Fagiano

Abstract— Many science and engineering applications feature
non-convex optimization problems where the performance is
not explicitly modeled by a cost or reward function, i.e. it is a
black box. Examples include most complex design problems
where experimental tests are the main method to evaluate
performance of chosen values of the decision variables, in fields
such as mechanics, fluid-dynamics, electromagnetics and/or
magnetohydrodynamics. Solving these problems can be done
iteratively: the next value of the decision variables is chosen
based on the outcome generated by the previous tests. The time
and resource overhead in conducting tests, however, raises the
issue of most efficiently choosing the next test point according
to previous observations. To approach this issue, a new global
optimization strategy based on a Set Membership framework
is proposed. Assuming a Lipschitz continuous cost function, the
presented algorithm builds an approximation of the latter to
decide whether to exploit the best result obtained so far, or to
further explore the decision space. The proposed algorithm is
presented and some implementation aspects are discussed. Its
performance is evaluated on a set of benchmark non-convex
problems and compared with those of other global optimization
approaches.

I. INTRODUCTION

In many science and engineering applications, such
as mechanical design, fluid-dynamics, multi-physics
simulations, control systems tuning, and chemical
experiments, black-box function optimization problems
arise. Black-box functions are named as such because
an explicit mathematical model is unavailable, and the
function values are obtained only through empirical tests,
which usually entail high computational time and/or cost.
Moreover, in this paper we focus on problems that may
present several local minima, and where the time and
resources required to carry out a test are rather large, so
that the solution method shall make the most efficient use
of the available trials.

Optimizing the functions and systems that fit into this
description is referred to as black-box optimization [1], or
derivative-free optimization [2], where only the function
values are directly accessible. This is in contrast e.g. to
gradient-based methods where the (first, or even further)
derivatives are also assumed to be available. However these

All authors are with Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
Email: {lorenzojr.sabug, fredy.ruiz, lorenzo.fagiano}@polimi.it

This research has been supported by the Italian Ministry of University
and Research (MIUR) under the PRIN 2017 grant n. 201732RS94 ”Systems
of Tethered Multicopters”

The first author would like to acknowledge the support of the Department
of Science and Technology–Science Education Institute (DOST-SEI) of the
Philippines for his research

techniques usually require a rather large number of function
evaluations to estimate a local quantity (i.e., the gradient at
the currently evaluated point) and are designed to converge
to a local optimum by always improving from the initial
guess, not to explore the decision space searching for a global
solution. Thus, these methods are not suitable for the problem
class considered here.

Due to high overhead for function evaluations and limi-
tations in time/resources (usually in form of a finite budget
of evaluations), two conflicting aspects must be considered
in choosing the next test point. Exploitation aims to utilize
existing information about the best point and the function in
general. A next sample point is then usually in the vicinity
of the best known point to improve the current best value.
However, because the black-box problem cannot be assumed
convex, this alone can lead to local optimum. Hence, ex-
ploration aims to sample points to gain more information
around the search space, which may have other optimal
points. These aspects form the framework for most global
optimization approaches. Global optimization techniques can
be categorized into different classes, which include e.g.
stochastic global search, smoothness-based, and response
surface model-based methods.

Stochastic global search algorithms usually utilize a pop-
ulation of search points per iteration. According to the
corresponding function values of the search points, heuristics
are applied to calculate the search point locations for the
next iteration (also called generation). Popular examples for
this category are the particle swarm algorithm (PSO) [3]
and its offshoot methods [4], [5], which have been used in
various applications. However, this type of methods require
numerous long function evaluations per generation, which
can be much more than the limited evaluation budget.

Response surface-based methods, on the other hand, gen-
erate an approximation of the black-box function using inter-
polating surfaces, which maybe based on kriging [1], radial
basis functions [6], or neural networks [7]. These function
model approximations can then be used for the exploitation
or exploration routines, whichever is appropriate.

Smoothness-based methods, especially Lipschitz-based al-
gorithms such as DIRECT [8], [9], and AdaLIPO [10], rely
on the Lipschitz constant of the function to choose the next
sampling points. DIRECT uses recursive trisection of the
search space into progressively smaller hyper-rectangles, to
produce more accurate estimates of the optimal point. On the
other hand, AdaLIPO uses a random binary variable to decide
between exploitation and exploration. For exploitation, it
chooses a random point within the set of potential optimizing

points, while for exploration it chooses a random point from
the entire search space.

