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Abstract—Graph analytics are an emerging class of irregular applications. Operating on very large datasets, they present unique
behaviors, such as fine-grained, unpredictable memory accesses, and highly unbalanced task level parallelism, that make existing
high-performance general-purpose processors or accelerators (e.g., GPUs) suboptimal. To address these issues, research and
industry are developing a variety of custom accelerator designs for this application area, including solutions based on reconfigurable
devices (Field Programmable Gate Arrays). These new approaches often employ High-Level Synthesis (HLS) to accelerate the
development of the accelerators. In this paper, we propose a novel architecture template for the automatic generation of accelerators
for graph analytics and irregular applications. The architecture template includes a dynamic task scheduling mechanism, a parallel
array of accelerators that enables supporting task-level parallelism with context switching, and a related multi-channel memory
interface that decouples communication from computation and provides support for fine-grained atomic memory operations. We
discuss the integration of the architectural template in an HLS flow, presenting the necessary modifications to enable automatic
generation of the custom architectures starting from OpenMP annotated code. We evaluate our approach first by synthesizing and
exploring triangle counting, a common graph algorithm, and then by synthesizing custom designs for a set of graph database
benchmark queries, representing series of graph pattern matching routines. We compare the synthesized accelerators with previous
state-of-the-art methodologies for the synthesis of parallel architectures, showing that the proposed approach allows reducing resource
usage by optimizing the number of accelerators replicas without any performance penalty.

Index Terms—Parallel architectures, Multi-threading, Dynamic Task Scheduling, Context switching, RDF, SPARQL, High Performance

Data Analytics, Big Data.

1 INTRODUCTION

Graph analytics enable understanding relationships among
objects and structural characteristic of a graph as a whole.
The need to quickly analyze networks (social, commu-
nication, transportation networks, financial transactions,
biomedical data, the Web) of ever-increasing size to extract
actionable insights from the data has led to the development
of a variety of methods and solutions to accelerate the
execution of graph algorithms.

Graph methods are said to be irregular [1]. They typ-
ically employ pointer- or indirection-based data structures
that induce unpredictable fine-grained data accesses, with
poor spatial and temporal locality. While potentially expos-
ing massive amounts of parallelism, when for example a
large graph is traversed for each edge or vertex, the parallel
activities may be significantly unbalanced and synchroniza-
tion intensive. Even when graph algorithms require arith-
metic for the computation of weights, ranks, and heuristics,
they are largely dominated by memory operations. Graph
algorithms are best developed with shared memory abstrac-
tions, because partitioning efficiently graphs is a complex
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and time-expensive problem by itself. Conventional high-
performance general-purpose architectures are optimized
for regular computation, arithmetic (integer or floating-
point) intensive workloads, and locality, through complex
cache hierarchies that aim at reducing latency. Even if ac-
celerators such as general-purpose graphic processing units
(GPGPUs) employ latency tolerance techniques through
massive multithreading, they require threads with identical
behaviors to maximize utilization. Their parallel memory
subsystems provide high-performance with well aligned,
coalesced data accesses, and their non-uniform memory
access (NUMA) design achieves the highest performance
when data are accurately partitioned across the domains.
For all these reasons, research and industry have recently
started to look at custom accelerators for graph analytics.
These include a variety of approaches, ranging from custom
application-specific integrated circuit (ASIC) designs that
decouple computation from memory access and specialize
the memory subsystem [2] to processing-in-memory designs
with stacked memory [3]. The Tera MTA, and its succes-
sor, Tera MTA 2, Cray XMT, and Cray XMT 2 [4], were
large-scale multithreaded machines optimized for irregular
workloads. The EMU system [5] provides a fine-grained
multithreaded design where thread migrates to the data.
We are experiencing a significant uptake in the use of ac-
celerators based on reconfigurable devices, and in particular
Field Programmable Gate Arrays (FPGAs) for data analytics
in the data center. These solutions allow specializing the
compute architecture and the memory interfaces for the spe-
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cific workload characteristics. For example, the ConveyMX
[6] provided a custom multithreaded design with a parallel
memory interface, and the related programming model, for
irregular applications. The Microsoft Brainwave [7] design
exploits on-chip memories to persist model parameters.
However, even if they use reconfigurable substrates, these
still are mostly optimized, hand-designed architectures in
hardware-description languages.

