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Abstract. Let Ω ⊆ R2 be a bounded piecewise C1,1 open set with convex corners, and let

MS(u) :=

∫
Ω
|∇u|2 dx+ αH1(Ju) + β

∫
Ω
|u− g|2 dx

be the Mumford-Shah functional on the space SBV (Ω), where g ∈ L∞(Ω) and α, β > 0. We
prove that the function u ∈ H1(Ω) such that{

−∆u+ βu = βg in Ω
∂u
∂ν

= 0 on ∂Ω

is a local minimizer of MS with respect to the L1-topology. This is obtained as an applica-
tion of interior and boundary monotonicity formulas for a weak notion of quasi minimizers of

the Mumford-Shah energy. The local minimality result is then extended to more general free

discontinuity problems taking into account also boundary conditions.
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1. Introduction

The Mumford-Shah functional has been introduced in [13, 14] in the context of image segmen-
tation, and then has found important applications in several other fields, among all variational
theories in fracture mechanics (see [11, 4]). It can be considered the typical example of free
discontinuity functional, characterized by the coupling of bulk and surface energies.

The weak formulation of the functional due to De Giorgi and Ambrosio [9] takes the form

(1.1) MS(u) :=

∫
Ω

|∇u|2 dx+ αH1(Ju) + β

∫
Ω

|u− g|2 dx,

where Ω ⊂ R2 is an open bounded set, α, β > 0, g ∈ L∞(Ω). Here H1 denotes the one-dimensional
Hausdorff measure, u belongs to the class of special functions of bounded variation SBV (Ω) (see
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Section 2), and Ju is the jump set of u. The last term involving g is usually called the fidelity
term: in image segmentation, g is the level of grey of the picture, which has to be approximated
by choosing conveniently the jump set Ju (the edges) and the function u outside it (regularized
image). When β = 0, we speak of the homogeneous version of MS.

Within this framework, and in general dimension N , existence of minimizers can be proved
easily through the direct method of the Calculus of Variations, as a direct application of Ambrosio’s
compactness and lower semicontinuity theorem. Moreover, thanks to the regularity result of De
Giorgi, Carriero and Leaci [10], minimizers have a topologically closed jump set and are regular
outside, yielding an admissible configuration of the original formulation of [13, 14], in which the
discontinuity set was considered as an independent variable. The regularity of the discontinuity set
has then been improved by Ambrosio, Fusco and Pallara, who proved that up to a HN−1-negligible
set, Ju is a manifold of class C1,δ for any δ < 1 and of class C1,1 if N = 2.

The issue of detecting minimizers, or more generally local minimizers of the Mumford-Shah
functional is very delicate. Since MS is only lower semicontinuous (with respect to the natural L1-
topology), necessary conditions for minimality cannot be obtained by “standard” differentiation.

First order necessary conditions are established for jump sets Γ = Ju sufficiently regular by
considering inner variations (see [2, Chapter 7]): they yield that u satisfies an elliptic PDE outside
Γ , while its (mean) curvature HΓ is involved in a transmission condition coupling the values of u
and ∇u on both sides of Γ .

For the homogeneous version of MS, a second order necessary condition for minimality has been
proposed by Cagnetti, Mora and Morini [6], involving the positive semidefinitness of a suitable
quadratic form defined on H1

0 (Γ ). Under strict positivity, the authors prove that u is a “local”
minimizer among those function v ∈ SBV (Ω) such that Jv ⊆ Φ(Γ ) and v = u on ∂Ω, where
Φ is any diffeomorphism of RN which is sufficiently C2-close to the identity and such that Id −
Φ is compactly supported in Ω. This local minimality has then been extended to a full local
minimality in the L1 topology in dimension N = 2 by Bonacini and Morini [3], employing a
penalization/regularization technique together with results from the regularity theory of the area
and the Mumford-Shah functional.

The aim of this paper is to show that, in dimensionN = 2 and under mild regularity assumptions
on the geometry of Ω, the Mumford-Shah functional (1.1) admits a natural local minimizer with
no jumps . More precisely, the main result of the paper is the following.

Theorem 1.1. Let Ω ⊆ R2 be an open, bounded, piecewise C1,1-domain with convex corners.
Then the function u ∈ H1(Ω) such that

(1.2)

{
−∆u+ βu = βg in Ω
∂u
∂ν = 0 on ∂Ω

is a local minimizer of MS with respect to the L1-topology.

In other words, the minimizer of MS within the class of Sobolev functions (which satisfies (1.2))
turns out to be a local minimizer for the natural L1-topology in the full class of SBV competitors.

A similar result has been obtained by Chambolle, Ponsiglione and the third author in [8] for
a generalization of the homogeneous version of the Mumford Shah functional under boundary
conditions, motivated by the study of the issue of crack initiation in brittle materials within
variational theories of crack propagation (see [11, 4]). The technique of [8] is based essentially on
the maximum principle through a truncation argument, and can be used to deal with nonlinear
energies for the gradient (with p-growth for example) and more general geometries for Ω, but does
not apply to the Mumford-Shah functional since it fails when the fidelity term is present.

Our proof of Theorem 1.1 is based on the use of the monotonicity formula introduced by
Luckhaus and the first author in [5] for quasi-minimizers of MS, which, in dimension two, we
extend up to boundary points and establish for a quite weak notion of quasi-minimizers.
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Namely we consider functions u ∈ SBV (Ω) which are weak local almost quasi-minimizers of
the Mumford-Shah energy with respect to their own jump set, i.e., such that

(1.3)

∫
Bρ(x)∩Ω

|∇u|2 dx+H1(Ju ∩ B̄ρ(x)) ≤
∫
Bρ(x)∩Ω

|∇v|2 dx+ ΛH1(Jv ∩ B̄ρ(x)) + cγρ
1+γ

for every v ∈ SBV (Ω) with {v 6= u} ⊆ Bρ(x) and Jv ⊆ Ju, where x ∈ Ω, ρ < ρ0 are such that∫
Bρ(x)∩Ω

|∇u|2 dx+H1(Ju ∩ B̄ρ(x)) ≤ ρ,

while Λ ≥ 1 and γ, cγ > 0. We then prove that if x ∈ Ω, then the quantity

(1.4) Ex(ρ) :=
Ex(ρ)

ρ
∧ 1 +

cγ
γ
ργ

is non decreasing on (0, ρ0 ∧ dist(x, ∂Ω)), where

Ex(ρ) :=

∫
Ω∩Bρ(x)

|∇u|2 dx+H1(Ju ∩ B̄ρ(x)),

while if x ∈ ∂Ω, monotonicity holds true for the modification

(1.5) Ẽx(ρ) :=
Ex(ρ)

ρ
∧ 1 +

cγ
γ
ργ + kΩ

∫ ρ

0

(
Ex(r)

r
∧ 1

)
dr

on the interval (0, ρ0 ∧ rΩ ∧ dist(x, S \ {x})), where S denotes the set of corners of ∂Ω and
rΩ , kΩ > 0.

The proof of these monotonicities follows that of [5], which is based on a precise harmonic
extension estimate on a ball (see Proposition 3.1). The dimension N = 2 entails drastic simplifi-
cations in the arguments, and this is the main reason for which we can deal with a weaker class of
quasi-minimizers (with respect to their own jump set, see also Remark 4.2). The extension of the
monotonicity to the boundary requires a generalization of the key harmonic extension estimate to
domains of the form Ω ∩Bρ(x) (see Proposition 3.7): this motivates the piecewise C1,1-regularity
assumption for ∂Ω and the restriction to convex angles. We also refer the reader to the paper [7] by
Chambolle, Séré and Zanini, where a boundary monotonicity formula is proved on flat boundaries,
under Neumann conditions.

The use of monotonicity in the proof of Theorem 1.1 is roughly as follows. Assuming by
contradiction that there exists un → u strongly in L1(Ω) such that MS(un) < MS(u), it is easily
seen (through Ambrosio’s theorem) that H1(Jun) = εn → 0. We then consider the constrained
minimization problem

min
w∈SBV (Ω)

H1(Jw)≤εn

MS(w)

whose minimizers wn are such that

(1.6) MS(wn) ≤MS(un) < MS(u).

Writing wn = u + vn, we can show that vn satisfy the weak minimality property (1.3), so that
monotonicity is available, and that

(1.7)

∫
Ω

|∇vn|2 dx+H1(Jvn)→ 0.

Since Jwn = Jvn , inequality (1.6) can hold only for Jvn 6= ∅. If xn ∈ Jvn is a point of density
one with xn → x ∈ Ω, monotonicity entails a strictly positive uniform lower bound for Exn(ρ)
defined in (1.4). But (1.7) yields the existence of ρn such that Exn(ρn) → 0, a contradiction. If
xn approaches ∂Ω, boundary monotonicity for (1.5) can be employed to get the same conclusion.

In Section 6 we extend the minimality result to a free discontinuity functional of the type

(1.8) F (u) :=

∫
Ω

A(x)∇u · ∇u dx+

∫
Ju

b(x, u+, u−, νu) dH1 + β

∫
Ω

|u− g|2 dx
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under suitable assumptions on the coefficient A and b (here νu denotes the normal vector to Ju, u±

are the two traces of u on the jump set, see Section 2), and considering also boundary condition
of Dirichlet type on a part of the boundary. Again, provided that Ω satisfies some geometric
assumptions (see Theorem 6.7), the minimizer of F within the class H1(Ω) under boundary
conditions is a local minimizer with respect to the L1 topology in SBV (Ω).

Finally, as a numerical consequence of our result, it is worth to observe that for any iterative
local descent method the regularized image given by (1.2) can not be used as initial point. In
particular, the topological derivative of the Mumford-Shah functional will be non-negative at any
point, hence no jump can be naturally detected in this way.

The paper is organized as follows. In Section 2 we fix the notation and recall some basic facts of
the space SBV used in the main proofs. In Section 3 we prove some preliminary results concerning
harmonic extensions in corner domains which are pivotal to extend the monotonicity formula up
to boundary points in Section 4. Section 5 is devoted to the proof of the main local minimality
result, while the extension to the case with boundary conditions with the general form (1.8) is
contained in Section 6.

2. Notation and preliminaries

In this section we fix the notation and recall some basic facts concerning the space SBV .

General notation. Throughout the paper Bρ(x) will denote the open ball of center x ∈ R2

and radius ρ > 0. We will write B1 for the ball of center 0 and radius 1, and set S1 := ∂B1. If
E ⊆ R2 and x ∈ R2, dist(x,E) will stand for the distance between x and E. H1 will denote the
one dimensional Hausdorff measure, which coincides with the usual length measure on sufficiently
regular curves.

If Ω ⊆ R2 is open, Lp(Ω) will denote the usual Lebesgue space of measurable functions which
are p-summable, while H1(Ω) will stand for the Sobolev space of functions in L2(Ω) with square
integrable gradient.

A function f : R→ R is of class C1,1 if it belongs to C1(R) and f ′ is Lipschitz continuous. We
say that f is piecewise C1,1 if it is continuous and there exists a (locally finite) subdivision of R
such that on every associated open subinterval f is of class C1,1. An open bounded domain Ω ⊆ R2

has a piecewise C1,1-boundary if for every x ∈ ∂Ω there exists a neighborhood U and a piecewise
C1,1 function f on R such that, up to a rotation, Ω ∩ U = {(x1, x2) ∈ R2 : x2 > f(x1)} ∩ U .

