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Abstract—In the human-robot interaction, especially when
hand contact appears directly on the robot arm, the dynamics of
the human arm presents an essential component in human-robot
interaction and object manipulation. Modeling and estimation
of the human arm dynamics show great potential for achieving
more natural and safer interaction. To enrich the dexterity and
guarantee the accuracy of the manipulation, mapping the motor
functionality of muscle using bio-signals becomes a popular
topic. In this article, a novel algorithm was constructed using
deep learning techniques to explore the potential model between
surface electromyography (sEMG) signals of the human arm
and interaction force for human-robot interaction. Its features
were extracted by adopting the convolutional neural network
(CNN) from the sEMG signals automatically without using
prior knowledge of the biomechanical model. The experiments
prove the lower error (< 0.4N ) of the designed regression by
comparing it with other approaches, such as artificial neural
network (ANN) and long short-term memory (LSTM). It should
be also mentioned that the anti-noise ability is an important index
to apply this technique in practical applications. Hence, we also
add different Gaussian noises into the dataset to demonstrate the
robustness against measurement noises by using the proposed
model. Finally, it demonstrates the performance of the proposed
algorithm using the Myo controller and KUKA LWR4+ robot.

Impact Statement—Predicting interaction force using surface
electromyography (sEMG) is a popular technology in human-
robot interaction. It increases the safety and the intelligence of
human-robot collaboration. The novel deep learning algorithm
we constructed in this article to explore the potential model
between surface electromyography (sEMG) signals of the human
arm and interaction force for human-robot interaction. The
convolutional neural network (CNN) is implemented to extract
features from the sEMG signals automatically without using prior
knowledge of the biomechanical model. The experiments prove
the lower error (¡ 0.4N) of the designed regression by comparing
it with other approaches. It should also be mentioned that the
anti-noise ability is also considered to apply this technique for
practical applications. This technique could offer an alternative
way for predicting the interaction force of the human-robot
interaction.

Index Terms—Force measurement, Human-robot interaction,
Neural Networks, Surface electromyography
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I. INTRODUCTION

OVER the past few years, the booming development of
robot technology has been witnessed. As a core part

of robotics, the human-robot interaction (HRI) has attracted
widespread attention and has been applied in many fields,
including industrial programming [1], household service [2],
[3], disaster rescue [4], educational guidance [5], medical
surgery [6]–[8]. Especially in the medical domain, HRI is
playing a significant role. For instance, Fujji et al. [9] utilized
a robotic arm with a rigid endoscope instead of a camera
assistant to help surgeons realize real-time observation in
laparoscopic surgery. By using a seven-degree-of-freedom
redundant robot, a teleoperated minimally invasive surgery was
completed through the direct interaction between human hand
and robot arm [10], [11]. To guarantee the safe and natural
interaction between the human and robot, it is necessary to
model and estimate the dynamics of human arm.

However, the high flexibility of the arm determines that
it is difficult to establish the model accurately, especially
involving interactive torque and force tasks [12]. Also, the
time-consuming matter has become a challenge. These factors
can directly affect the safety and practicability of HRI, and
even threaten personal safety under poor performance [13].
Hence, it requires strict procedures to match the state-of-
the-art robot with human’s dexterous arm. Obviously, the
force generated by muscle contraction affects the flexibility
and efficiency of the arm [14], [15], which proves that the
muscle force is an important indicator to control the robot
arm smoothly. How to accurately and reproducibly estimate
muscle force has become an important research target in
biomechanics.

Nowadays, analyzing the motor functionality of muscle
based on biological signals becomes an effective strategy. As
one of the neurologic signals, the electromyography signal
can directly reflect the level of muscle activity and movement
intention, and it can be converted into motion commands to
control myoelectric prostheses as well as robotic arms [16],
[17]. Notably, the surface electromyography (sEMG) signals
on human’s skin can be collected easily. Therefore, sEMG
signals are suitable for high-precision force estimation. In
order to obtain a satisfactory interaction behaviour of the robot
during HRI, the relationship between sEMG signals and the
human’s arm force (sEMG-force) is required to be explored.