At the other end of the spectrum, High-Level Synthesis
(HLS) approaches provide a way to automatically gener-
ate hardware descriptions from high-level languages. HLS
is typically employed to reduce the development time of
custom accelerators, often to generate modules of larger
systems, for both ASIC and FPGA designs. However, cur-
rent HLS tools are effective in generating serial or parallel
(e.g., through OpenCL annotations) accelerators for regular,
easily partitionable, arithmetic-intensive workloads typical
of digital signal processing. They mainly target extraction of
instruction level parallelism, and consider simple memory
subsystems. Additionally, they typically do not consider the
need to operate with large datasets that cannot fit on-chip
memories or cannot be localized. Thus, they normally only
consider known, fixed memory access latencies and perform
optimizations that focus on reducing such latencies. In gen-
eral, they do not consider all of the previously listed char-
acteristics of irregular applications and graph algorithms,
namely the massive, but fine-grained, memory parallelism
due to datasets that can barely fit in the external accelerator
memory, the data-dependent operations, the highly unbal-
anced parallel activities, the synchronization through atomic
memory operation. Thus, research has started looking to
approaches that could generate effective designs for graphs
and irregular algorithms [8, 9, 10].

In this paper, we propose Svelto, an architectural tem-
plate for the generation of efficient parallel accelerators
for irregular algorithms, and the related HLS methodology.
Svelto is the culmination of several key contributions that
we have integrated in our opensource HLS framework [11]
to enable the efficient synthesis of parallel algorithms from
a natural C/C++ syntax. These includes a parallel con-
troller to synthesize efficient accelerators from task-parallel
specification [12], and a hierarchical memory interface [13].
Task-level parallelism is the primary form of parallelism
exploited in shared-memory implementations of graph al-
gorithms, for example by parallelizing the loop iterations
on the vertices or edges. The hierarchical memory controller
introduced support for fine-grained parallel data accesses
from the array of parallel accelerators to multiple memory
banks with configurable address scrambling, and atomic
memory operations. In [9] we have demonstrated how com-
bining together the two solutions we could automatically
generate parallel accelerators for the queries (graph walks)
processed by our high-performance Graph Database [14].
In [15] we further extended the approach to support dy-
namic task scheduling, to overcome the issue of the severe
load unbalance that may happens in graph algorithms, for
example when some parallel walks terminates early and
other have to proceed until they match a specific vertex. The
design of [15] however employed only spatial parallelism to
provide the memory parallelism needed to maximize mem-
ory bandwidth utilization. Svelto builds on these solutions
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and significantly extends them by adding the dimension
of temporal parallelism through context switching, hence
providing latency tolerance like interleaved multithreaded
processors and generating much more area efficient designs.
This paper focuses on presenting the details of the Svelto ar-
chitectural template and the related synthesis methodology.

While the use of the template in a synthesis flows al-
lows us to apply it to any type of parallel specification,
the solutions implemented in Svelfo specifically address
characteristics and patterns of memory bound workloads
with irregular memory access patterns that are typical of
graph analytics. In summary, this work makes the following
contributions:

o We propose an architectural template that exploits
both instruction-level and task-level parallelism. The
proposed solution includes a hardware scheduler that
dynamically binds tasks to the available hardware re-
sources. To maximize memory parallelism and through-
put, Svelto introduces single-cycle hardware context
switching for the components implementing the par-
allel region.

o We integrate the proposed template in an HLS flow by
defining a methodology for the automatic generation
of custom accelerators, starting from an imperative
language with annotation expressing parallel regions
(e.g., C + OpenMP).

o We empirically evaluate our approach by synthesizing
and exploring the design space for a classic graph
algorithms example (triangle counting). We then show
the use of Svelto with an actual graph analytics use
case, the synthesis of a set of queries in the form of
graph pattern matching routines, derived from a typ-
ical graph database benchmark [16]. The experimental
evaluation shows scalability in area and performance
over our previous approaches. Specifically, with respect
to the solutions presented in [9], which provided spatial
parallelism with a simple fork-join approach, we obtain
a performance improvement up to 3.72x. With respect
to the solution implementing dynamic scheduling [15],
the improvement is up 1.16x, but it is reached with
much more area efficient designs afforded by the addi-
tion of temporal multithreading.

To the best of our knowledge, this is the first integrated
methodology that automatically synthesizes Verilog designs
of architectures implementing hardware context-switch for
task parallelism coupled with a parallel memory subsystem
starting from annotated C code, without user intervention.