Finally, for a.b ∈ R we set

a ∧ b := min{a, b} and a ∨ b := max{a, b}.

Special functions of bounded variation. Let Ω ⊆ RN be an open set. The space SBV (Ω)
of special functions of bounded variation is given by all functions u ∈ L1(Ω) such that the distri-
butional derivative Du of u can be represented as a vector valued bounded Radon measure of the
form

Du = ∇uLN + (u+ − u−)νuHN−1 Ju.

Here LN is the Lebesgue measure, ∇u ∈ L1(Ω;RN ) is the approximate gradient of u, and Ju is
the jump set of u. Ju turns out to be countably HN−1-rectifiable, i.e., it is contained up to a set
of HN−1-measure zero in the union of C1-submanifolds of RN . It is possible to define HN−1-a.e.
on Ju an approximate normal denoted by νu, as well as traces u±. We refer to [2] for a detailed
account of this topic.

The following result is fundamental when dealing with the analysis of the Mumford-Shah func-
tional.

Theorem 2.1 (Ambrosio’s Theorem). Let Ω ⊆ RN be open and bounded, and let (un)n∈N be
a sequence in SBV (Ω) such that

‖∇un‖p +HN−1(Jun) + ‖un‖∞ ≤ C,
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where p > 1 and C ≥ 0. Then, there exist a subsequence (unk)k∈N and a function u ∈ SBV (Ω)
such that

∇unk ⇀ ∇u weakly in Lp(Ω;RN ),

HN−1(Ju) ≤ lim inf
k→+∞

HN−1(Junk ).

and
unk → u strongly in L1(Ω).

3. Harmonic extension results

In this section we collect some harmonic extension estimates on different kinds of domains.
We start by recalling the interior harmonic extension estimate for a disk, which was already

exploited in [5] to obtain the monotonicity formula. As a straightforward extension, we generalize
the estimate to the case of circular sectors. Then, through a careful deformation procedure, we
handle the case of what we call “corner domains”, namely the epigraphs of functions with a corner
type singularity which obey suitable estimates. Finally, via a localization argument, we cover the
case of admissible C1,1 domains, which will be a crucial tool to extend the monotonicity formula
up to the boundary. Below and throughout this section, we denote by ∇τ the tangential gradient.

Let us start with the simple case of the unit disk B1.

Proposition 3.1 (Harmonic extension estimate in a disk). Let w ∈ H1(∂B1), and let
hw ∈ H1(B1) be its harmonic extension. Then

(3.1)

∫
B1

|∇hw|2 dx ≤
∫
∂B1

|∇τw|2 dH1,

Proof. Several proofs of this inequality are available in the literature (see for instance [5] for a
proof in N -dimensions). For further needs, we give below a short two dimensional proof employing
Fourier expansions. Let us write

w(ϑ) =
∑
n

[an cos(nϑ) + bn sin(nϑ)] .

The harmonic extension on B1 is given in polar coordinates by

hw(r, ϑ) =
∑
n

rn [an cos(nϑ) + bn sin(nϑ)] .

A direct computation shows that∫
B1

|∇hw|2 dx = π
∑
n

n(a2
n + b2n) and

∫
∂B1

|∇τw|2 dH1 = π
∑
n

n2(a2
n + b2n),

so that the estimate easily follows. �

Let us generalize the estimate (3.1) to the case of circular sectors. Given ϑ0 ∈ [0, 2π], we
consider the circular unit sector and associated arc given in polar coordinates by

Sϑ0
:=
{

(r, ϑ) : r ∈ [0, 1], ϑ ∈
[
− ϑ0

2
,
ϑ0

2

]}
and Γϑ0

:=
{

(r, ϑ) : r = 1, ϑ ∈
[
− ϑ0

2
,
ϑ0

2

]}
.

The following extension of Proposition 3.1 holds true.

Proposition 3.2 (Harmonic extension estimate in a sector). Let w ∈ H1(Γϑ0
), and let

hw ∈ H1(Sϑ0
) denote a harmonic extension of w. Then the inequality∫

Sϑ0

|∇hw|2 dx ≤
∫
Γϑ0

|∇τw|2 dH1,

holds true provided that one of the following assumptions is fulfilled:

(a) ϑ0 ∈]0, π] and hw satisfies Neumann conditions or Dirichlet homogeneous conditions on
∂Sϑ0

\ Γϑ0
.

(b) ϑ0 ∈]0, π/2] and hw satisfies homogeneous Dirichlet conditions for ϑ = −ϑ0/2 and Neu-
mann conditions for ϑ = ϑ0/2.
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Above, a harmonic function h ∈ H1(Sϑ0
) is said to satisfy Neumann conditions on a portion of

the boundary ΓN ⊂ ∂Sϑ0 and Dirichlet conditions g on the complement ΓD = ∂Sϑ0 \ΓN for some
function g ∈ H1(Sϑ0), if h is a minimizer of

min

{∫
Sϑ0

|∇v|2dx : v ∈ H1(Sϑ0), v = g on ΓD

}
.

Proof. Let us consider the case of homogeneous Dirichlet conditions. We may develop w as

w =

∞∑
j=1

cj sin

[
j
π

ϑ0

(
ϑ+

ϑ0

2

)]
so that the associated harmonic extension takes the form

hw =

∞∑
j=1

cjr
j πϑ0 sin

[
j
π

ϑ0

(
ϑ+

ϑ0

2

)]
.

A straightforward computation for the energies of the gradients in polar coordinates shows that

π

ϑ0

∫
Sϑ0

|∇hw|2 dx ≤
∫
Γϑ0

|∇τw|2 dH1,

so that the result follows.
Let us come to the case of Neumann conditions. The case of the semicircle, i.e., ϑ0 = π is easily

obtained through an even extension of w to ∂B1 and employing Proposition 3.1. If ϑ0 ∈]0, π[,
we pass from w to a function w̃ by prolonging the constant values of the extremes. Applying the
inequality on the semicircle we may write∫

Sϑ0

|∇hw|2 dx ≤
∫
Sϑ0

|∇hw̃|2 dx ≤
∫
Sπ

|∇hw̃|2 dx ≤
∫
Γπ

|∇τ w̃|2 dH1 =

∫
Γϑ0

|∇τw|2 dH1,

so that the result follows, and point (a) is proved.
Let us come finally to point (b) which follows by combing the idea used above. If ϑ0 = π/2, we

can perform an even extension to a semicircle and employ the harmonic estimate with Dirichlet
conditions of point (a), and then restrict to Γπ/2 to get the result. If ϑ0 ∈]0, π/2[, we can proceed
by extension to Γπ/2 and using the associated inequality. �

We are now going to consider the case of corner domains. By corner domain, we mean the
epigraph (see Figure 1)

(3.2) Ωf := {(x1, x2) ∈ R2 : x1 > f(x2)}.
of a given function f of the form

(3.3) f(x) :=

{
f1(x) if x < 0

f2(x) if x ≥ 0 ,

with f1 ∈ C1(]−∞, 0]) and f2 ∈ C1([0,+∞[) nonnegative functions satisfying

(3.4) f1(0) = f2(0) = 0 , f ′2(0) = −f ′1(0) .

We define

(3.5) ϑ0(Ωf ) := angle of Ωf at the origin ,

meant as the angle at the origin of the sector {x1 ≥ f ′1(0)x2} ∩ {x1 ≥ f ′2(0)x2}. In particular,
θ0(Ωf ) = π in case ∂Ωf is smooth (f ′1(0) = f ′2(0) = 0). We also set

(3.6) ∂1Ωf := {(f1(x), x) : x < 0} ∩ B̄1(0) and ∂2Ωf := {(f2(x), x) : x ≥ 0} ∩ B̄1(0) .

The following result holds true.

Proposition 3.3 (Harmonic extension estimate in corner domains). For ρ > 0, let Ωfρ be
a family of corner domains as in (3.2), where each function fρ is of the kind (3.3)-(3.4). Assume
further that:
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x1 = f2(x2)

Ωf

x1 = f1(x2)

x1

x2

ϑ0

Figure 1. The domain Ωf .

– the left and right derivatives of fρ at the origin are independent of ρ, i.e.

(3.7) f ′ρ,2(0) = −f ′ρ,1(0) =: λ ≥ 0 ,

– f ′ρ,1, f ′ρ,2 satisfy the following Lipschitz type estimates for some constant c > 0:

(3.8) ∀x ∈ [−1, 0] : |f ′ρ,1(x) + λ| ≤ cρ|x| and ∀x ∈ [0, 1] : |f ′ρ,2(x)− λ| ≤ cρx .

Then there exist ρ0 > 0 and c0 > 0 such that, for every ρ ∈ (0, ρ0] and w ∈ H1(Ωfρ ∩ ∂B1(0)),
denoting by hw a harmonic extension of w to Ωfρ ∩B1(0), it holds

(3.9) (1− c0ρ)

∫
Ωfρ∩B1(0)

|∇hw|2 dx ≤
∫
Ωfρ∩∂B1(0)

|∇τw|2 dH1,

provided that θ0 := ϑ0(Ωfρ) (the inner angle at the origin of fρ) and hw fulfill one of the following
assumptions:

(a) ϑ0 ∈]0, π] and hw satisfies Neumann conditions or Dirichlet homogeneous conditions on
∂1Ωfρ ∪ ∂2Ωfρ .

(b) ϑ0 ∈]0, π/2] and hw satisfies homogeneous Dirichlet conditions on ∂1Ωfρ and Neumann
conditions on ∂2Ωfρ .

In order to prove the previous Proposition, we need some preliminary work. Let us consider
the planar domain given in polar coordinates (r, ϑ) by

(3.10) Cθ0,g :=

{
(r, ϑ) : r ∈ [0, 1], ϑ ∈

[
0,
ϑ0

2
+ g(r)

]}
,

where

(3.11) θ0 ∈]0, π] and g ∈ C1([0, 1]) , g(0) = 0 , g(r) ∈
[
− ϑ0

2
,−ϑ0

2
+
π

2

]
.

The domain Cθ0,g can be mapped to the unit sector

S+
ϑ0

:=

{
(r, ϑ) : r ∈ [0, 1], ϑ ∈

[
0,
ϑ0

2

]}
by means of the transformation defined by

(3.12) T : Cθ0,g → S+
ϑ0
, T (r, ϑ) :=

(
r,
ϑ0

2

ϑ
ϑ0

2 + g(r)

)
,

with inverse

T−1(r′, ϑ′) :=

(
r′,

2

ϑ0

(
ϑ0

2
+ g(r′)

)
ϑ′
)
.
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Notice that T maps Cθ0,g ∩ ∂B1(0) onto Γ+
θ0

:= {(r, ϑ) : r = 1, ϑ ∈ [0, ϑ0/2]}. Accordingly, with

a given function v defined on Cθ0,g (resp. on Cθ0,g ∩ ∂B1(0)), we can associate the function v]

defined on S+
ϑ0

(resp. Γ+
θ0

) by

(3.13) v] := v ◦ T−1 .

Lemma 3.4. For ρ > 0, let Cθ0,gρ be a family of domains as in (3.10), with θ0 (independent of ρ)
and gρ as in (3.11). Assume further that g′ρ satisfy the following L∞ estimate for some constant
c > 0:

(3.14) |g′ρ(r)| ≤ cρ for every r ∈ [0, 1] .