The present work proposes a new Lipschitz-based algo-
rithm based on a Set Membership (SM) nonlinear function
approximation [11]. The presented algorithm is a sequential
optimizer which exploits the SM-based guaranteed function
bounds, to choose the next test point. Using all previously
acquired samples, the proposed Set Membership Optimiza-
tion (SMO) updates the guaranteed lower- and upper bounds
of the black-box function. The lower bounds are leveraged
in the exploitation phase to choose a candidate point which
is expected to exhibit a lower cost function value than the
current best point. On the other hand, the difference between
the SM theory-based lower- and upper bounds is treated as
the uncertainty measure, and is utilized for exploration. In
this case, SMO chooses a candidate point with the maximum
uncertainty, to acquire more information about the function,
useful to detect global optimum points throughout the search
space.

This paper is organized in five sections. Section II gives
the general problem statement and assumptions. Section III
describes the proposed SMO algorithm. Section IV compares
the performance of the proposed algorithm with other global
optimization techniques for representative test functions, and
Section V concludes this paper and provides insights on
future directions.

II. PROBLEM STATEMENT

Consider a scalar function fo(x), x = [x1 x2 ... xD]
T ∈

X , where X is a unitary hyperbox in RD. Without loss of
generality, it is assumed that X = {x ∈ RD : ‖x‖∞ ≤
1, xi ≥ 0}.

No analytical form of the function is available. The a pri-
ori knowledge about fo is given by the following assumption:

Assumption 1: fo is Lipschitz-continuous with unknown
Lipschitz constant γo, i.e.

|fo(x)− fo(y)|
‖x− y‖

≤ γo, ∀x,y ∈ X
However, it is possible to acquire information about fo by
sampling:

Assumption 2: Given a point x ∈ X , it is possible to
sample the function without noise:

z = fo(x).
The sampling of function fo is assumed very expensive in

terms of evaluation time and/or resources, hence it is referred
to as the long function evaluation. Furthermore, a limited
budget of N evaluations for the optimization process is given,
e.g. there are only up to N long function evaluations allowed.

For any given integer n ∈ {1, . . . , N}, the set of collected
function samples is:

X(n) =
{
(x(1), z(1)); (x(2), z(2)); . . . ; (x(n), z(n))

}
The problem addressed in this paper is the search for a

global optimal point of fo using a limited amount of function
samples.

Problem 1: Given a budget N of long function samples,
find a minimizer x∗ of the black-box function fo:

x∗ ∈ X ∗ =
{
x | x = argmin

x∈X
fo(x)

}
, (1)

using a sequence of sample points {x(1),x(2), . . . ,x(N)},
such that fo(x∗) ' min z ∈ {z(1), z(2), . . . , z(N)}.

III. PROPOSED SET MEMBERSHIP-BASED
OPTIMIZATION APPROACH

The search for an optimal point x∗ in Problem 1 can be
approached by using a sequential procedure, as considered
in [1], [8], [10]. At each iteration the next test point x(n+1)

is chosen given the current sampled data set X(n).
In the proposed SMO algorithm, the previous data are

used to derive tight bounds on the black-box function values
according to the non-linear SM identification method in [11].
The resulting bounds are then leveraged for function approx-
imation, and are utilized to choose between performing an
exploitation or exploration for choosing the next test point.

A. Long function evaluation and data update

At the start of each iteration n, one long function evalu-
ation z(n) = fo(x

(n)) is performed at a chosen point x(n),
which may be the initial test point (n = 1), or one that was
chosen at the previous iteration. This results in a new data
point (x(n), z(n)), which adds to the data set X(n).

Due to lack of knowledge about the true Lipschitz constant
γo, see Assumption 1, γo must be estimated from the
collected data X(n). At every iteration, an estimate γ(n) is
updated given the currently available best estimate γ(n−1),
and an incoming data (x(n), z(n)) as:

γ(n) = max

(
γ(n−1), max

k∈[1 ... n−1]

|z(n) − z(k)|
‖x(n) − x(k)‖

)
(2)

Convergence of this estimate to the true Lipschitz constant
as n increases has been proven, see, e.g., [12].