2 RELATED WORK

The proposed methodology generates efficient accelera-
tors for graph kernels. The methodology enables the pro-
grammer to naturally write shared memory graph algo-
rithms, annotated with OpenMP-like pragmas and using
atomic memory operations, while generating related archi-
tecture templates that maximize external memory utiliza-
tion through latency tolerance. To achieve this objective,
this work touches several areas of designs for reconfigurable
architectures and HLS approaches.

Accelerators for graph algorithms. The breadth-first search
(BES) personalities of the Convey HC systems were one of the
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most prominent commercial examples of designs targeted at
accelerating graph traversal. These have been followed up
by the Convey MX [6] system, which couples a large number
of small general purpose cores implemented on the reconfig-
urable logic and a multi-port memory controller template,
with an OpenMP programming environment (CHOMP -
Convey Hybrid OpenMP). Subsequently, various research
groups have started investigating parallel FPGA designs for
large-scale graph exploration [8, 17], even looking at the im-
plementation of more generic accelerators for vertex-centric
[18] or edge-centric [19] graph frameworks. However, many
of these either are hand-designed accelerators for specific
kernels, or general-purpose design implemented on the
FPGA, thus they do not tackle the challenge of automatically
generating the hardware description of the accelerators.
While recent FPGA-based graph frameworks can generate
hardware descriptions, they do so by either employing
libraries or pre-defined accelerators [20], or gather-apply-
scatter approaches, which may require to rewrite graph
algorithms in non-intuitive ways, to partition the data, and
not always fit well general cases.

HLS from Parallel Specifications. Because FPGAs need to
be programmed spatially, synthesis tools need to extract
parallelism as much as possible. A variety of research and
commercial HLS tools have thus started considering parallel
specifications as input descriptions. These include C or C++
specifications annotated in CUDA, OpenCL, OpenMP, or
pthreads. OpenCL efforts are mainly led by FPGA vendors.
However, OpenCL has been mainly designed to support
data parallel workloads that exhibit similar behaviors across
work units, and requires significant efforts in code rewriting
for graph algorithms. Additionally, the current synthesis
tools are not able to support more than one nested loop and
atomic operations. Similar limitations are present in CUDA-
to-HDL synthesizers [21]. LegUP [22] supports OpenMP
specifications, but the generated memory interface only sup-
ports parallel operations through double buffering. The gen-
erated hardware supports nested parallelism, but limited to
only two levels of the call structure. All these approaches
replicate a datapath that implements a loop iteration, but
can only execute a task per datapath, thus potentially wast-
ing resources for memory-bound workloads.

Synthesis of graph algorithms. Tan et al. [10] describe a
pipelined architecture to enable the synthesis of irregular
loop nests and validate the approach with typical graph
kernels. The approach generates a set of Loop Processing
Units (LPUs). A Distributor then dynamically assigns each
loop iteration to one of the available LPUs. All the LPUs are
connected to a Collector that passes results to the next stage
of the pipelined loop. The architecture implements a reorder
buffer (ROB) to ensure that results are committed in the same
order as in the original loop. However, the approach only
uses scratchpad memories, and does not support atomic
memory operations, relying on the ROB to guarantee con-
sistency. In [9], we al. presented an HLS methodology for the
synthesis of graph databases queries. These are expressed as
graph pattern matching routines in C, where nested loops
are annotated with OpenMP pragmas. The approach lever-
ages an adaptive Distributed Controller (DC) to implement
(task) parallel accelerators. The DC employs dataflow-like
mechanisms to map concurrent execution flows (tasks) to
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a parallel array of accelerators, each one implementing a
loop iteration. However, the solution adopts a fork/join
strategy that spawns tasks in group. If tasks within the
same group are unbalanced (i.e., have different duration)
resources remain underutilized. In a subsequent work, we
extended the design to support dynamic task scheduling,
improving utilization. The approach, however, still relies
only on spatial replication of the datapaths to provide
enough operations to saturate the memory subsystem.