Let T : Cθ0,gρ → S+
ϑ0

be defined as in (3.12). There exist ρ0 > 0 and c0 > 0 such that, for every

ρ ∈ (0, ρ0] the following items hold true.

(a) If v] ∈ H1(S+
ϑ0

) is associated with v ∈ H1(Cθ0,gρ) as in (3.13), it holds∫
S+
ϑ0

|∇v]|2 dx′ ≥ (1− c0ρ)

∫
Cθ0,gρ

|∇v|2 dx.

(b) If w] ∈ H1(Γ+
θ0

) is associated with w ∈ H1(Cθ0,g ∩ ∂B1(0)) as in (3.13), it holds∫
Γ+
ϑ0

|∇τw]|2 dH1 ≤ (1 + c0ρ)

∫
Cθ0,gρ∩∂B1(0)

|∇τw|2 dH1.

Proof. Let us prove item (a). We write for simplicity g in place of gρ. By (3.13), we have

v(r, ϑ) = v](T (r, ϑ)) = v]

(
r,
ϑ0

2

ϑ
ϑ0

2 + g(r)

)
.

Computing the partial derivatives of the function v, we obtain

∂rv(r, ϑ) = ∂r′v
](T (r, ϑ)) + ∂ϑ′v](T (r, ϑ))

ϑ0

2

−ϑg′(r)
(ϑ0

2 + g(r))2

and

∂ϑv(r, ϑ) = ∂ϑ′v](T (r, ϑ))
ϑ0

2

1
ϑ0

2 + g(r)
,

so that

(3.15)


∂r′v

](T (r, ϑ)) = ∂rv(r, ϑ) +
ϑg′(r)

ϑ0

2 + g(r)
∂ϑv(r, ϑ)

∂ϑ′v](T (r, ϑ)) = 2
ϑ0

(
ϑ0

2 + g(r)
)
∂ϑv(r, ϑ).

Since the jacobian of T is given by

JT (r, ϑ) =
ϑ0

2

1
ϑ0

2 + g(r)
,

the change of variable formula together with (3.15) yields

(3.16)

∫
S+
ϑ0

[
(∂r′v

])2 +

(
∂ϑ′v]

r′

)2
]
r′dr′dϑ′

=

∫
Cθ0,g

[
(∂rv)2 +

(
∂ϑv

r

)2

+ e(ρ)

]
ϑ0

2

1
ϑ0

2 + g(r)
rdrdϑ,

where

(3.17) e(ρ) := 2
ϑg′(r)

ϑ0

2 + g(r)
∂rv∂ϑv+

(
ϑg′(r)

ϑ0

2 + g(r)

)2

(∂ϑv)2 +

[(
2

ϑ0

(
ϑ0

2
+ g(r)

))2

− 1

](
∂ϑv

r

)2

.
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It is easy to check that there exist ρ0, c̃ > 0 (depending only on the constant c in (3.14) and on
ϑ0), such that for every ρ ∈ (0, ρ0]

(3.18) −c̃ρ
[
(∂rv)2 +

(∂ϑv
r

)2]
≤ e(ρ) ≤ c̃ρ

[
(∂rv)2 +

(∂ϑv
r

)2]
.

Indeed, let us show for instance how the first term on the right hand side of (3.17) can be handled
(the other terms being similar). Notice first that the assumption (3.14) entails also also |g(r)| ≤ cρ
for every r ∈ [0, 1]. Then, taking ρ sufficiently small we obtain, for a suitable constant c̃ > 0,∣∣∣∣∣2 ϑg′(r)

ϑ0

2 + g(r)
∂rv∂ϑv

∣∣∣∣∣ ≤
∣∣∣∣∣ ϑg′(r)
ϑ0

2 + g(r)

∣∣∣∣∣
[
r2(∂rv)2 +

(
∂ϑv

r

)2
]

≤
(ϑ0

2 + cρ)cρ
ϑ0

2 − cρ

[
(∂rv)2 +

(
∂ϑv

r

)2
]
≤ c̃ρ

(
(∂rv)2 +

(
∂ϑv

r

)2
)
.

In view of (3.18), coming back to (3.16) we get∫
S+
ϑ0

[
(∂r′v

])2 +

(
∂ϑ′v]

r′

)2
]
r′dr′dϑ′ ≥ (1− c̃ρ)

∫
Cθ0

[
(∂rv)2 +

(
∂ϑv

r

)2
]
ϑ0

2

1
ϑ0

2 + g(r)
rdrdϑ

≥ 1− c̃ρ
1− 2

ϑ0
cρ

∫
Cθ0,g

[
(∂rv)2 +

(
∂ϑv

r

)2
]
rdrdϑ,

from which part (a) of the statement follows.
The proof of part (b) is analogous, by using the lower bound inequality in (3.18) in place of the

upper bound one. �

We are now in a position to prove Proposition 3.3.

Proof of Proposition 3.3. Throughout the proof we write for simplicity f in place of fρ and g in
place of gρ. We claim that

Ω+
f := Ωf ∩B1(0) ∩ {x2 > 0}

corresponds to the domain Cθ0,g defined in (3.10), with θ0 and g satisfying (3.11) and (3.14), if
we take

(3.19) θ0 = θ0(Ωf ) , g(r) := arccos

(
f2(x2)√

x2
2 + f2(x2)2

)
− θ0

2
,

where θ0(Ωf ) is the angle of Ωf at the origin defined according to (3.5), and x2 = x2(r) is obtained
by inverting the relation

(3.20) r =
√
x2

2 + f2(x2)2.

To prove the claim notice firstly that x2(r) is well-defined because (3.20) defines a bijection
if ρ is sufficiently small: if f ′2(0) 6= 0, this follows immediately from (3.8); if f ′2(0) = 0, setting
h(x2) := x2

2 + f2(x2)2 and using again (3.8), we get

h′(x2) = 2x2 + 2f2(x1)f ′2(x2) ≥ 2x2(1− c22ρ2) > 0 for x2 > 0 and ρ� 1.

Next observe that, since by assumption f2 is nonnegative, the domain Ω+
f can be written in

polar coordinates (r, θ) as

(3.21) 0 ≤ r ≤ 1 , 0 ≤ θ ≤ ϕ(r) := arccos

(
f2(x2)√

x2
2 + f2(x2)2

)
,

(with x2 = x2(r) as above). In view of (3.21), and noticing that the function ϕ satisfies

ϕ(0+) = arccos

(
f ′2(0)√

1 + f ′2(0)2

)
=
θ0(Ωf )

2
,
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we see that Ω+
f corresponds to Cθ0,g with θ0 and g as in (3.19). To achieve the proof of the claim,

it remains to check that θ0 and g satisfy (3.11) and (3.14). Since θ0 is the angle of Ωf at the
origin, recalling that f1 and f2 are nonnegative by assumption, it is clear that θ0 ∈ [0, π[. It is
also immediate from the above definition of g that g ∈ C1([0, 1]) and that g(0) = ϕ(0)− θ0/2 = 0.
Moreover, since the function ϕ in (3.21) takes values into [0, π/2], g satisfies the bounds in (3.11).
Finally, taking into account (3.8), a straightforward computation shows that there exists c > 0
such that (3.14) is fulfilled.

A similar change of variable can be operated on the set Ω−f := Ωf ∩ B1(0) ∩ {x2 < 0}. We

conclude that we can map Ωf ∩ B1(0) onto the sector Sϑ0
, with an estimate on the L2-norm of

the gradients according to Lemma 3.4.
We are now ready to prove the estimate (3.9). Let us consider firstly the case of Neumann

conditions. Given w ∈ H1(Ωf ∩ ∂B1(0)), let w] ∈ H1(Γθ0) be associated with w according to
(3.13). If hw] is the harmonic extension of w] to Sϑ0 with Neumann conditions on ∂Sϑ0 \ Γϑ0 ,
thanks to Proposition 3.2 (a) we have

(3.22)

∫
Sϑ0

|∇hw] |2 dx ≤
∫
Γϑ0

|∇τw]|2 dH1.

Coming back to the original domain, if we consider the function h ∈ H1(Ωf ∩ B1(0)) defined
by h := hw] ◦ T (so that h] = hw]), by using in the order Lemma 3.4 (a), (3.22), and Lemma 3.4
(b), we infer

(1− c0ρ)

∫
Ωf∩B1(0)

|∇h|2 dx ≤
∫
Sϑ0

|∇hw] |2 dx

≤
∫
Γϑ0

|∇τw]|2 dH1

≤ (1 + c0ρ)

∫
Ωf∩∂B1(0)

|∇τw|2 dH1 .

Since the harmonic extension hw of w which satisfies Neumann conditions on ∂1Ωf ∪∂2Ωf verifies
the inequality ∫

Ωf∩B1(0)

|∇hw|2 dx ≤
∫
Ωf∩B1(0)

|∇h|2 dx,

the result follows.
The case of Dirichlet homogeneous conditions or mixed Dirichlet/Neumann conditions can be

handled in a similar way, by employing the corresponding inequalities on sectors established in
Proposition 3.2.

�

In order to handle more general geometries and also boundary conditions, the following defini-
tion will be useful.

Definition 3.5 (Admissible domains). Let Ω ⊂ R2 be an open bounded set with a piecewise
C1,1-boundary. Let S denote the set of corners of ∂Ω, and let γ1, . . . , γk be the open arcs (connected
components) of ∂Ω \ S. We will say that Ω is admissible if ∂Ω can be decomposed as

(3.23) ∂Ω = ΓD ∪ ΓN ∪ S,
where ΓD ∪ ΓN is a partition of {γ1, . . . , γk} and satisfies the following conditions

(i) the angle formed (on the side of Ω) by any pair of consecutive arcs in ΓD or in ΓN is less
than or equal to π;

(ii) the angle formed (on the side of Ω) by any arc of ΓD adjacent to an arc of ΓN is less than
or equal to π/2.

Remark 3.6. In our further considerations ΓD and ΓN stand for the arcs with Dirichlet and
Neumann boundary conditions respectively For ΓD = ∂Ω or ΓN = ∂Ω, admissibility according to
the above definition reduces to the assumption that Ω has convex corners. In particular, smooth
C1,1 domains are admissible.
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Proposition 3.7 (Harmonic extension estimate in admissible domains). Let Ω ⊂ R2 be
an open bounded set with a piecewise C1,1-boundary, which is admissible according to Definition
3.5. Let ∂Ω be decomposed as in (3.23). There exist ρΩ > 0 and cΩ > 0 such that, for every
x ∈ ∂Ω and every ρ < ρΩ ∧ dist(x, S \ {x}), if w ∈ H1(Ω ∩ ∂Bρ(x)) and hw denotes a harmonic
extension of w to Ω ∩Bρ(x), it holds

(3.24)
(1− cΩρ)

ρ

∫
Ω∩Bρ(x)

|∇hw|2 dx ≤
∫
Ω∩∂Bρ(x)

|∇τw|2 dH1 ,

provided one of the following assumptions is fulfilled:

(a) hw satisfies Neumann conditions or homogeneous Dirichlet conditions on ∂Ω ∩Bρ(x);

(b) hw satisfies homogeneous Dirichlet conditions on ΓD ∩Bρ(x) and Neumann conditions on
ΓN ∩Bρ(x).