Given a data set X(n) and γ(n) compatible with the
available information on fo, it is possible to define lower
and upper bounds on fo:

z(x) , max
k∈[1 ... n]

(
z(k) − γ(n)‖x− x(k)‖

)
, (3)

z(x) , min
k∈[1 ... n]

(
z(k) + γ(n)‖x− x(k)‖

)
. (4)

These bounds represent the lowest and highest values that
fo can take in the unsampled regions of the search space.
See [11] for more details. If hypotheses are true, then for
any point of the search space x ∈ X it is guaranteed that
z(x) ≤ fo(x) ≤ z(x).

A visual summary of the SM-based bounds are depicted
in Fig. 1 for a one-dimensional function fo. For higher
dimensions, the functions z(x) and z(x) are intersections
of hypercones, each one with vertex at a sample point. It
should be emphasized that z and z are calculated from the

black-box function fo

sampled points ()x
(i)

, z
(i)

lower bound z

upper bound z
slope γ

uncertainty λ

Fig. 1: Set membership-based upper and lower bounds
from finite samples of fo (1D function)

existing samples (x(k), z(k)) ∈X(n), and hence there is no
need for additional evaluations of fo.

Given a data set X(n) the uncertainty about the value of
fo at a given point x ∈ X is defined as:

λ(x) = z(x)− z(x). (5)

This function is maximized during the exploration phase of
the SMO algorithm as discussed in a later subsection.

As more points are sampled especially in areas with higher
λ, the bounds z and z become progressively tighter, leading
to more accurate estimates of fo(x) (see Fig. 1).

B. Exploitation

In this routine, improvement of the optimal value is
attempted by leveraging the current optimal point x(n)∗ and
the lower bound (hyper)cone from this location. Consider the
current best point at iteration n

x(n)∗ = x(r), r = argmin
k∈[1 ... n]

z(k), (6)

which corresponds to the current best value z(n)∗. The
exploitation subproblem finds a point which has the greatest
potential to improve with respect to x(n)∗. In other words, it
aims to search for a point xθ∗ ∈ X which gives the minimum
lower bound z, i.e. where fo can go the lowest. However,
as x goes farther from any sampled point x(k) (see Fig. 1),
uncertainty λ(x) also increases. Hence, the search for the
exploitation point xθ∗ is performed within the vicinity of
x(n)∗.

This search is simplified by collecting candidate points
x
(j)
θ for segments lj between drawn x(n)∗ to the other

samples x(j) in the set X(n). The lower bounds at x ∈ lj
due to x(n)∗ and x(j) are defined as z(n)∗−γ(n)‖x−x(n)∗‖
and z(j) − γ(n)‖x− x(j)‖, respectively. The intersection of
the lower bound (hyper)cones along the line lj can then be
derived geometrically. Let

dlj =
z(j) − z(n)∗

‖x(j) − x(n)∗‖
. (7)

Then, the intersection x
(j)
θ of the lower bounds (refer to

Fig. 2) along lj is

x
(j)
θ = x(n)∗ +

1− dlj
γ(n)

2
(x(j) − x(n)∗). (8)

x
(n)*

branch lj

samples ()x
(j)

, z
(j)

candidate xθ

Fig. 2: Generation of exploitation candidate points xθ
(for a 2D search space)

x

(n)*

z

z
η

xθ*
improvement threshold

black-box fo

samples ()x

(i) (i)
, z

candidate points xθ

lower bounds from x

(n)*

search
area

Fig. 3: Exploitation routine for a sample 1D fo

Equation (8) is in closed form, with the simplifying
assumption that there are no other intermediary hypercones
which would influence z along lj .

Consider Xθ = {x(j)
θ } as the set of candidate points. xθ∗

is selected as

xθ∗ = argmin
x∈Xθ

z(x) (9)

Then the corresponding lower bound z(xθ∗) is understood
as the best candidate improvement near to x(n)∗. Note that
the exact lower bounds z are acquired in the above argmin
operation, with the locations of Xθ calculated in a simplified
manner as (8). To evaluate if xθ∗ is to be taken as the
next test point x(n+1) for the long function evaluation, the
following condition must be met

z(xθ∗) ≤ z(n)∗ − η, (10)

where η = α
√
Dγ(n) is referred as the expected improve-

ment threshold, which considers the diameter
√
D of the

hypercube X and α ∈ [0, 1) is the SMO exploitation
parameter (adjusted by the user). In other words, for xθ∗ to
be acceptable, its lower bound must improve from z(n)∗ by at
least η. If (10) is fulfilled (as in Fig. 3), then x(n+1) ← xθ∗,
and the long function is evaluated in the next iteration with
x(n+1).