Synthesis of multithreaded accelerators. Halstead and Najjar
extend the ROCCC HLS compiler with the CHAT method-
ology to generate temporally multithreaded accelerators
starting from loops constructs [23]. However, they do not
address atomic memory operations and focus on the simple
case study of pointer chasing. Similarly to CHAT, Huttmann
et al. [24] extend the Nymble compiler to support multiple
execution contexts on the same datapath. The approach
duplicates registers in stages that perform operations of
unknown latency (e.g., inner loops or external memory
access), but only focuses on a single datapath. Sommer et
al. [25] further extend Nymble to synthesize spatially and
temporally multithreaded accelerators from loops annotated
with OpenMP worksharing constructs. However, the im-
plementation only statically assigns threads to datapaths,
and does not provide dynamic load balancing, which is
critical in managing irregular workloads. While justified
by the objective of increasing utilization of the datapaths
with external memory accesses of unknown latency, neither
of these works really consider complex, realistic shared
memory subsystems and realistic parallel programming
paradigms that use synchronization to coordinate tasks.
The shared memory abstraction is, in fact, discussed by
assuming that each thread just operates on its thread-private
memory between synchronization points. Synchronization
through atomic memory operations is not discussed at all
and, as a consequence, the solution is just evaluated with
compute intensive benchmarks with partitionable datasets,
and not irregular workloads accessing shared data struc-
tures. Irregular applications, and graph algorithms in par-
ticular, instead, need frequent synchronization operations
to coordinate accesses to the same elements (e.g., vertices,
edges) when executed in parallel.

3 PROPOSED ARCHITECTURE

We model the parallel specifications to be accelerated
through the application template proposed in Listing 1. In
this paper, we employ OpenMP pragmas to express paral-
lelism information. However, our accelerator design is not
tied to any specification language. The application template
includes a parallel loop, whose iterations may concurrently
access the memory. We expect that access to shared re-
sources (and memory locations, in particular) is coordinated
through atomic operations (lines 6-7). With atomic opera-
tions we do not imply only atomic memory operations, but
more in general critical sections of parallel code that need
to operate in mutual exclusion. Atomic memory operations
provide a necessary element to guarantee the consistency
model. We do not impose any constraint on the loop body,
which can include additional loops and atomic/critical
sections: without this limitation, any function containing
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Fig. 1: Overview of the proposed architecture, with N memory banks,
M channels, and K workers. Dotted components can be arbitrarily
replicated.

1 void top_function(...) {
2 {...} // code block A
3 #pragma omp parallel for
4 for (size_t i = 0; i < N; ++i) {
5 {...} // loop body X
6 #pragma omp atomic
7 update_results(...);
8 {...} // loop body Y
9 }
10 {...} // code block B
11 }
Listing 1: Example of OpenMP application to be synthesized.
1 void atomic_update(...) {
2 update_results(...);
3}
4 void loop_iteration(size_t i, ...) {
5 {...} // loop body X
6 atomic_update(...);
7 {...} // loop body Y
8 }
9 void parallel_loop(...) {
10 for (size_t i = 0; i < N; ++i)
11 loop_iteration(i, ...);
12 }
13 wvoid top_function(...) {
14 {...} // code block A
15 parallel_loop();
16 {...} // code block B

17 }

Listing 2: Example of OpenMP application to be synthesized after High
Level Synthesis transformations.

parallel loop(s) can be mapped on the presented application
template. Listing 2 provides an equivalent formulation of
the application template, which can be automatically gen-
erated through code transformations during the synthesis
process. This formulation facilitates the mapping of the
original template to our proposed architecture via HLS.
Similarly to what would normally happen during software
compilation, the transformation wraps the parallel loop and
the loop body into functions. In addition, we also wrap
critical sections composed of multiple instructions.

3.1 Overview of the Architecture

Figure 1 shows a high-level schematic of the architecture
template designed for the Svelto HLS flow.

parallel_loop - a hierarchy of Finite State Machine (FSM)
controllers with Datapaths. To exploit spatial parallelism,
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parallel constructs (i.e., parallel_loop in Figure 1) include
several instances of modules (i.e., Worker) implementing the
loop body (e.g. loop_iteration), each capable of execut-
ing several iterations (temporal parallelism) through context
switching. This module orchestrates the execution of the
iterations through a Dispatcher (one per parallel section).

Top Memory Controller - our design takes advantage
of banked, multi-ported external memories to increase
memory-level parallelism. The external memory is accessed
through a hierarchy of memory controller interfaces: the
accelerator is connected to a Top Memory Controller (directly
interfacing with the external memory) through a set of
narrow (1 word sized) full-duplex channels. Each channel
accepts a new memory request every cycle, while concur-
rently routing back to the fop_function responses coming
from the Top Memory Controller. Read/Writes from the par-
allel workers proceed through a preassigned channel, and
a Parallel Memory Controller Interface manages their routing
and concurrency. Non-concurrent memory operations (e.g.
coming from sequential code in the top module) use one
of these channels since their execution is not overlapped
with parallel code and thus do not contend any resources.
Notice that in our design the number of memory banks,
channels and parallel worker instances are decoupled; in
the experimental evaluation we explore different design
configurations varying such parameters.