Proof. Let us first consider the case when hw satisfies Neumann conditions on ∂Ω ∩Bρ(x). Since
Ω is compact and with a piecewise C1,1-boundary, there exists ρΩ > 0 such that, for every x ∈ ∂Ω
and ρ < ρΩ , we have that Ω ∩Bρ(x) is given in a suitable coordinate system with center in x by
the intersection with Bρ(x) of the epigraph of a piecewise C1,1-function fx : R → R. In view of
the compactness of ∂Ω, it is not restrictive to assume

(3.25) sup
x∈∂Ω

‖fx‖C1,1
pw

= C < +∞.

Let x ∈ ∂Ω be a smooth point, and let

ρ < ρΩ ∧ dist(x, S).

Up to a translation and a rotation, we may assume that x = 0 and that Ω ∩Bρ(x) is given by

Ωf ∩Bρ(0)

where

Ωf := {(x1, x2) ∈ R2 : x1 > f(x2)}
for a suitable f ∈ C1,1(R) with f(0) = f ′(0) = 0 and ‖f‖C1,1 ≤ C. If we rescale to unit size, i.e.,
we consider the map

x 7→ x/ρ

then Ωf ∩Bρ(0) is transformed into the set Ωfρ ∩B1(0) where

fρ(s) :=
1

ρ
f(ρs).

Since f ′ρ(s) = f ′(ρs) and f(0) = f ′(0) = 0, in view of (3.25) we deduce that for every s ∈ [−1, 1]

|f ′ρ(s)| ≤ cρ|s|.

Hence, the family of functions fρ satisfy conditions (3.7) and (3.8). Therefore, up to reducing ρΩ ,
we can apply Proposition 3.3 (under assumption (a), case of Neumann conditions) to the function

w̃(y) := w(ρy) ∈ H1(Ωfρ ∩ ∂B1(0)) .

Rescaling back to size ρ, we obtain easily the result.
If x is a convex corner for ∂Ω, the proof is similar, using again Proposition 3.3 (under assumption

(a), case of Neumann conditions) .
The cases when hw satisfies homogeneous Dirichlet conditions on ∂Ω ∩Bρ(x), or homogeneous

Dirichlet conditions on ΓD ∩ Bρ(x) and Neumann conditions on ΓN ∩ Bρ(x), can be settled in
the analogous way, by using the parts of Proposition 3.3 in which the corresponding boundary
conditions are considered. �

Remark 3.8. An inspection in the proof of Proposition 3.7 shows that the constants cΩ , ρΩ
remain bounded if Ω is replaced by the domain L(Ω) where L : R2 → R2 varies in a family of
linear transformations with bounded norm. This observation will be useful in Section 6.
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4. The monotonicity formula up to the boundary

In this section we prove a monotonicity formula up to boundary points for a suitable notion
of quasi-minimizers of the Mumford-Shah functional in dimension two. We point out that this
notion is much weaker than the classical one employed in [5], since the family of test functions is
much smaller. The results of this section are typically two dimensional and can not, a priori, be
extended in N dimensions.

Let us start with the following definition.

Definition 4.1. (Weak minimizers) Let Ω ⊆ R2 be an open set, and u ∈ SBV (Ω). We say
that u is a weak local almost quasi-minimizer of the Mumford-Shah energy with respect to its own
jump set at the point x ∈ Ω if there exist ρx > 0, γ > 0, cγ > 0 and Λ ≥ 1 such that for every
ρ < ρx with

(4.1)

∫
Ω∩Bρ(x)

|∇u|2 dx+H1(Ju ∩ B̄ρ(x)) ≤ ρ

and for every v ∈ SBV (Ω) with {v 6= u} ⊆ Bρ(x) and Jv ⊆ Ju, we have

(4.2)

∫
Ω∩Bρ(x)

|∇u|2 dx+H1(Ju ∩ B̄ρ(x)) ≤
∫
Ω∩Bρ(x)

|∇v|2 dx+ ΛH1(Jv ∩ B̄ρ(x)) + cγρ
1+γ .

Remark 4.2. Notice that local almost quasi minimizers of the Mumford-Shah functional consid-
ered in [5] (in particular absolute minimizers) are weak local almost quasi minimizers with respect
to their own jump set: indeed they satisfy the minimality property (4.2) on every ball Bρ(x) (with
ρ sufficiently small) not necessarily satisfying the energy bound (4.1), and for every competitor v
such that {v 6= u} ⊆ Bρ(x), without the restriction Jv ⊆ Ju.

With a given weak local almost quasi-minimizer u according to the previous definition, we
associate for every x ∈ Ω and ρ > 0 the quantity

(4.3) Ex(ρ) :=

∫
Ω∩Bρ(x)

|∇u|2 dx+H1(Ju ∩ B̄ρ(x)).

Our monotonicity formula at interior points reads as follows.

Theorem 4.3 (Interior monotonicity). Let Ω ⊂ R2 be open, and let u ∈ SBV (Ω) be a weak
local almost quasi-minimizer for the Mumford-Shah energy with respect to its own jump set at the
point x ∈ Ω according to Definition 4.1. Let Ex(ρ) be associated with u as in (4.3).

Then the quantity

(4.4) Ex(ρ) :=
Ex(ρ)

ρ
∧ 1 +

cγ
γ
ργ

is non decreasing on (0, ρx ∧ dist(x, ∂Ω)).

This formula appears to have a similar expression as the one in [5], but applies to a much
weaker notion of minimizer. In particular there is no natural upper bound for Ex(ρ)/ρ as in [5]
(such bound is usually obtained by using as a test for minimality the function u1Ω\Bρ(x), which is
not a priori an admissible competitor for weak local almost quasi minimizers with respect to their
own jump set).

Coming to boundary points, we are going to state a monotonicity formula for domains which
are admissible according to Definition 3.5. First, let us consider the case of C1,1-domains with
convex corners (cf. Remark 3.6), with no imposition of Dirichlet boundary condition. In the case
of a flat boundary, such a monotonicity formula has been obtained in [7], in which case kΩ = 0.

Theorem 4.4 (Boundary monotonicity). Let Ω ⊂ R2 be an open, bounded, piecewise C1,1-
domain with convex corners, and let u ∈ SBV (Ω) be a weak local almost quasi-minimizer for the
Mumford-Shah energy with respect to its own jump set at the point x ∈ ∂Ω according to Definition
4.1. Let Ex(ρ) be associated with u as in (4.3).
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Ω
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Ω′

γD2

γD3 γN1

γN2

γN3

Figure 2. The domain Ω′.

Then there exist rΩ > 0 and kΩ ≥ 0 such that the quantity

(4.5) Ẽx(ρ) :=
Ex(ρ)

ρ
∧ 1 +

cγ
γ
ργ + kΩ

∫ ρ

0

(
Ex(r)

r
∧ 1

)
dr

is non decreasing on (0, ρx ∧ rΩ ∧ dist(x, S \ {x})), where S denotes the set of corners of ∂Ω.

To formulate a monotonicity result which takes into account also boundary conditions, we
consider the case when Ω is an admissible domain according to Definition 3.5, and homogeneous
Dirichlet boundary conditions are imposed on the (nonempty) portion ΓD of its boundary. To this
aim, let us consider an open bounded domain Ω′ such that Ω ⊂⊂ Ω′ ⊂ R2 and with (see Figure
2).

(4.6) ∂Ω ∩Ω′ = ΓD

Setting

(4.7) A0 := {u ∈ SBV (Ω′) : u = 0 on Ω′ \Ω}.
we adapt the notion of weak local almost quasi-minimizers as follows.

Definition 4.5. (Weak minimizers in A0) We say that u ∈ A0 is a weak local almost quasi-
minimizer in A0 of the Mumford-Shah energy with respect to its own jump set at the point x ∈ Ω
if there exist ρx > 0, γ > 0, cγ > 0 and Λ ≥ 1 such that for every ρ < ρx with∫

Ω∩Bρ(x)

|∇u|2 dx+H1(Ju ∩ B̄ρ(x)) ≤ ρ

and for every v ∈ A0 with {v 6= u} ⊆ Bρ(x) and Jv ⊆ Ju, we have∫
Ω∩Bρ(x)

|∇u|2 dx+H1(Ju ∩ B̄ρ(x)) ≤
∫
Ω∩Bρ(x)

|∇v|2 dx+ ΛH1(Jv ∩ B̄ρ(x)) + cγρ
1+γ .

The following variant of Theorem 4.4 holds true.

Theorem 4.6 (Boundary monotonicity in A0). Let Ω ⊂ R2 be an admissible domain according
to Definition 3.5, and let u ∈ A0 be a weak local almost quasi-minimizer in A0 for the Mumford-
Shah energy with respect to its own jump set at the point x ∈ ∂Ω according to Definition 4.5. Let
Ex(ρ) be associated with u as in (4.3).



14 D. BUCUR, I. FRAGALÀ, AND A. GIACOMINI

Then there exist rΩ > 0 and kΩ > 0 such that the quantity

(4.8) Ẽx(ρ) :=
Ex(ρ)

ρ
∧ 1 +

cγ
γ
ργ + kΩ

∫ ρ

0

(
Ex(r)

r
∧ 1

)
dr

is non decreasing on (0, ρx ∧ rΩ ∧ dist(x, S \ {x})), where S denotes the set of corners of ∂Ω.

In order to establish these results, we need to revisit the proof of the monotonicity formula
given in [5]. The new ingredients here are the jump constraint (for which the two-dimensional
setting is crucial) and the fact that the point x can belong to the boundary. We start with the
boundary case, which contains the relevant modifications with respect to the case treated in [5],
and then we go back to the (simpler) interior case.

Proof of Theorems 4.4 and 4.6. Let us consider firstly the case of Theorem 4.4. Following [5],
to prove the result it is enough to show that there exist rΩ > 0 and kΩ > 0 such that, for

ρ ∈ (0, ρx ∧ rΩ ∧ dist(x, S \ {x})), it holds Ẽ′x(ρ) ≥ 0 at almost every differentiability point ρ of

Ẽx such that Ex(ρ) < ρ. Let ρΩ and cΩ be as in Proposition 3.7, and let us choose kΩ = 2cΩ .
We argue by contradiction. Assume that

Ẽ′x(ρ) =
E ′x(ρ)

ρ
− Ex(ρ)

ρ2
+ cγρ

γ−1 + kΩ
Ex(ρ)

ρ
< 0,

so that

(4.9) ρ E ′x(ρ) + cγρ
γ+1 + kΩρEx(ρ) < Ex(ρ).

In particular, we infer E ′x(ρ) < 1 so that from∫
Ω∩∂Bρ(x)

|∇u|2 dx+H0(Ju ∩ ∂Bρ(x)) ≤ E ′x(ρ) < 1

we get Ju ∩ ∂Bρ(x) = ∅. This means that the restriction of the SBV function u on ∂Bρ(x) ∩Ω is
a Sobolev function which we denote by w. Notice that (4.9) entails

(4.10) ρ

∫
Ω∩∂Bρ(x)

|∇τw|2 dH1 + cγρ
γ+1 + kΩρEx(ρ) < Ex(ρ).

Let hw denote a harmonic extension hw of w to Ω ∩Bρ(x) which satisfies Neumann conditions on
∂Ω ∩Bρ(x). By Proposition 3.7, we have

(1− cΩρ)

ρ

∫
Ω∩Bρ(x)

|∇hw|2 dx ≤
∫
Ω∩∂Bρ(x)

|∇τw|2 dH1.