However, if the previous condition is not met, SMO
switches to exploration mode.

C. Exploration

The exploration phase is done in two parts: by improve-
ment, and by uncertainty.

1) Exploration by expected improvement: Potential im-
provement points similar to exploitation phase are searched
in entire X , not just in the vicinity of x(n)∗. Candidate
points x(ij)

φ are generated by a mesh of branches lij between
each sample pair {x(i), x(j)}, i 6= j, and collected in a
set Xφ. The calculation of candidate points x

(ij)
φ proceeds

in a similar fashion as with exploitation using (7) and (8),
but replacing x(n)∗ with x(i), and z(n)∗ with z(i). The
best candidate point xφ∗ = argmin

x∈Xφ

z(x) is selected, and

subjected to the expected improvement condition (10). If this
condition is fulfilled, then x(n+1) ← xφ∗.

2) Exploration by uncertainty (discovery): If still no
candidate points fulfill the expected improvement threshold,
the algorithm switches to decreasing the uncertainty range λ
throughout X . In this sense, x(n+1) is selected according to
the associated uncertainty λ of the points in the candidate
set Xφ. Sampling the point with maximum λ will of course
make the uncertainty zero at that point (due to explicit
evaluation), and the uncertainty around it will subsequently
decrease.

Similar to exploration by improvement, the search for such
a maximizer is simplified by considering the mesh connect-
ing existing sampled points. Consider any x(i), x(j) ∈X(n).
The maximum λ along the line lij between these points is
at the middle, i.e. x(ij)

ψ = x(i)+x(j)

2 , which is now taken as
a candidate point. Hence, the set of candidates for discovery
exploration is defined as

Xψ =

{
x
(ij)
ψ

∣∣∣ x(ij)
ψ =

x(i) + x(j)

2
, i 6= j

}
. (11)

The point xψ∗ is selected such that

xψ∗ = argmax
x∈Xψ

λ(x), (12)

and finally, x(n+1) ← xψ∗.

D. Selection of optimal point x∗

The optimal point x∗ and value z∗ are selected given the
collected data after the iteration budget N , as follows:

z∗ = z(r)

x∗ = x(r)

s.t. r = argmin
1≤k≤N

z(k).

(13)

E. Algorithm summary and implementation notes

A summarized flow of the SMO method is given as
pseudo-code in Algorithm 1. A few notes are given to
decrease the computational burden of the algorithm.

On the mesh generation for lij: The mesh of branches
lij for the exploration routines generates n(n−1) segments,
which imposes exponentially increasing computational bur-
den for each succeeding iteration. Hence, it is suggested to
limit the number of branches lij , from which the candidate
points are generated. For this paper, a maximum of L = 500
branches are generated between random pairs of sample
points. There are then a maximum of 500 candidate points
for the exploration routines. However, if n(n− 1) < L, the
full mesh is of course generated.

Algorithm 1: SMO Algorithm

Input: Long function f , initial point x(1), iteration budget
N , parameter α

1 while iteration n within the budget N do
// Long function evaluation, data update

2 Evaluate the long function fo at x(n) and measure
output z(n), collect sample (x(n), z(n)) into the set
X(n)

3 Update Lipschitz constant γ(n) and the current best
sample (x(n)∗, z(n)∗) from X(n)

// Exploitation routine
4 Use the lower bounds around the current best sample

x(n)∗ to choose the candidate exploitation point xθ∗
5 if expected improvement condition (10) is met then
6 Assign test point for next iteration x(n+1) ← xθ∗

7 else
// Exploration by improvement

8 Find xφ∗ as the point from entire search space X
with minimum lower bound z

9 if expected improvement condition (10) is met then
10 Assign test point for next iteration

x(n+1) ← xφ∗

11 else
// Exploration by uncertainty

12 Find xψ∗ as the point from entire search space
X with highest uncertainty λ

13 Assign test point for next iteration
x(n+1) ← xψ∗

14 Go to next iteration n← n+ 1

15 Final optimal point and value: get the best sample
(x(n)∗, z(n)∗) from the set X(N)

On the coverage of search space: Due to the mechanism
of mesh generation among existing sample points X(n), it
is noted that the algorithm only explores points inside the
convex polytope generated by the existing sampled points.
Hence, to ensure exploration throughout the hypercube X , all
corners x∧ should also be considered in the mesh generation.
One approach is to first evaluate the long function fo on
all x∧ before actually starting with exploitation/exploration.
However, this entails 2D long function calls, which is expo-
nential w.r.t. D.