The support for context switching, and hence temporal
multithreading, is the key difference of the Svelto approach
with respect to our previous solutions [15]. Introducing
context switching requires a significant redesign of the archi-
tecture template and of the whole synthesis methodology,
including Dispatcher, generation of the datapaths and FSMs,
and memory controller.

3.2 Dispatcher and Workers

The proposed design implements a fork/join execution
paradigm. The fork event corresponds to the call of a
function embedding a parallel loop (section) from the top,
followed by an implicit join when the function returns. As
anticipated in the previous section, the parallel loops are
implemented through a set of modules executing the loop
iterations, and a Dispatcher. In the following, we denote a
single iteration of the loop as Task and a single instance of
the loop body modules as Worker. Moreover, K identifies
the number of Workers of the architecture, C'S the number
of tasks concurrently assigned to the same Worker, M the
number of channels between Parallel Memory Controller and
Top Memory Controller, and N the number of external mem-
ory banks. For the sake of simplicity, in the rest of the paper
we assume that C'S is a power of 2 and that K is a multiple
of M. The Dispatcher is responsible for distributing the tasks
to the available workers at runtime, with a Round-Robin
issuing mechanism: at each clock cycle it schedules a single
task to a different Worker. Each Worker can queue more than
one task, and the Dispatcher keeps sending tasks until all the
Workers signal that their queues are full. Whenever a Worker
completes task, the Dispatcher sends it another task following
the Round-Robin policy. Theoretically, this may introduce
some resource under-utilization (i.e., workers with empty
queues waiting for tasks to be scheduled) but, in practice, it
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has a negligible impact on the performance due to the actual
duration of the tasks.

Figure 2 shows the design of Worker modules, depicting
the components required to support context switching. All
workers can execute in parallel, and the memory controllers
manage contention on the memory resources. The idea mo-
tivating context switching is simple, yet effective: whenever
a worker executes a high latency memory operation (e.g., an
access to external memory), other tasks execute on the dat-
apath, hiding the long latency. There is obviously a tradeoff
on the number of tasks required to fully hide latency of
long (memory) operations, the number of pending memory
operations, and the cost of control logic and register files to
store task contexts. In our architecture, a context includes
the state of the accelerator controller and of the datapath
registers at the time of the switch.

Among the components of the top_function, the Workers
arguably play the most important role. These modules, im-
plementing the function loop_iteration of the example
in Listing 2, are all identical replicas. Each instance of a
Worker can run in parallel with the others. Each one im-
plements the multi-threading logic with context-switching.

The architecture of a Worker consists of the module
loop_iteration, generated by the HLS engine, and of the
module Scheduler. The Scheduler has two main responsibil-
ities: to control which task a Worker executes at any given
time, and to act as an intermediary between the fasks in
execution on the Worker and the Parallel Memory Controller.
Each Worker provides C'S logical slots. Each slot can hold
data and information about a fask at any given time and is
characterized by a unique identifier Slot ID, internal to each
Worker. Slot IDs go from 0 to C'S' — 1.

The Scheduler receives the tasks submitted for the ex-
ecution from the Dispatcher. It uses three First-In-First-
Out (FIFO) queues for internal bookkeeping. Each of these
queues is statically dimensioned to hold up to CS task
identifiers. The first holds the list of free slot IDs, i.e. the
identifiers of the slots that are not currently storing any
task. The second queue holds the list of waiting slot IDs,
i.e. the identifiers of the slots that are currently assigned to
suspended tasks waiting for the completion of a memory
operation. The third queue holds the list of ready slot IDs,
i.e. the identifiers of the slots that are currently assigned to
tasks not waiting for any pending memory operation and
ready to run. The task assigned to the first element of the
list of ready slot IDs is the one in execution. If the ready list is
empty, the Worker does not execute any task and waits either
for a new task to come from the Dispatcher or for a task in
the waiting queue to become ready. The execution of a task
continues until one of the following conditions happens: it
completes the execution; it reaches a state where it must
issue a memory request with variable latency. In the first
case, the task terminates and notifies the Scheduler, which in
turn moves the associated slot ID to the list of free slot IDs
and starts executing the next ready task, if any. In the second
case, the task forwards the memory request to the Scheduler,
which in turn forwards it to the Parallel Memory Controller
attaching some metadata. This forwarding happens in a
single clock cycle, during which the Scheduler also moves
the slot ID associated with the requesting task from the
list of ready slot IDs to the list of waiting slot IDs. In the
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Fig. 2: Architecture of a single multi-threaded Worker with the Scheduler
and the top context switchable component.

next clock cycle, the first available ready task continues its
execution. A selector signal, driven by the first slot ID in the
list of ready slot IDs, controls the register files. In this way,
whenever a task is suspended and a new task is woken up,
the selector directly changes the active register in all the
register files, effectively saving the context of the previous
task while enabling the new one. As previously mentioned,
the Scheduler handles memory requests that tasks issue to
the Parallel Memory Controller.