From (4.10) we deduce that

(1− cΩρ)

∫
Ω∩Bρ(x)

|∇hw|2 dx+ cγρ
γ+1 + kΩρEx(ρ) < Ex(ρ).

Up to replacing ρΩ by a smaller rΩ if necessary, we infer in particular∫
Ω∩Bρ(x)

|∇hw|2 dx ≤ 2Ex(ρ)

so that for every ρ < rΩ ∧ dist(x, S \ {x})

(4.11)

∫
Ω∩Bρ(x)

|∇hw|2 dx+ cγρ
γ+1 + (kΩ − 2cΩ)ρEx(ρ) < Ex(ρ).

We now consider the admissible competitor for u given by

(4.12) v(y) :=

{
hw(y) if y ∈ Ω ∩Bρ(x)

u(y) otherwise.

Notice that Jv ⊆ Ju, since v has no jumps inside Ω ∩Bρ(x) and coincides with u on Ω ∩ ∂Bρ(x).
Then, recalling that we have chosen kΩ = 2cΩ , inequality (4.11) for ρ < ρx ∧ rΩ ∧ dist(x, S \ {x})
contradicts the weak local almost quasi-minimality property of u according to Definitions 4.1
(recall that Ex(ρ) < ρ).
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Coming to Theorem 4.6, we can follow the previous arguments by considering the harmonic
extension hw which satisfy homogeneous Dirichlet conditions on ΓD ∩ Bρ(x) and Neumann con-
ditions on ΓN ∩Bρ(x), and using again Proposition 3.7. The contradiction then follows by noting
that the competitor v in (4.12) belongs to A0. �

Remark 4.7. Notice that the uniformity property of Remark 3.8 holds also for the constants rΩ
and kΩ .

Proof of Theorem 4.3. The proof reduces essentially to the original case of [5], by noting that,
since we work in dimension two, the key competitors involved in the arguments turn out to have
a jump set contained in Ju. More precisely, we can follow the proof of Theorem 4.4, by using the
estimate of Proposition 3.1 in place of that of Proposition 3.7: in this way we can choose kΩ = 0
and obtain the monotonicity for the energy in the simpler form (4.4). �

5. The local minimality result

Let Ω ⊆ R2 be a bounded open set, and let

MS(u) :=

∫
Ω

|∇u|2 dx+ αH1(Ju) + β

∫
Ω

|u− g|2 dx

denote the Mumford-Shah functional on SBV (Ω), where g ∈ L∞(Ω), α, β > 0.
The following result holds true.

Theorem 5.1 (Small jump sets are not convenient). Let Ω ⊆ R2 be an open, bounded,
piecewise C1,1-domain with convex corners and let g ∈ L∞(Ω). Let U ∈ H1(Ω) be the solution to

min
v∈H1(Ω)

∫
Ω

|∇v|2 dx+ β

∫
Ω

|v − g|2 dx,

i.e., such that

(5.1)

{
−∆U + βU = βg in Ω
∂U
∂ν = 0 on ∂Ω.

Then there exists ε > 0 such that for every u ∈ SBV (Ω) with H1(Ju) < ε we have

MS(U) < MS(u).

The main result of the paper, already stated in the Introduction as Theorem 1.1, is a simple
consequence of the previous theorem. For convenience, we restate it hereafter:

Theorem 5.2 (Local minimality in L1). Under the assumptions of Theorem 5.1, the function U
is a local minimizer for the Mumford-Shah functional in SBV (Ω) with respect to the L1-topology.

Proof. Assume by contradiction that there exists vn ∈ SBV (Ω) such that

vn → U strongly in L1(Ω)

with

(5.2) MS(vn) < MS(U).

By truncation we may assume that ‖vn‖∞ ≤ ‖g‖∞, so that the convergence holds also in L2(Ω).
By (5.2), we may apply Ambrosio’s theorem (see Theorem 2.1) and deduce∫

Ω

|∇U |2 dx ≤ lim inf
n

∫
Ω

|∇vn|2 dx,

so that, since the fidelity terms are converging, we infer limnH1(Jvn) = 0: but then (5.2) is in
contradiction with Theorem 5.1. �

Remark 5.3. Under suitable regularity assumptions on g, it has been proved in [1, Sections 5.1
and 5.3] by using the calibration method, that U is a global minimizer for MS if β sufficiently
small or if β sufficiently large.
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The proof of Theorem 5.1 rests on a suitable use of the monotonicity formulas up to the
boundary developed in Section 4.

Proof of Theorem 5.1. First of all, by considering the change of variable x 7→
√
αx, it is not

restrictive to assume α = 1.
Let uε ∈ SBV (Ω) be a minimizer of

min
u∈SBV (Ω)

H1(Ju)≤ε

MS(u).

We shall prove by a contradiction argument that Juε = ∅ for ε small enough, so that uε = U and
the proof follows.

Let εn be an infinitesimal sequence, and let us denote by un the corresponding functions uεn .
By truncation we may assume that

(5.3) ‖un‖∞ ≤ ‖g‖∞ and ‖U‖∞ ≤ ‖g‖∞.
Comparing un with the zero function we get

(5.4)

∫
Ω

|∇un|2 dx+H1(Jun) + β

∫
Ω

|un − g|2 dx ≤ β
∫
Ω

g2 dx.

We will concentrate on

vn := un − U.
We divide the proof in several steps.

Step 1: Regularity for U . In view of the bound (5.3) and of the regularity of ∂Ω, we infer from
the elliptic problem (5.1) satisfied by U that U ∈ H2(Ω) (see [12, Theorem 3.2.1.3 and Remark
3.2.4.6]). In particular we deduce that ∇U ∈ Lp(Ω) for every p > 1. Then we may write for every
x ∈ Ω, ρ > 0 and p > 4∫

Ω∩Bρ(x)

|∇U |2 dx ≤

(∫
Ω∩Bρ(x)

|∇U |p dx

) 2
p

|Ω ∩Bρ(x)|1−
2
p .

As a consequence, for every γ ∈ (0, 1) we get the estimate

(5.5)

∫
Ω∩Bρ(x)

|∇U |2 dx ≤ c1ρ1+γ ,

for some c1 > 0 (here, c1 depends on γ,Ω, β, g, but not on ρ).

Step 2: Weak local almost quasi-minimality of vn with respect to it own jump set.
Let us show that there exist δ > 0 and cδ > 0 such that for every x ∈ Ω, for every ρ ≤ 1 with

(5.6)

∫
Ω∩Bρ(x)

|∇vn|2 dx+H1(Jvn ∩ B̄ρ(x)) ≤ ρ,

and for every v ∈ SBV (Ω) with {v 6= vn} ⊆ Bρ(x) and H1(Jv) ≤ εn we have

(5.7)

∫
Ω∩Bρ(x)

|∇vn|2 dx+H1(Jvn ∩ B̄ρ(x)) ≤
∫
Ω∩Bρ(x)

|∇v|2 dx+H1(Jv ∩ B̄ρ(x)) + cδρ
1+δ.

In particular we get that vn is a weak local almost quasi-minimizer of the Mumford-Shah energy
with respect to its own jump set at any point x ∈ Ω according to Definition 4.1.

Recalling (5.3) we have ‖vn‖∞ ≤ 2‖g‖∞, so that it is not restrictive to assume that also

(5.8) ‖v‖∞ ≤ 2‖g‖∞.
Moreover, we may assume

(5.9)

∫
Ω∩Bρ(x)

|∇v|2 dx <
∫
Ω∩Bρ(x)

|∇vn|2 dx+H1(Jvn ∩ B̄ρ(x)),

since otherwise (5.7) is immediately satisfied.
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Since

{v + U 6= un} ⊆ Bρ(x)

by minimality of un we get∫
Ω∩Bρ(x)

|∇vn +∇U |2 dx+H1(Jvn ∩ B̄ρ(x)) + β

∫
Ω∩Bρ(x)

|un + U − g|2 dx

≤
∫
Ω∩Bρ(x)

|∇v +∇U |2 dx+H1(Jv ∩ B̄ρ(x)) + β

∫
Ω∩Bρ(x)

|v + U − g|2 dx

so that∫
Ω∩Bρ(x)

|∇vn|2 dx+H1(Jvn ∩ B̄ρ(x)) ≤
∫
Ω∩Bρ(x)

|∇v|2 dx+H1(Jv ∩ B̄ρ(x)) + c(ρ),

where

c(ρ) := 2

∫
Ω∩Bρ(x)

∇U · (∇v −∇vn) dx

+ β

∫
Ω∩Bρ(x)

|v + U − g|2 dx− β
∫
Ω∩Bρ(x)

|vn + U − g|2 dx.

Recalling (5.3) and (5.8), we have

(5.10)

∫
Ω∩Bρ(x)

|v + U − g|2 dx−
∫
Ω∩Bρ(x)

|vn + U − g|2 dx ≤ c2ρ2

for some c2 > 0. Thanks to the estimate (5.5) for ∇U obtained in Step 1, and taking into account
(5.9) and (5.6), we have

(5.11)

∣∣∣∣∣
∫
Ω∩Bρ(x)

∇U · (∇v −∇vn) dx

∣∣∣∣∣
≤ ‖∇U‖L2(Ω∩Bρ(x);R2)(‖∇v‖L2(Ω∩Bρ(x);R2) + ‖∇vn‖L2(Ω∩Bρ(x);R2))

≤ c3ρ
1+γ
2 ρ

1
2 = c3ρ

1+ γ
2

for some c3 > 0.
Collecting (5.10) and (5.11), we get for every ρ ≤ 1

c(ρ) ≤ cδρ1+δ

for δ = γ/2 and cδ > 0, so that inequality (5.7) is proved.

Step 3: Vanishing energy. We claim that

(5.12)

∫
Ω

|∇vn|2 dx+H1(Jvn)→ 0.

Indeed, in view of (5.4) and of (5.3) we may apply Ambrosio’s theorem (see Theorem 2.1) to the
sequence (un)n∈N: there exists u ∈ SBV (Ω) such that up to a subsequence

un → u strongly in L2(Ω)

(5.13) ∇un ⇀ ∇u weakly in L2(Ω;R2)

and

(5.14) H1(Ju) ≤ lim inf
n
H1(Jun) = 0.

In particular, u ∈ H1(Ω). Moreover, by the minimality of un, we deduce that in the limit∫
Ω

|∇u|2 dx+ β

∫
Ω

|u− g|2 dx ≤
∫
Ω

|∇ϕ|2 dx+ β

∫
Ω

|ϕ− g|2 dx
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for every ϕ ∈ H1(Ω), which yields u = U . Passing to the limit in the inequality∫
Ω

|∇un|2 dx+H1(Jun) + β

∫
Ω

|un − g|2 dx ≤
∫
Ω

|∇U |2 dx+ β

∫
Ω

|U − g|2 dx,

we deduce

lim sup
n

∫
Ω

|∇un|2 dx ≤
∫
Ω

|∇U |2 dx

which together with the weak convergence (5.13) yields

∇un → ∇U strongly in L2(Ω;R2).

Recalling that vn = un − U and that H1(Jvn) = H1(Jun) = εn, claim (5.12) follows.

Step 4: Conclusion. We can now conclude the proof via a contradiction argument. Assume
that H1(Jun) > 0 for every n. Since Jvn = Jun , this implies that for every n

(5.15) H1(Jvn) > 0.