There are many existing parametric algorithms used to
establish force estimation models. In [18], Hashemi et al.
combined angle-based sEMG amplitude calibration with par-
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allel cascade identification to achieve force estimation, and the
experimental results showed that the proposed approach had
lower estimation error rate in dynamic muscle contraction.
The authors in [19] collected sEMG signals based on a
high-density electrode grid, and used the nonnegative matrix
factorization algorithm to process the raw signals. Although
this proposal greatly improved the quality of predictive force
and reduced the number of electrode, it was limited to estimate
force under isometric contraction. By using statistical methods
to extract and visualize sEMG recordings, it can estimate
human force and motion well, and improve the sEMG-based
robotic arm control system [20]. Linear parameter varying
approach was used to explore the muscle-force relationship
of human neuromusculoskeletal system, and it provided new
possibilities for robot control [21]. The above methods can
complete accurate modeling between arm muscle and force,
but they are highly dependent on algorithm parameters. Also,
the convergence time and structure complexity of algorithms
need to be optimized. Furthermore, since sEMG is weak and
nonstationary, noise interference affects the performance of the
estimator adversely.

Considering that parametric algorithms have many limita-
tions, it is important to propose more nonparametric methods
to build muscle-force models. Due to the expansion of data,
the improvement of algorithms and the enhancement of com-
puting power, machine learning (ML) and deep learning (DL)
have gradually been used to solve robot-related problems. To
solve the randomness and volatility of raw sEMG signals,
the authors in [22] incrementally construct knowledge library
based on decision tree by hierarchical projection regression
algorithm. This proposal can project the original data to a
lower dimensional feature space to match the real-time rela-
tionship between sEMG signals and motion state. A sEMG-
based support vector machine approach [23] was presented to
predict joint compression force, and the result of comparative
experiments showed that it was a favourable estimator with
low bias and high efficiency. Artificial neural network (ANN)
was also used to extract the features of raw EMG signals in
the time and frequency domains [24]. On the other hand, an
increasing number of DL algorithms were developed to build
force estimators, such as long short-term memory (LSTM),
convolutional neural network (CNN), CNN-LSTM [25]. Ameri
et al. [26] employed the regression CNN algorithm for inde-
pendent and simultaneous motion control, but the robustness
of the model needed to be further strengthened. Similarly,
the author [27] proposed a recurrent deep neural network
to estimate muscle forces, and then the accuracy of force
model was improved based on transfer learning strategy. These
nonparametric models, such as ANN and DL, do not need to
capture prior information from arm muscles, and they have
stronger anti-interference ability than parametric algorithms.
When defining the input and output of the model, the best
adaptive parameters can be trained.

A novel deep convolutional neural network (DCNN) is
proposed in this paper based on a nonlinear regression model
to map the interaction force and the sEMG signals. By combin-
ing several convolutional network layers, the ReLU activation
function, and the dropout layer, the designed DCNN-based

model aims to enhance the accuracy, save predictive time, and
reduce the impact of noises. The model is an adaptive method
which does not need any prior information and can extract
valuable features automatically. Comparison experiments of
the practical robot application are performed to demonstrate
the efficiency of the proposed approach. Three major novel
contributions of this work are concluded as follows:

1) A model-free approach using neural network is proposed
to model the sEMG-force.

2) A novel nonliner regression algorithm using DCNN is
implemented with capacity of fast computation, high
accuracy and noise robustness.

3) The effectiveness and accuracy of the proposed method
are depicted with a real-time demonstration.

II. PROBLEM STATEMENT

The potential relationship between sEMG and force can
be denoted with a nonlinear mapping relation, which can
be modeled using the mentioned DCNN model. We assume
the input eight dimensions sEMG signals S8 and the output
one dimension force magnitude F 1. It should be noticed
that, to ease the model complexity, we are using the force
magnitude F 1 =

√
f2x + f2y + f2z instead of the force vector

which features with direction, where fx, fy and fz are the
3-axis forces around three axes in the workspace. Because
there are many noises in the raw sEMG signals, which affect
the accuracy of the model, we propose a series of signal
processing algorithms to solve these problems. The processed
sEMG signals S∗ can be adopted to build the DCNN model
Φ, namely F̂t = Φ(S∗

t , θ). Furthermore, θ is the parameter set
of DCNN algorithm and the predicted force is defined as F̂t at
time t. In particular, S∗

t represents the feature vector which is
extracted from the uncertain probability pt(S∗

t ) at time t. The
force Ft will change over time according to the input sEMG
signals.