As we traverse the memory hierarchy, there will be mul-
tiple memory requests in flight at the same time. Thus, all
the components involved require a mechanism to properly
route the replies back to the task that originated the request.
To achieve this goal, a unique identifier, called worker ID
is statically assigned to each Worker instance. Each worker
tags each memory request before sending it to the Parallel
Memory Controller, attaching its own worker ID and the slot
ID of the slot whose task issued the memory request. More-
over, an extra flag bit is added to indicate if the memory
request is atomic, leading to an overall size of the tag of
logy(M x K) + logy(C'S) + 1. These tags are moved up
and down the memory hierarchy with the requests and the
associated replies, as described later in Sections 3.3 and 3.4.
Their presence introduces an area overhead, because all the
components on the path from Workers to External Mem-
ory need to forward them, but they make routing replies
much faster, which is paramount to reduce latencies and
congestion of pending requests. It is worth noting that,
because of the massive physical and logical parallelism in
the execution of the Workers, they cannot be attached directly
to the Channels, but they need the Parallel Memory Controller
as an intermediate layer.

3.3 Parallel Memory Controller

The Parallel Memory Controller (PMC) is a component de-
signed to handle the arbitration of the requests from the
Workers to the Top Memory Controller. The PMC contains two
different mechanisms for routing and arbitrating commu-
nications: one for requests going from the Workers to the
Top Memory Controller (outgoing) and one for replies coming
from Top Memory Controller to the Workers (incoming).

The PMC manages outgoing requests with a Round-
Robin policy. The PMC contains M Round-Robin arbiters,
one for each Channel. Each arbiter is attached to the K/M
Workers. In turn, arbiters are connected with an associated
Channel. Each outgoing request from a Worker is stalled in
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the PMC until the Round-Robin arbiter selects the request-
ing Worker. In the worst case (i.e., multiple simultaneous
requests), the latency increases linearly with K/M. However,
even for large values of K, this added latency is negligible
when the system is fully running, because of the larger
memory latency which entirely masks the delay effects that
are visible at this level.

For incoming replies, communication is even simpler.
The Top Memory Controller partially handles the arbitration
and the routing of the replies, so that only a single in-
coming reply arrives from a given Channel at every clock
cycle, directed to one of the connected K/M Workers. As a
consequence, the PMC does not need any arbitration nor
complex routing mechanisms for handling incoming data.
Incoming data are broadcasted without filters directly from
the Channel to all the attached Workers. Remember that all
the transferred data have a tag that includes the identifier of
the Worker that has originated it. Hence, all the Schedulers of
all the Workers attached to a Channel can constantly wait for
incoming data, and use the tag to automatically recognize
two types of information: 1) if the incoming reply is for
a task running on the associated Worker; 2) the slot ID of
the task that requested the data. Using this information, the
Scheduler can select the task to move from the list of waiting
slot IDs to the list of ready slot IDs, allowing the task target
of the reply to be rescheduled whenever a context-switch is
necessary.

3.4 Top Memory Controller

From Figure 3 we can see that the Top Memory Controller
integrates an arbiter associated with each bank and routing
logic. There are two types of routing logic: the direct routing
logic, represented by black arrows, and the indirect routing
logic, represented by red dashed arrows.

This dual routing mechanism copes with the fact that the
number of Channels M may be different from the number of
banks N. Indeed, the request coming from a given Channel
can target any of the banks, but each Channel only has direct
access to N/M of them. The indirect routing mechanism
handles accesses to the remaining banks. The banks are
organized so that the memory location with word address
a resides on bank a mod(N), providing an efficient way to
compute the bank where an address is mapped ( N must be
a power of two). In this way, whenever a request arrives
through a channel, the destination bank can be computed by
analyzing the log,(N) least significant bits of the address.