To derive a contradiction from (5.15) when n is large enough, we consider for every n a point
xn ∈ Jvn of density one, i.e., such that

(5.16) lim
ρ→0+

H1(Jvn ∩Bρ(xn))

2ρ
= 1 .

Let yn ∈ ∂Ω be a projection of xn on ∂Ω; since Ω has convex corners, yn is a smooth point of
∂Ω. Let us set

dn := dist(xn, ∂Ω) = |xn − yn| and d′n := dist(yn, S),

where S is the set of corners of Ω.
For x ∈ Ω, we set

Enx (ρ) :=

∫
Ω∩Bρ(x)

|∇vn|2 dx+H1(Jvn ∩Bρ(x)).

Notice that, in view of Step 3,

(5.17) ηn :=

∫
Ω

|∇vn|2 dx+H1(Jvn)→ 0

and that

(5.18) Enx (ρ) ≤ ηn .
We distinguish four cases.

Case 1. Assume that

(5.19) lim sup
n

dn√
ηn

> 0.

Thanks to Step 2 and the interior monotonicity formula of Theorem 4.3 we infer that the map

(5.20) ρ 7→
Enxn(ρ)

ρ
∧ 1 + cγρ

γ

is non decreasing on (0, dn ∧ 1). Thanks to (5.19), possibly passing to a subsequence, for n large
we may choose as an admissible radius ρn = C

√
ηn for some C > 0, and write

1 ≤
Enxn(ρn)

ρn
∧ 1 + cγρ

γ
n ≤
Enxn(ρn)

ρn
+ cγρ

γ
n ≤

ηn
C
√
η
n

+ cγ(C
√
ηn)γ ,

where the first inequality comes from monotonicity at xn and (5.16), the last one by (5.18). In
view of (5.17), the above relation gives a contradiction for n large enough.

Case 2. Assume that

(5.21) lim
n

dn√
ηn

= 0 and lim sup
n

d′n√
ηn

> 0.
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xn

yn

ρn = C
√
ηn

∂Ω

Figure 3. Illustration of Case 2.

By Step 2 and the boundary monotonicity formula of Theorem 4.4 we infer that the map

(5.22) ρ 7→
Enyn(ρ)

ρ
∧ 1 + cγρ

γ + kΩ

∫ ρ

0

(Enyn(r)

r
∧ 1

)
dr

is non decreasing on (0, 1 ∧ rΩ ∧ d′n), where rΩ , kΩ > 0. Thanks to (5.21), possibly passing to a
subsequence, for n large we may choose as an admissible radius ρn = C

√
ηn, assume that ρn > 2dn,

and write

Enyn(ρn)

ρn
∧ 1 + cγρ

γ
n + kΩ

∫ ρn

0

(Enyn(r)

r
∧ 1

)
dr

≥
Enyn(2dn)

2dn
∧ 1 + cγ(2dn)γ + kΩ

∫ 2dn

0

(Enyn(r)

r
∧ 1

)
dr

≥
Enxn(dn)

2dn
∧ 1 + cγd

γ
n ≥

1

2

[Enxn(dn)

dn
∧ 1 + cγd

γ
n

]
≥ 1

2
,

where we have used in the first inequality monotonicity at yn, then the inclusion Bdn(xn) ⊆
B2dn(yn) (see Figure 3), and finally monotonicity at xn combined with (5.16). We infer

(5.23)
1

2
≤
Enyn(ρn)

ρn
∧ 1 + cγρ

γ
n + kΩ

∫ ρn

0

(Enyn(r)

r
∧ 1

)
dr ≤ ηn

C
√
ηn

+ cγ(C
√
ηn)γ + kΩC

√
ηn,

which is a contradiction for n large in view of (5.17).

Case 3. Assume that

(5.24) lim
n

dn√
ηn

= 0, lim
n

d′n√
ηn

= 0 and lim
n

dn
d′n

= 0.

Then there exists a vertex z ∈ S such that, possibly passing to a subsequence, xn, yn → z. Set

d′n = dist(yn, z).
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z

yn

ρn

∂Ω

xn

Figure 4. Illustration of Case 3.

We choose ρn :=
√
ηn. Since for n large we have ρn ≥ 2d′n, we may write using the monotonicity

at z and the inclusion Bd′n(yn) ⊆ B2d′n
(z) (see Figure 4)

Enz (ρn)

ρn
∧ 1 + cγρ

γ
n + kΩ

∫ ρn

0

(
Enz (r)

r
∧ 1

)
dr

≥ E
n
z (2d′n)

2d′n
∧ 1 + cγ(2d′n)γ + kΩ

∫ 2d′n

0

(
Enz (r)

r
∧ 1

)
dr

≥
Enyn(d′n)

2d′n
∧ 1 + cγ(d′n)γ ,

On the other hand, since for n large we also have d′n ≥ 2dn, by monotonicity at yn and the
inclusion Bdn(xn) ⊆ B2dn(yn) (see again Figure 4), we have

Enyn(d′n)

2d′n
∧ 1 + cγ(d′n)γ + kΩ

∫ d′n

0

(Enyn(r)

r
∧ 1

)
dr

≥ 1

2

[
Enyn(d′n)

d′n
∧ 1 + cγ(d′n)γ + kΩ

∫ d′n

0

(Enyn(r)

r
∧ 1

)
dr

]

≥ 1

2

[
Enyn(2dn)

2dn
∧ 1 + cγ(2dn)γ + kΩ

∫ 2dn

0

(Enyn(r)

r
∧ 1

)
dr

]

≥ 1

2

[Enxn(dn)

2dn
∧ 1 + cγd

γ
n

]
≥ 1

4

[Enxn(dn)

dn
∧ 1 + cγd

γ
n

]
≥ 1

4
,

the last inequality coming from monotonicity at xn combined with (5.16).
Collecting the previous inequalities we obtain

1

4
≤ kΩ

∫ d′n

0

(Enyn(r)

r
∧ 1

)
dr +

Enz (ρn)

ρn
∧ 1 + cγρ

γ
n + kΩ

∫ ρn

0

(
Enz (r)

r
∧ 1

)
dr

≤ kΩd′n +
ηn√
ηn

+ cγ(
√
ηn)γ + kΩ

√
ηn,

which yields a contradiction for n large.
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z

xn

∂Ω

ρn =
√
ηn

Figure 5. Illustration of Case 4.

Case 4. Assume finally that

(5.25) lim
n

dn√
ηn

= 0, lim
n

d′n√
ηn

= 0 and lim sup
n

dn
d′n

> 0.

Let z ∈ S be a vertex such that, up to a subsequence if necessary, xn, yn → z, so that d′n =
dist(yn, z). Set d′′n := dist(xn, z). Up to a subsequence we may assume that, for n large, d′n ≤ Cdn
with C > 0, so that from the inequalities

(5.26) dn = dist(xn, ∂Ω) ≤ d′′n = dist(xn, z) ≤ dist(xn, yn) + dist(yn, z) = dn + d′n ≤ (1 + C)dn

we infer that dn and d′′n are comparable.
Then, if we choose ρn :=

√
ηn, in view of (5.25) and (5.26), for n large we have ρn ≥ 2d′′n. By

monotonicity at z and the inclusion Bd′′n(xn) ⊆ B2d′′n
(z) (see Figure 5), we obtain

Enz (ρn)

ρn
∧ 1 + cγρ

γ
n + kΩ

∫ ρn

0

(
Enz (r)

r
∧ 1

)
dr

≥ E
n
z (2d′′n)

2d′′n
∧ 1 + cγ(2d′′n)γ + kΩ

∫ 2d′′n

0

(
Enz (r)

r
∧ 1

)
dr

≥
Enxn(d′′n)

2d′′n
∧ 1 + cγ(d′′n)γ ≥

Enxn(dn)

2(1 + C)dn
∧ 1 + cγd

γ
n

≥ 1

2(1 + C)

[Enxn(dn)

dn
∧ 1 + cγd

γ
n

]
≥ 1

2(1 + C)
,

where as above the last inequality comes from monotonicity at xn combined with (5.16). Then,

1

2(1 + C)
≤ E

n
z (ρn)

ρn
∧ 1 + cγρ

γ
n + kΩ

∫ ρn

0

(
Enz (r)

r
∧ 1

)
dr ≤ ηn√

ηn
+ cγ(

√
ηn)γ + kΩ

√
ηn,

which yields a contradiction for n large. The proof is now concluded. �

Remark 5.4. For later use, let us notice that in order to carry out Step 4 in the previous proof,
the monotonicity properties given by Theorems 4.3 and 4.4 can be replaced respectively by interior
and boundary quasi-monotonicity properties of the following type: if u is a weak local almost quasi-
minimizer for the Mumford-Shah energy with respect to its own jump set at every point of Ω, and
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Ex and Ẽx are defined respectively by (4.4) and (4.5), there exist c > 1 and r̃Ω > 0 such that
Ex(ρ2) ≥ 1

c
Ex

(ρ1

c

)
if x ∈ Ω and ρ1 ≤ ρ2 ≤ r̃Ω ∧ dist(x, ∂Ω)

Ẽx(ρ2) ≥ 1

c
Ẽx

(ρ1

c

)
if x ∈ ∂Ω and ρ1 ≤ ρ2 ≤ r̃Ω ∧ dist(x, S \ {x}).

Indeed, considering for example Case 2, we can choose again ρn := C
√
ηn for some C > 0, and

use the boundary quasi-monotonicity at yn for the radii ρn ≥ 2cdn to write

(5.27)
Enyn(ρn)

ρn
∧ 1 + cγρ

γ
n + kΩ

∫ ρn

0

(Enyn(r)

r
∧ 1

)
dr

≥ 1

c

[
Enyn(2dn)

2dn
∧ 1 + cγ(2dn)γ + kΩ

∫ 2dn

0

(Enyn(r)

r
∧ 1

)
dr

]

≥ 1

2c

[Enxn(dn)

dn
∧ 1 + cγd

γ
n

]
.

Since xn is a point of density one for Jvn , there exists rn such that crn ≤ dn and

H1(Jvn ∩ B̄rn(xn))

rn
≥ 3

2
.

Then, by using the interior quasi-monotonicity at xn for the radii crn ≤ dn, we get

1

2c

[Enxn(dn)

dn
∧ 1 + cγd

γ
n

]
≥ 1

2c2

[Enxn(rn)

rn
∧ 1 + cγr

γ
n

]
≥ 1

2c2
.

But this lower bound is incompatible with (5.27) since the first line of (5.27) is going to zero as
n→∞ (cf. (5.23)). The other cases can be treated similarly.

6. The case of general energies with boundary conditions

In this section we deal with the local minimality of the Sobolev minimizer of a generalization
of the Mumford-Shah functional under prescribed boundary conditions.

6.1. Setting of the problem and the local minimality result. Given an open bounded set
Ω ⊂ R2, which is admissible according to Definition 3.5, we want to impose Dirichlet boundary
conditions on the (nonempty) portion ΓD of its boundary. To this aim, similarly as in Section 4
we consider an open bounded domain Ω′ such that Ω ⊂⊂ Ω′ ⊂ R2 and with ∂Ω ∩ Ω′ = ΓD (see
Figure 2). Then, given w ∈ H1(Ω′) ∩ L∞(Ω′), we set

(6.1) Aw := {u ∈ SBV (Ω′) : u = w on Ω′ \Ω}.