The aim of establishing model F̂t = Φ(S∗
t , θ) is to find the

best parameter space θ, which can be determined by computing
the loss function:

θ = L(F̂j − Fj) = argmin
θ

t∑
j=1

(
F̂j − Fj

)2
(1)

In this article, the regression accuracy of the proposed model
is validated using the Mean Square Error (MSE), which is
defined as

ε =

t∑
j=1

(
F̂ − F

j

)2

(2)

III. METHODOLOGY

1) Training Data Preparation: The 8D raw sEMG signal
S8 was collected from the Myo armband, which should be
extended into a matrix. It has been well known that the con-
volutional network is more efficient using the Homogeneous
matrix [28]. Hence, a new input map S8×3 is constructed as:

S∗ = [S;S − S̄;
S − S̄

σ(S)
]; (3)

the average and variance of S are determined by the S̄ and
σ(S) , respectively.
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2) DCNN Architecture: As it is discussed in Section I, many
methods to build the relationship between sEMG signals and
robot end force ignore to consider about the performance of
noise robustness and fast computation. The DCNN method is
the best approach to achieve the goals. Therefore, we design
a novel regression architecture based on the CNN. Fig. 1
illustrates the basic structure of the proposed DCNN regression
model.

The DCNN is composed of five deep convolutional seg-
ments which includes a regression layer and a full connection
layer. The whole deep convolutional segments is composed
of a batch normalization (BN) layer, a 2D convolution layer
and rectified linear units (ReLU). The detailed feature of the
developed neural network model framework can be concluded
as:

• Inputs: the 8D sEMG matrix S̃8×3. In Fig. 1, the ’inputs’
shows the procedure of signal processing using Eq. 3.

• Deep Convolutional Modules: Five deep convolutional
modules are implemented using the proposed DCNN
algorithm. The first one, which can be defined as
Conv.Module #1, consists of a 2D CNN layer, the second
BN layer and a ReLU activation function. Although
the last four convolution modules (Conv.Module #2 to
Conv.Module #5) have the same layers, but they are
filtered as a vector. The convolution operations were
conducted basing on five window size, 4, 8, 12, 16 and
16. The sizes of yielded feature maps are 7 × 2, 6 × 1,
5 × 1, 4 × 1, and 3 × 1.
The convolution operations were conducted basing on
the window size 2 × 2. The BN layer is exploited to
grant every layer of the CNN to be trained by itself
unsupervised. The ReLU layer is designed to settle the
vanishing gradient and exploding gradient problems.

• Output: The output layer is constructed with the re-
gression layer of a fully-connected layer. Finally, the
predicted forces will be output.

IV. HARDWARE SYSTEM

Fig. 3 depicts an overview of the system description, which
was implemented for the task of physical human-robot interac-
tion. The corresponding involved device information are listed
below:

• The EMG sensor used in this experiment is the Myo arm-
band, which is able to transmit the raw EMG information
over a Bluetooth Smart connection with 8 Channels (200
Hz).

• A KUKA robot is placed on the table to implement the
task with physical human-robot interaction.

• The force sensor used in this paper is a 6-axis torque
sensor. It is adopted to measure the online force of the
physical human-robot interaction.

The gravity force of the tool tip has been eliminated in
our previous works [29]–[31]. Hence the force sensor only
measures the hand interaction force. The robot is working on
Cartesian impedance control mode with a desired Cartesian
pose to allow human-robot interaction.

In order to achieve high-efficient signal processing in real-
time, the hand force estimation system was designed basing
on two independent computers which communicated by the
UDP protocol, so that the signals of force sensor and Myo
armband can be mixed with timestamps. The force measure-
ment developed in this work is similar to our previous work,
which is conducted in real-time basing on the first computer
with an i7-9750H CPU (2.60GHz) and 16 GB RAM [30]. The
EMG signal collection node which is designed basing on ROS1

Kinetic under Ubuntu is executed in the second computer with
i7- 9700K (2.9GHz) and 16 GB RAM.

V. EXPERIMENTS AND DISCUSSION

To demonstrate
In this paper, the efficiency of the novel proposed approach

is demonstrated in a lab setup condition. We design three
experiments to estimate the performance of the DCNN-based
regression model for mapping the 8D sEMG signals to the
force. The first one aims to prove the high accuracy of
the proposed DCNN algorithm by comparing it with LSTM,
multiple layers neural network (MNN) and single-layer neural
network (SNN). Meanwhile, the online predictive time is the
primary index to evaluate time efficiency. Lastly, we add two
types of Gaussian noise into the sEMG signals to judge the
noise robustness ability.

A. Data Collection

As it is described in Fig. 2, one participant wears the Myo
armband and moves the end of the robot from top to down
(up-down), also from the left side to right side (left-right), and
from front to back (front-back). Fig. 4 show the three-hand
movements in detail.

The subject was commanded to perform these three move-
ments with a repetition of twenty times. The sampling fre-
quency of the two devices is 200Hz. Finally, the ’up-down’
dataset has 11828 samples, ’left-right’ dataset has 10868
samples, and the ’front-back’ dataset has 13932 samples,
respectively. The collected 8D sEMG signals and force signals
will be analyzed by MATLAB 2019a with a computer server
(16.0 GB RAM, 2.80 GHz CPU and Intel(R) i7 Core).