Moreover, the direct routing logic extracts the least sig-
nificant log,(N/M) bits from the target word address and
uses them to decide the destination arbiter where to forward
the request. Consider for example the Top Memory Controller
shown in Figure 3 and two requests coming from Channel
CH 0 with target address 1 and target address 6. Since
N/M = 4, the arbiter is selected on the basis of the bits
[1:0]: A1 for the first request, A2 for the second request.
When an arbiter processes a request, it checks the lowest
log,(N) bits of the address: if the target word address
is mapped on its associated bank it directly manages the
request, it forwards the request to the correct arbiter through
the indirect routing mechanism otherwise. Note that the
arbiter only needs to check the bits in the range from

Top Memory Controller

Fig. 3: Architecture of the Top Memory Controller. In this example, the
number of Channels (M) is 2, whereas the number of memory banks
(N) is 8. Each bank has a dedicated arbiter that manages the requests to
the associated bank. Red dashed arrows represent the indirect routing
mechanism.

to memory bank

. to next arbiter
in indirect routing chain
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FIFO

Arbiter
requests

from other channels

from previous arbiter
in indirect routing chain

from Channel

Fig. 4: Detail of an arbiter in the Top Memory Controller.

logy (N —1) to log,(N/M). As shown in the figure, the indirect
routing logic connects all the arbiters whose number is equal
modulo N/M. For example, when A1 processes request with
target address 1, it recognizes that the request targets its
associated bank. On the contrary, when A2 processes request
with target address 6, it forwards the request to A6. Note
that that in Figure 3 N/M = 4. This means that AO directly
connects to A4 and vice-versa, and so on for all the other
pairs of associated arbiters.

When M > 2, there are two possible ways of implement-
ing such connections: circular chain or crossbar. The latter
requires a larger area, but has lower latency. The former
presents the opposite trade-off. In this work, we adopt the
the first solution, because the extra delay is negligible with
respect to the long latency of the memory accesses.

Finally, Figure 4 details the Arbiter. Beside steering the
direct and the indirect connections, it manages Atomic mem-
ory operations. These operations allow implementing the
typical synchronization mechanism in parallel program-
ming. In the presented architecture, we implement the unin-
terruptible read-modify-write sequence of atomic memory
operations as follows. We assume that the atomic mem-
ory operations consist of a Load operation, a sequence of
operations that (possibly, but not necessarily) modify the
loaded value, and a related Store operation. During an
atomic memory update only one Load and Store pair for
a memory bank is allowed to proceed at any given time.
Other concurrent non-atomic Stores are blocked. A status
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register stores the current status of the bank associated with
the Arbiter as follows:

o locked busy, if an atomic memory transaction started,
and there is another ongoing memory operation.

o locked free, if an atomic memory transaction started, but
there are not other ongoing memory operations.

o unlocked busy, if there are not ongoing atomic memory
transactions, but there is another ongoing memory op-
eration.

o unlocked free, if there are not ongoing atomic memory
transactions, nor other ongoing memory operations.

Atomic Stores must have higher priority than the other
requests to unlock the bank as early as possible. For this
reason, they are not stored in the requests FIFO like all the
other requests, but in a register. In fact, there can only
be at most one atomic memory transaction targeting the
associated bank. At the same time, at every clock cycle, the
top of the request FIFO can have two possible destinations:
the current bank or another bank. In the former case, there
are three possible scenarios:

e status is locked busy and the first request is a Load not
part of an atomic memory transaction: the request is
popped and queued at the end of the FIFO.

o atomic register is empty, status is locked free and the
first request is a Load not part of an atomic memory
transaction or the status is unlocked free: the request is
popped and forwarded to the memory bank.

o all the other cases: the request remains in the request
FIFO.

In the latter case, the request is popped from the queue
and forwarded to next arbiter of the chain through the
indirect routing chain.

There are three possible sources for the request FIFO (i.e.,
the three inputs of MUX 2): the Channel associated to the
Avrbiter, the previous Arbiter in the indirect routing chain, and
the head of the FIFO itself. Note that the requests coming
from the channel are not only the requests targeting the
associated bank, but they also include the requests targeting
the Arbiters connected through the indirect routing chain.

The management of Incoming requests is much simpler,
and in Figure 4 we do not portray their handling logic. There
still is a FIFO for each arbiter (in the opposite direction),
and a similar indirect routing chain infrastructure. However,
no special handling of the atomic operations is required,
because the replies are just routed from memory to Channels
with no consequences for memory locking.