We are interested in the minimization on the class Aw of the Mumford-Shah type functional

(6.2) F (u) :=

∫
Ω′
A(x)∇u · ∇u dx+

∫
Ju

b(x, u+, u−, νu) dH1 + β

∫
Ω′
|u− g|2 dx .

Here νu denotes a normal along Ju, and u± the associated traces of u (see Section 2), while the
assumptions satisfied by the matrix A, the function b, and the datum g are specified below.

Remark 6.1. Notice that working on the set Aw the boundary condition

u = w on ΓD

is taken into account in a relaxed sense: indeed, the parts of ΓD on which u 6= w are contained
in Ju, so that they turn out to be penalized by the functional F . This is usual in variational
problems for functions of bounded variation (like for example the graph area problem). Finally,
observe that the bulk terms provide a fixed contribute on Ω′ \Ω, since u = w on this set, so that
for the minimization it suffices simply to integrate on Ω.
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Assumptions on the functional. Concerning the volume terms in (6.2), we require

(6.3) A ∈ C0,δ(Ω′;M2×2
sym), cA1 |η|2 ≤ A(x)η · η ≤ cA2 |η|2 for every x ∈ Ω′ and η ∈ R2,

and

(6.4) g ∈ L∞(Ω′), β ≥ 0

for suitable constants cA1 , c
A
2 > 0 and δ ∈ (0, 1).

Concerning the surface term

Ψ(u) :=

∫
Ju

b(x, u+, u−, νu) dH1,

we require for b : Ω′ × R× R× S1 → [0,+∞[ to be such that

(6.5) cb1 ≤ b(x, s1, s2, ν) ≤ cb2 + Φ(s1, s2)

where cb1, c
b
2 > 0 and Φ : R2 → [0,+∞[. In addition we ask that

(6.6) u 7→ Ψ(u) is l.s.c with respect to the weak convergence in SBV (Ω),

and the monotonicity under truncation

(6.7) Ψ((u ∧ c2) ∨ c1) ≤ Ψ(u) for every c1 ≤ c2.

Remark 6.2 (Example of admissible surface energies). An admissible surface term could
be given for example by

b(x, s1, s2, ν) := ϕ(x, ν) + |s1 − s2|
where ϕ : Ω′ × R2 →]0,+∞[ is such that

x 7→ ϕ(x, ν) is lower semicontinuous on Ω′ for every ν ∈ S1,

ν 7→ ϕ(x, ν) is convex, positively one homogeneous on R2 for every x ∈ Ω′,
and

0 < cb1 ≤ ϕ(x, ν) ≤ cb2.
Requirements (6.5) and (6.7) are immediately fulfilled. The lower semicontinuity (6.6) is a conse-
quence of Reshetnyak Theorem (see [2, Theorem 2.38]) and of the lower semicontinuity result in
SBV [2, Theorem 5.22].

A-admissible domains. To control the interaction between Neumann and Dirichlet conditions
in connection with monotonicity, we need to introduce the following property concerning the
interplay between the geometry of Ω and the bulk energy.

Definition 6.3 (A-Admissible domains). Let Ω ⊂ R2 be an open bounded set with a piecewise
C1,1-boundary, decomposed as in (3.23), and let A satisfy (6.3). We say that Ω is A-admissible
if, for every x ∈ Ω, the domain Ωx := A(x)−1/2Ω is admissible according to Definition 3.5.

Remark 6.4. Notice that admissibility according to Definition 3.5 is equivalent to Id-admissibility
according to Definition 6.3. In particular, when ΓD = ∂Ω or ΓN = ∂Ω, A-admissibility reduces
to the assumption of convex corners, and smooth C1,1 domains are always A-admissible.

The local minimality result under boundary conditions. The analogue of Theorem 5.1
under boundary conditions is the following.

Theorem 6.5. (Small jump sets are not convenient under boundary conditions) Assume
the functional F satisfies assumptions (6.3), (6.4), (6.5), (6.6), and (6.7). Let Ω ⊆ R2 be A-
admissible according to Definition 6.3, and let w ∈ H1(Ω′)∩L∞(Ω′). Denoting with Uw ∈ H1(Ω′)
the solution to

min
v∈Aw∩H1(Ω′)

F (v),
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assume that Uw admits at most uniformly weak singularities in Ω, i.e., there exist C > 0 and
α > 0 such that for every x ∈ Ω and ρ ≤ 1

(6.8)

∫
Ω∩Bρ(x)

|∇Uw|2 dx ≤ Cρ1+α.

Then there exists ε > 0 such that for every u ∈ Aw with H1(Ju) < ε we have

F (Uw) < F (u).

Remark 6.6. Assumptions on the kind of singularities which the function Uw can exhibit are
essential to exclude that small jump sets are not convenient. Indeed, assume for example that

(6.9)

∫
Ω∩Bρ(x)

|∇Uw|2 dx ≈ cργ

with 0 < γ < 1 and c > 0 at some point x ∈ Ω: this means that for small ρ, the singularity has
an energy content in Ω ∩Bρ(x) which is higher than the length of ∂(Ω ∩Bρ(x)). It turns out that
the admissible competitor

v :=

{
0 in Ω ∩Bρ(x)

Uw otherwise

is such that F (v) < F (Uw) if ρ is sufficiently small, so that the minimality property of Theorem
6.5 cannot hold.

Theorem 6.5 states that the energy content given by (6.8) is not enough to destroy the minimal-
ity of Uw, which is preserved even if small jumps sets are allowed. In the case ΓD = ∂Ω, inequality
(6.8) holds for example if w ∈ H2(Ω′) and A is Lipschitz continuous on Ω′, since elliptic regularity
entails Uw ∈ H2(Ω) (see e.g. [12, 3.2.1.2]).

In the language of fracture mechanics, the situation (6.9) is denoted as a strong singularity: the
“elastic energy” stored in Ω ∩ Bρ(x) is much higher than the energy required to create a crack
along ∂(Ω ∩ Bρ(x)) so that the elastic configuration is not in equilibrium, and the creation of a
small crack is energetically convenient. “Weak singularities” are on the contrary compatible with
local equilibrium.

As mentioned in the Introduction, the minimality property of Theorem 6.5 (without fidelity term
but with nonlinear bulk energies and general Lipschitz boundaries) was derived in [8, Theorem 1]
under the additional assumption that the competitors have a closed jump set with a preset number
of connected components, while the full SBV case was derived under the stronger assumption
Uw ∈ C1(Ω) (see [8, Theorem 6]).

As in Section 5, we can draw the following local minimality result with respect to the L1

topology under boundary conditions.

Theorem 6.7 (Local minimality in L1 under boundary conditions). Under the assumpti-
ons of Theorem 6.5, the function Uw is a local minimizer for the Mumford-Shah type energy F on
Aw with respect to the L1-topology.

Proof. Assume by contradiction that there exists vn ∈ Aw such that

vn → Uw strongly in L1(Ω′)

with

(6.10) F (vn) < F (Uw).

It is not restrictive to assume that ‖vn‖∞ ≤ ‖g‖∞ + ‖w‖∞, so that the convergence holds also
in L2(Ω′) and is weak in SBV (Ω′) (thanks to the coercivities assumptions on A and b). By
Ambrosio’s Theorem we deduce

lim inf
n

F (vn) ≥ F (Uw),

so that from (6.10) we infer limnH1(Jvn) = 0: but then (6.10) is in contrast with Theorem 6.5. �
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6.2. Proof of Theorem 6.5. Let us start by deriving some properties of a solution v ∈ A0 to

(6.11) min
h∈A0

H1(Jh)≤ε

F (Uw + h).

They are stated in two separate lemmas below, and concern respectively a uniform almost-quasi
minimality property, and a crucial quasi-monotonicity property. Some preliminary notation and
remarks are in order.

Firstly notice that existence of minimizers to (6.11) is guaranteed by the application of Ambro-
sio’s theorem in view of the assumptions (6.3)-(6.7) on the terms appearing in F . Notice that we
may assume (thanks in particular to the truncation assumption (6.7) for the surface energy)

(6.12) ‖Uw‖∞ ≤ ‖w‖∞ + ‖g‖∞ and ‖v‖∞ ≤ 2‖w‖∞ + ‖g‖∞.

For every ξ ∈ Ω, let us consider the matrix

Lξ := A(ξ)1/2

and the sets

Ω̃ξ := L−1
ξ Ω and Ω̃′ξ := L−1

ξ Ω′.

To every function u ∈ SBV (Ω′) let us associate the function ũξ ∈ SBV (Ω̃′ξ) given by

(6.13) ũξ(y) :=

√
2detLξ

cb1
√
cA1
u(Lξy),

where cA1 and cb1 are the constants appearing in (6.3) and (6.5). Let us denote by Ã0 the space of

functions associated to A0 under the previous transformation, and let ξ̃ be the point corresponding
to ξ.

Lemma 6.8 (Uniform almost quasi-minimality). Under the assumptions of Theorem 6.5,
let v ∈ A0 be a solution to the minimization problem (6.11). There exist ρ0 > 0, Λ ≥ 1, γ > 0,
cγ > 0 such that for every ξ ∈ Ω, for every ρ < ρ0 with

(6.14)

∫
Bρ(ξ̃)∩Ω̃ξ

|∇ṽξ|2 dx+H1(Jṽξ ∩ B̄ρ(ξ̃)) ≤ ρ,

and for every h̃ ∈ Ã0 with {h̃ 6= ṽξ} ⊆ Bρ(x̃) and Jh̃ ⊆ Jṽξ we have∫
Bρ(ξ̃)∩Ω̃ξ

|∇ṽξ|2 dx+H1(Jṽξ ∩ B̄ρ(ξ̃)) ≤
∫
Bρ(ξ̃)∩Ω̃ξ

|∇h̃|2 dx+ ΛH1(Jh̃ ∩ B̄ρ(ξ̃)) + cγρ
1+γ .

In other words, uniformly in ξ ∈ Ω, the function ṽξ is a weak local almost quasi-minimizer in Ã0

of the Mumford-Shah energy with respect to its own jump set at the point ξ̃.

Proof. Let us divide the proof in two steps.

Step 1. Assume that A(ξ) = Id. Let us show that if h ∈ A0 with {h 6= v} ⊆ Bρ(ξ), ρ ≤ 1 and
Jh ⊆ Jv, we have

(6.15)

∫
Ω∩Bρ(ξ)

|∇v|2 dx+ cb1H1(Jv ∩ B̄ρ(ξ))

≤
∫
Ω∩Bρ(ξ)

|∇h|2 dx+ C1H1(Jh ∩ B̄ρ(ξ)) + 2cA(1 + cb1)ρ1+δ + C2ρ
(1+α

2 )∧2,

where cb1 is the constant appearing in the estimates (6.5) for the surface energy b, cA is the Holder
constant of A ∈ C0,δ(Ω′,M2×2

sym), α is the constant appearing in (6.8), and C1, C2 > 0 are suitable
constants depending only on the data of the problem.