To address this issue, a simple approach is proposed to
ensure coverage in X without explicitly calling fo to evaluate
the corners. At the start of the algorithm, all corners are
initialized with temporary value z(x∧) = 0.0. For each new
sample (x(n), z(n)), the value of ith corner z(x∧i) copies
the value of z of the nearest sampled point, as follows:

z(x∧i)← z(x∧i∗)

s.t. x∧i∗ = x(r), r = argmin
k∈[1 ... n]

‖x(k) − x∧i‖ (14)

The concept of this workaround is shown in Fig. 4.
With increasing number of sample points in X , the corners
approximate more accurately their respective values, without
unnecessary calls to the long function at these points.

n iterations

copy
x

(n)

copy

initialization new sample

Fig. 4: Corner mirroring of nearest sample point

10
0

10
2

10
4

10
6

b
e
s
t

v
a
lu

e
z(n

)*

10 50 10
0

50
0

10
00

iteration n

10 50 10
0

50
0

10
00

iteration n

10 50 10
0

50
0

10
00

iteration n

DIRECT AdaLIPO SMO

Fig. 5: Optimal value distribution w.r.t. iterations,
10D Rosenbrock function (log scale)

-400

-200

0

200

10 50 10
0

50
0

10
00

iteration n

b
e
s
t

v
a
lu

e
z(n

)*

10 50 10
0

50
0

10
00

iteration n

10 50 10
0

50
0

10
00

iteration n

DIRECT AdaLIPO SMO

Fig. 6: Optimal value distribution w.r.t. iterations,
10D Styblinski-Tang function

IV. PERFORMANCE TEST RESULTS

The proposed SMO algorithm is compared with represen-
tative Lipschitz-based methods: DIRECT and AdaLIPO.

1) Test parameters: A set of six benchmark functions of
varying structures and dimensions are evaluated. Their search
bounds and optimal values are summarized in Table I. The
black-box functions are assumed having no available optimal
value. Each algorithm is given a budget of N = 1000 long
function evaluations in a run. The optimal results after the
evaluation budget are then measured and compared among
the different algorithms, in what is referred to as a fixed-
cost/budget comparison [13].

To measure the statistical performance of each algorithm,
100 independent runs were performed. The starting points
are different across runs, and are randomly generated such as
X(1) = {x(1)

1 x
(1)
2 ... x

(1)
100}. Both AdaLIPO and SMO start

at the same set of starting points X(1) for these runs. On the
other hand, DIRECT has intrinsically fixed search points, and
does not allow random starting points. Furthermore, DIRECT
does not need any parameter, while a parameter p = 0.1 is
used for AdaLIPO and α = 0.01 for SMO.

2) Discussion: The evolution of the optimal value z(n)∗

with respect to iteration (n = {10, 50, 100, 500, 1000}) is

-1

-0.8

-0.6

-0.4

-0.2

0

10 50 10
0

50
0

10
00

iteration n

b
e
s
t

v
a
lu

e
z(n

)*

10 50 10
0

50
0

10
00

iteration n

10 50 10
0

50
0

10
00

iteration n

DIRECT AdaLIPO SMO

Fig. 7: Optimal value distribution w.r.t. iterations,
5D Deb’s function #1

shown in Figs. 5, 6, and 7 for the Rosenbrock, Styblinski-
Tang, and Deb’s functions, respectively. In the graphs are
presented the mean values (in red line), as well as the
best value distribution for the 100 runs. The results of the
purely deterministic DIRECT algorithm obviously does not
show dispersion. On the other hand, both AdaLIPO and
SMO consider randomized steps and then generate different
trajectories for the best value.