B. Force Estimation

In this paper, the dataset was divided into two parts: the
first 80% samples and the other 20% samples. The first were
chosen for training the model, and the other for testing. By
comparing the MSE values among DCNN, LSTM, SNN and
MNN models (see Table I), the proposed DCNN model gets
the lowest MSE to predict all of the three-hand movements.
The SNN model has 30 nodes in the hidden layer, while MNN
is set 20 nodes and 30 nodes in its two layers. The SNN gets
the highest errors than the other approaches. The reason might
be the chosen number of nodes is too less to regress the force.
Hence, adopting two layers to build the MNN model can solve
the under-fitting problem.

1Robot Operating System, http://www.ros.org/
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Fig. 1: The schematic diagram of proposed deep convolutional neural network (DCNN) structure.

Fig. 2: The schematic diagram of EMG-based force estimation using force sensor and Myo armband.

Fig. 3: Overview of the hardware system.

TABLE I: The comparison of MSE among DCNN, LSTM,
SNN and MNN models.

Hand Activity Method
DCNN LSTM SNN MNN

Up-Down 0.03 0.21 66.89 0.62
Left-Right 0.01 0.11 66.42 0.81
Front-Back 0.04 0.34 80.58 0.35

The multiple convolutional layers not only can extract

Fig. 4: The schematic diagram of the three hand movements.

feature automatically but also save time to predict a result.
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Fig. 5: The comparison mean absolute error (MAE) predicting
on the training dataset among DCNN, LSTM, ANN and MNN
models with the three different hand activities.

Fig. 6: The comparison mean absolute error (MAE) predicting
on the testing dataset among DCNN, LSTM, ANN and MNN
models with the three different hand activities.

TABLE II: The comparison of online predicting time (s)
among different neural networks models, among DCNN,
LSTM, SNN and MNN models.

Hand Activity Method
DCNN LSTM SNN MNN

Up-Down 0.0007 0.0021 0.0063 0.0066
Left-Right 0.0008 0.0023 0.0060 0.0065
Front-Back 0.0008 0.0020 0.0062 0.0068

Table II shows the online time by comparing these four
models. It can be conclude that DCNN is an optimal method
for predicting results in real-time. Specially, all of the ANN-
based models requires plenty of time to predict a result, while
the DCNN model only needs about 0.0008s.

We add Gaussian noises into the sEMG signals with two

TABLE III: The comparison of MSE with noise among the
DCNN, LSTM, SNN and MNN models.

Method SNR Hand Activity
Up-Down Left-Right Front-Back

DCNN 1db 2.16 2.01 1.80
5db 12.27 13.38 12.94

LSTM 1db 4.97 5.94 5.55
5db 27.96 30.00 29.44

SNN 1db 10.01 9.73 9.83
5db 59.87 58.95 57.78

MNN 1db 15.86 16.77 14.39
5db 66.38 68.86 69.05

types of signal noise rate (SNR) (i.e., 1db and 5db) to assess
the accuracy of the trained DCNN model for its ability in noise
robustness. Table III shows the comparison MSE among these
methods, which proves that the DCNN is the best approach to
remove the influence of noise.

The mean absolute error (MAE) of predicted forces on
training and testing datasets are depicted in Fig. 5 and Fig. 6.
The designed DCNN strategy obtains the lowest error than
the other approaches. Fig. 7 shows the predictive curves of
the three different training datasets. The SNN model cannot
track the raw force curve, while the predicted curve of the
DCNN model almost coincides with it.

VI. CONCLUSION

In this paper, a nonlinear regression model is exploited
using the DCNN technique to navigate the relation between
the sEMG signals with the interaction force. It adopts the
CNN to extract features from the sEMG signals automatically
without using prior knowledge of the biomechanical model.
The experiments prove the lower error (< 0.4N ) of the
designed regression by comparing it with other approaches.
Compared with traditional methodes such as SNN, MNN and
LSTM, the proposed DCNN method improves the calculating
performance and robustness to noise. Therefore, the DCNN
method can improve the prediction accuracy of the dynamics
force under noises. The feasibility of practical applications can
also be ensured.

In the future, we will focus on more challenging problems
in the sEMG-force control system, which can improve the
accuracy of the DCNN regression method. Since this experi-
ment is only performed on a fixed position, future works will
involve position-free validation. Furthermore, the developed
force estimation model could also be introduced to enhance
the human-robot interaction.
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