Indeed, recalling (6.12) and using a truncation argument, it is not restrictive to assume that

(6.16) ‖h‖∞ ≤ 2‖w‖∞ + ‖g‖∞.
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Moreover, we may assume

(6.17)

∫
Ω∩Bρ(ξ)

|∇h|2 dx <
∫
Ω∩Bρ(ξ)

|∇v|2 dx+ cb1H1(Jv ∩ B̄ρ(ξ))

since otherwise (6.15) is immediately satisfied.
By minimality of v (since the inclusion Jh ⊆ Jv ensures that H1(Jh) ≤ ε), we get

(6.18)

∫
Ω∩Bρ(ξ)

A(x)∇v · ∇v dx+ cb1H1(Jv ∩ B̄ρ(ξ))

≤
∫
Ω∩Bρ(ξ)

A(x)∇h · ∇h dx+ C1H1(Jh ∩ B̄ρ(ξ)) + c(ρ),

where

c(ρ) := 2

∫
Ω∩Bρ(ξ)

A(x)∇Uw · (∇h−∇v) dx+ β

∫
Ω∩Bρ(ξ)

(h− v)(2Uw + h+ v − 2g) dx

and
C1 := cb2 + Φ(2‖w‖∞ + ‖g‖∞,−(2‖w‖∞ + ‖g‖∞)),

where cb2 and Φ appear in (6.5).
In view of the energy bounds (6.8), (6.14), (6.17) and of the L∞-bounds (6.12) and (6.16) we

deduce for every ρ ≤ 1

c(ρ) ≤ 2cA2

∫
Ω∩Bρ(ξ)

|∇Uw||∇h−∇v| dx+ C̃ρ2

≤ 2cA2 ‖∇Uw‖L2(Ω∩Bρ(ξ))(‖∇h‖L2(Ω∩Bρ(ξ)) + ‖∇v‖L2(Ω∩Bρ(ξ))) + C̃ρ2

≤ 2cA2
√
Cρ

1+α
2

(√(
1 + cb1

)
ρ+
√
ρ

)
+ C̃ρ2 ≤ C2ρ

(1+α
2 )∧2,

for a suitable C2 > 0.
Since A(ξ) = Id and A ∈ C0,δ(Ω′;M2×2

sym), coming back to (6.18) we may write∫
Ω∩Bρ(ξ)

|∇v|2 dx− cAρδ
∫
Ω∩Bρ(ξ)

|∇v|2 dx+ cb1H1(Jv ∩ B̄ρ(x))

≤
∫
Ω∩Bρ(ξ)

|∇h|2 dx+ cAρ
δ

∫
Ω∩Bρ(ξ)

|∇h|2 dx+ C1H1(Jh ∩ B̄ρ(ξ)) + C2ρ
(1+α

2 )∧2,

where cA > 0 is the Hölder constant of A, so that taking into account (6.17) and (6.14) we infer∫
Ω∩Bρ(ξ)

|∇v|2 dx+ cb1H1(Jv ∩ B̄ρ(ξ))

≤
∫
Ω∩Bρ(ξ)

|∇h|2 dx+ C1H1(Jh ∩ B̄ρ(ξ)) + 2cA(1 + cb1)ρ1+δ + C2ρ
(1+α

2 )∧2.

so that (6.15) follows.

Step 2. Let us come to the general case. Under the transformation (6.13), a direct computation
shows that the functional F is transformed up to a multiplicative constant into the functional on

SBV (Ω̃′ξ) given by

F̃ (ũ) :=

∫
Ω̃′
ξ

Ã(y)∇ũ · ∇ũ dy +

∫
Jũ

b̃(y, ũ+, ũ−, νũ) dH1(y) + β

∫
Ω̃′
ξ

|ũ− g̃ξ|2 dy,

with
Ã(y) := L−1

ξ A(Lξy)L−1
ξ

and

b̃(y, s1, s2, ν) :=
2

cb1
√
cA1
b

(
Lξy,

√
2detLξ
cb1

s1,

√
2detLξ
cb1

s2, Lξν

)
|Lξν⊥|,
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where ν⊥ is a unit vector orthogonal to ν (so that |Lξν⊥ũ | turns out to be the one dimensional
jacobian of the transformation y 7→ Lξy involved in the change of variable to pass from an integral
on Ju to that on Jũ, see [2, Theorem 2.91]). Notice that by construction

(6.19) b̃(y, s1, s2, ν) ≥ 2.

Clearly the function

ũ := (̃Uw)ξ + ṽξ

is a minimizer of the functional F̃ among the functions in SBV (Ω̃′ξ) such that ũ = w̃ξ on Ω̃′ξ \ Ω̃ξ
and H1(LξJṽ) ≤ ε.

Notice that Ã(ξ̃) = Id. Therefore, taking into account (6.19), inequality (6.15) of Step 1 entails

that, for every h̃ ∈ Ã0 with {h̃ 6= ṽξ} ⊆ Bρ(ξ̃) and Jh̃ ⊆ Jṽξ (which is an admissible competitor

for ṽξ since automatically H1(LξJh̃) ≤ ε),

(6.20)

∫
Ω̃ξ∩Bρ(ξ̃)

|∇ṽξ|2 dx+H1(Jṽξ ∩ B̄ρ(ξ̃))

≤
∫
Ω̃ξ∩Bρ(ξ̃)

|∇h̃|2 dx+ C̃1H1(Jh̃ ∩ B̄ρ(ξ̃)) + 2cÃ(1 + cb̃1)ρ1+δ + C̃2ρ
(1+α

2 )∧2,

if ρ is sufficiently small. The statement follows thanks to the uniform estimates on Lξ coming
from (6.3). �

Lemma 6.9 (Quasi-monotonicity). Under the assumptions of Theorem 6.5, let v ∈ A0 be a
solution to the minimization problem (6.11).

There exist c > 1, r̃Ω , k̃Ω > 0 such that, if Ex(ρ), Ẽx(ρ) are defined respectively as in (4.4)
(4.5), being γ, cγ the constants of Lemma 6.8, and

Ex(ρ) :=

∫
Ω∩Bρ(x)

|∇v|2 dx+H1(Jv ∩ B̄ρ(x)),

the following properties hold true:

(a) For every x ∈ Ω and for every ρ1 < ρ2 < r̃Ω ∧ dist(x, ∂Ω)

(6.21) Ex(ρ2) ≥ 1

c
Ex

(ρ1

c

)
.

(b) For every x ∈ ∂Ω and for every ρ1 < ρ2 < r̃Ω ∧ dist(x, S \ {x}), where S denotes the set
of corners of ∂Ω,

Ẽx(ρ2) ≥ 1

c
Ẽx

(ρ1

c

)
.

Proof. Let us start with point (a). Thanks to Lemma 6.8, we have that ṽx ∈ Ã0 is a weak local

almost quasi-minimizer (in Ã0) for the Mumford-Shah energy with respect to its own jump set at
the point x̃ = L−1

x x, so that the quantity

(6.22) ρ 7→

∫
Ω̃x∩Bρ(x̃)

|∇ṽx|2 dy +H1(Jṽx ∩Bρ(x̃))

ρ
∧ 1 +

cγ
γ
ργ

is non decreasing on (0, ρ0 ∧ rΩ̃x ∧ dist(x̃, ∂Ω̃x)) in view of the interior monotonicity formula of
Theorem 4.4. Coming back to the domain Ω, thanks to the bounds on A, we find universal
constants ci > 0 such that

c3Ex(c4ρ) ≤
∫
Ω̃x∩Bρ(x̃)

|∇ṽx|2 dy +H1(Jṽx ∩ B̄ρ(x̃)) ≤ c1Ex(c2ρ).

This estimate, together with the monotonicity of (6.22), Remarks 3.8 and 4.7, yields easily point
(a) of the statement for a suitable r̃Ω > 0.

The proof of point (b) is similar: we need to invoke, in place of Theorem 4.4, the bound-

ary monotonicity formula of Theorem 4.6, which is in force since Ω̃x is admissibile, being Ω
A-admissible by hypothesis, together with Remarks 3.8 and 4.7. �
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We are now in a position to prove Theorem 6.5.

Proof of Theorem 6.5. It suffices to show that, for ε small enough, a minimizer vε ∈ SBV (Ω) of

min
v∈A0

H1(Jv)≤ε

F (Uw + v)

is such that Jvε = ∅, which entails vε = 0, and the proof follows.
We proceed by contradiction, assuming that there exists εn → 0 such that, for the corresponding

vn := vεn , it holds H1(Jvn) > 0. Let us divide the proof in two steps.

Step 1: Vanishing energy. We claim that

(6.23)

∫
Ω′
|∇vn|2 dx+H1(Jvn)→ 0.

Notice indeed that

F (Uw + vn) ≤ F (Uw)

so that we get easily, taking into account (6.3)-(6.7) and (6.12)∫
Ω′
|∇vn|2 dx+H1(Jvn) + ‖vn‖∞ ≤ C.

By applying Ambrosio’s theorem to the sequence (vn)n∈N, there exists v ∈ A0 such that, up to a
subsequence,

vn → v strongly in L2(Ω′)

(6.24) ∇vn ⇀ ∇v weakly in L2(Ω′;R2)

and

(6.25) H1(Jv) ≤ lim inf
n
H1(Jvn) ≤ lim

n
εn = 0.

In particular v ∈ H1(Ω′). Moreover, by the minimality of vn, in the limit we deduce that

F (Uw + v) ≤ F (Uw + ϕ)

for every ϕ ∈ H1(Ω′) with ϕ = 0 on Ω′ \ Ω, which yields v = 0 in view of the definition of Uw.
Passing to the limit in the inequality∫

Ω′
A(x)[∇Uw +∇vn][∇Uw +∇vn] dx+

∫
Jvn

b(x, v+
n , v

−
n , νvn) dH1 + β

∫
Ω′
|Uw + vn − g|2

≤
∫
Ω′
A(x)∇Uw∇Uw dx+ β

∫
Ω′
|Uw − g|2

and taking into account (6.24), (6.25) and the coercivity of A and b, we deduce that

∇vn → 0 strongly in L2(Ω′;R2),

so that the claim follows.

Step 2: Conclusion. By Step 1 we have

ηn :=

∫
Ω′
|∇vn|2 dx+H1(Jvn)→ 0.

In view of the quasi-monotonicity properties enjoyed by v by Lemma 6.9, and taking into account
Remark 5.4, we can repeat the arguments of Step 4 in the proof of Theorem 5.1 and get a
contradiction, so that the conclusion follows. �
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[7] A. Chambolle, E. Seré, and C. Zanini. Progressive water-waves: a global variational approach. In progress.

[8] Antonin Chambolle, Alessandro Giacomini, and Marcello Ponsiglione. Crack initiation in brittle materials.
Arch. Ration. Mech. Anal., 188(2):309–349, 2008.

[9] E. De Giorgi and L. Ambrosio. New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend.

Cl. Sci. Fis. Mat. Natur. (8), 82(2):199–210 (1989), 1988.
[10] E. De Giorgi, M. Carriero, and A. Leaci. Existence theorem for a minimum problem with free discontinuity

set. Arch. Rational Mech. Anal., 108(3):195–218, 1989.

[11] G. A. Francfort and J.-J. Marigo. Revisiting brittle fracture as an energy minimization problem. J. Mech.
Phys. Solids, 46(8):1319–1342, 1998.

[12] Pierre Grisvard. Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Reprint of the 1985 original

[ MR0775683], With a foreword by Susanne C. Brenner.

[13] D. Mumford and J. Shah. Boundary detection by minimizing functionals. IEEE Conference on Computer
Vision and Pattern Recognition, San Francisco, 1985.

[14] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational

problems. Comm. Pure Appl. Math., 42(5):577–685, 1989.

(Dorin Bucur) Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000 Chambry, France
E-mail address, D. Bucur: dorin.bucur@univ-savoie.fr
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