The Rosenbrock function is a standard test case for
gradient-based algorithms, with a unique global minimum
(unimodal) for D = 2; however it has 2 minima for D =
4 ∼ 30 [14]. Due to only few minima even for D = 10,
the recursive rectangle division by the DIRECT algorithm
can be done in a relatively straightforward manner, resulting
in a very low best value at the end of 1000 iterations as
in Fig. 5. However, even at n = 10, it already achieves a
very low z(n) compared to the other two techniques, because
the initial sampling points for DIRECT were already on the
low-valued regions of the search space. The DIRECT initial
sampling points, which always include the very middle of
the search space, contribute to its very fast convergence for
parabolic or convex functions with the optimum located near
the center of the search space.

The Styblinski-Tang function is similarly characterized by
a few local minima, hence DIRECT can simply jump out
of a particular local minimum, and exhaust all the other
minima before the maximum iteration N . Algorithms with a
degree of randomization such as AdaLIPO and SMO show
lower performance because they do not fully exhaust the
current optimal point acquired so far. However at the earlier
iterations (up to 500 as in Fig. 6), both AdaLIPO and SMO
display better results than DIRECT. This means that if the
the iteration budget is limited, AdaLIPO and SMO would
actually (on average) produce better optimal points than
DIRECT.

In the case of Deb’s function #1, however, SMO out-
performs the other two techniques. The presence of nu-
merous global minima is better suited for randomized and
exploration-based algorithms, which can sample other re-
gions without unnecessary exploitation in a particular area
of the search space. Hence, on all stages of the optimal
value evolution [Fig. 7], the AdaLIPO and SMO consistently
perform better (on average) than DIRECT.

Table II summarizes the performance of the three consid-

Description Dimensions Function definition Bounds Theoretical z∗

Rosenbrock Any D
∑D
i=1[100(xi+1 − x2i)2 + (1− xi)2] −512 ≤ xi ≤ 512 0.0

Styblinski-Tang Any D f(x) = 1
2

∑D
i=1

(
x4i − 16x2i + 5xi

)
−5 ≤ xi ≤ 5 −39.16616D

Deb’s #1 Any D f(x) = 1
D

∑D
i=1 sin6(5πxi) −1 ≤ xi ≤ 1 −1.0

Deb’s #2 Any D f(x) = 1
D

∑D
i=1 sin6[5π(x3/4i − 0.05)] 0 ≤ xi ≤ 150 −1.0

Schwefel Any D f(x) = −
∑D
i=1 xisin

(√
|xi|
)

−500 ≤ xi ≤ 500 −418.982D

Salomon Any D f(x) = 1− cos(2π
√∑D

i=1 x
2
i) + 0.1

√∑D
i=1 x

2
i −40 ≤ xi ≤ 70 0.0

TABLE I: Test functions used for comparative tests

Test function D DIRECT AdaLIPO SMO
Rosenbrock 10 8.69 6.21E+11 ± 3.45E+11 1.45E+08 ± 2.41E+08

Styblinski-Tang 5 -195.58 -163.82 ± 9.83 -163.33 ± 9.19
10 -358.55 -272.90 ± 15.09 -119.05 ± 51.221

Deb’s #1 5 -0.72 -0.86 ± 0.05 -0.99 ± 0.01
10 -0.25 -0.69 ± 0.04 -0.54 ± 0.07

Deb’s #2 5 -0.99 -0.86 ± 0.05 -0.98 ± 0.01
10 -0.42 -0.70 ± 0.04 -0.93 ± 0.19

Schwefel 5 -1479.01 -1382.92 ± 123.89 -1179.22 ± 132.55
10 -1860.45 -1946.73 ± 191.916 -1312.82 ± 128.52

Salomon 5 3.46 2.31 ± 0.47 0.62 ± 0.25
10 4.61 5.27 ± 0.63 2.52 ± 1.26

TABLE II: Results summary for comparative tests:
average ± standard deviation of z(n)∗ after N iterations

ered algorithms in all the benchmark functions. For each test
function, the algorithm producing the best optimal value is
highlighted in orange and the second best in light orange.
As can be observed, DIRECT produces the best results for
6 out of 11 test functions. On the other hand, SMO gives
the best results for the other 5 test functions, in particular for
the Deb’s and Salomon functions, characterized by numerous
minima. Moreover, SMO produces comparable results in the
other cases except for the Rosenbrock function.

V. CONCLUSIONS AND FURTHER WORK

In this work a sequential algorithm for global optimiza-
tion of black-box functions has been proposed. The SMO
algorithm assumes a Lipschitz-continuous cost function and
is based on a nonlinear set membership function approxima-
tion. The approach is described, and implementation aspects
are discussed. The selection of the test points, where the
black-box function is evaluated, is carried out by solving
simplified optimization problems over the guaranteed lower
bound or uncertainty interval of the function, provided by
a set membership model. The proposed method is tested
alongside several other representative global optimization
methods, comparing the quality of the best solutions after a
fixed number of calls to the black-box function. The results
show the competitiveness of the SMO. Convergence analysis
as well as techniques to include constraints are currently
under development.

REFERENCES

[1] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global
Optimization of Expensive Black-Box Functions,” Journal of Global
Optimization, vol. 13, pp. 455–492, 1998. [Online]. Available:
https://link.springer.com/content/pdf/10.1023%2FA%3A1008306431147.pdf

[2] N. Pham, A. Malinowski, and T. Bartczak, “Comparative study of
derivative free optimization algorithms,” IEEE Transactions on Indus-
trial Informatics, vol. 7, no. 4, pp. 592–600, 2011.

[3] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of ICNN’95 - International Conference on Neural
Networks, vol. 4. IEEE, 2014, pp. 1942–1948. [Online]. Available:
http://ieeexplore.ieee.org/document/488968/

[4] Q. Liu, S. Yang, and J. Wang, “A collective neurodynamic approach
to distributed constrained optimization,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 8, pp. 1747–1758, 2017.

[5] H. Han, W. Lu, and J. Qiao, “An Adaptive Multiobjective Particle
Swarm Optimization Based on Multiple Adaptive Methods,” IEEE
Transactions on Cybernetics, vol. 47, no. 9, pp. 2754–2767, 2017.

[6] M. J. Powell, “UOBYQA: Unconstrained optimization by quadratic
approximation,” Mathematical Programming, Series B, vol. 92, no. 3,
pp. 555–582, 2002.

[7] Y. Wang, D. Q. Yin, S. Yang, and G. Sun, “Global and local surrogate-
assisted differential evolution for expensive constrained optimization
problems with inequality constraints,” IEEE Transactions on Cyber-
netics, vol. 49, no. 5, pp. 1642–1656, 2019.

[8] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian
optimization without the Lipschitz constant,” Journal of Optimization
Theory and Applications, vol. 79, no. 1, pp. 157–181, oct 1993.
[Online]. Available: http://link.springer.com/10.1007/BF00941892

[9] D. E. Finkel and C. T. Kelley, “Additive Scaling
and the DIRECT Algorithm,” Journal of Global Optimization,
vol. 36, no. 4, pp. 597–608, oct 2006. [Online]. Available:
http://link.springer.com/10.1007/s10898-006-9029-9

[10] C. Malherbe and N. Vayatis, “Global optimization of Lipschitz func-
tions,” 34th International Conference on Machine Learning, ICML
2017, vol. 5, pp. 3592–3601, 2017.

[11] M. Milanese and C. Novara, “Set Membership identification of non-
linear systems,” Automatica, vol. 40, no. 6, pp. 957–975, 2004.

[12] L. Fagiano and C. Novara, “Learning a Nonlinear Controller From
Data: Theory, Computation, and Experimental Results,” IEEE Trans-
actions on Automatic Control, vol. 61, no. 7, pp. 1854–1868, jul 2016.
[Online]. Available: http://ieeexplore.ieee.org/document/7271025/

[13] V. Beiranvand, W. Hare, and Y. Lucet, “Best practices for
comparing optimization algorithms,” Optimization and Engineering,
vol. 18, no. 4, pp. 815–848, sep 2017. [Online]. Available:
http://arxiv.org/abs/1709.08242 http://dx.doi.org/10.1007/s11081-017-
9366-1

[14] Y.-W. Shang and Y.-H. Qiu, “A Note on the Extended
Rosenbrock Function,” Evolutionary Computation, vol. 14,
no. 1, pp. 119–126, mar 2006. [Online]. Available:
http://www.mitpressjournals.org/doi/10.1162/evco.2006.14.1.119