4 AUTOMATIC GENERATION

We have implemented the proposed architectural template
and the related synthesis methodology in Bambu [26],
a state-of-the-art HLS tool inside Politecnico di Milano’s
PandA framework [11].

For the application template in Listing 1, the HLS en-
gine needs to discriminate functions that include or are
included in parallel code from functions that do not require
any customized HLS step. So, after the code factoring and
wrapping done during the transformation from Listing 1
to Listing 2, the functions are either tagged as standard
or as non-standard HLS functions. In the first set, there
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are all the functions that could be synthesized using the
current HLS approaches and that do not have any coarse
grain parallelism or context switch to manage. For exam-
ple, in Listing 2 the function top_function does not present
any specific pattern that requires a custom HLS step: it is
composed only of simple instructions as well as calls to sub-
functions. On the other hand, functions such as parallel_loop
are built starting from the OpenMP parallel for, so they need
to be synthesized accordingly to the architecture proposed
in Section 3. Moreover, functions such as parallel_iteration,
implementing the body of the parallel for, have to be syn-
thesized in a way that allows stopping and switching the
execution to a different iteration as specified by the Scheduler
shown in Figure 2. Finally, the body of the parallel for may
include atomic operations that have to be context-switchable
as well (e.g., atomic_update in Listing 2). Within this classifi-
cation these functions really capture the meaning of a critical
section (i.e., a sequence of operations that needs to be done
in mutual exclusion from other critical sections). However
we need to map these to the hardware mechanisms that
maintain the memory (and program) consistency within the
hardware template, hence the synthesis process needs to
deal with the atomic memory operations. In summary, we
have four function classes: standard, parallel OMP for, context
switchable, and atomic. Note that an atomic function can also
be context switchable (if invoked inside a context switchable
function), but not necessarily.

4.1 Synthesis of parallel OMP for functions

The HLS flow for this type of functions is quite different
from the synthesis approach for all the other functions of
the architecture. It requires instantiating parametric compo-
nents taken from a library and building the loop_iteration as
described in the following paragraphs. The main customiza-
tions applied are the number of hardware accelerators and
the number and types of the function parameters.

The Datapath of a parallel OMP for function contains
the replicas of the worker component described in Fig-
ure 2. Worker components are defined by wrapping the
top context-switchable function (e.g., loop_iteration) and the
Scheduler component, which controls the context switch be-
tween tasks and steers the memory operations requests. The
component Dispatcher works as a controller of the parallel
OMP for function. Its role is to submit executable tasks to
the workers with free slots for task execution. Since each
task is identified with the value of the induction variable of
the parallel loop, the flow must instantiate a counter storing
its value for the next task to be submitted.

4.2 Synthesis of context switchable functions

The custom HLS flow for this class of functions is special-
ized with respect to the FSM and Datapath generation.
First, the Datapath of these context-switch-enabled com-
ponents must be connected with the control signals coming
from the Scheduler instantiated in the associated worker, as
shown in Figure 2. As noted, the Scheduler will also medi-
ate the memory requests to the Parallel Memory Controller.
Second, all the registers in the Datapath, used to store live
variables in the states where the fask can be suspended,
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need to be replaced with register files, controlled by the
selector of the Scheduler.

The register files have a number of slots equal to CS
(from 0 to CS - 1), but only the one associated with the
running task is selected for reading and writing. For each
parameter of the context-switchable functions, a register file is
allocated to store the parameter values of each task currently
in execution. In case the context switchable function is also
classified as an atomic function, all its memory operations
are classified as atomic memory operations.

The FSM controller of these context-switchable functions
needs customization as well. In particular, the FSM con-
troller state is stored in a register file that the Scheduler
controls. In this register file, it is possible to save and restore
the current state of each task during the context-switch. The
management of memory accesses with variable latency is
obtained by associating a stall state at any state performing
a memory operation. In this way, it is easy to define the
state in which the memory operation starts and the state in
which the memory operation continues the execution after
a context switch.

4.3 Breadth First Search example

To briefly illustrate how the synthesis approach complies
with typical ways shared memory parallel graph algorithms
are written, we discuss the textbook example of the queue
based breadth first search ((BFS) [27] using the Compressed
Sparse Row (CSR) format (the array of vertices contains the
offsets where neighbors lists are located in the edge array).
As in the typical high-performance implementations, we
declare the queues (Q and Qnext) of the current frontier
and the next frontier as arrays, and define (shared) counters
to identify slots currently occupied (Q_N, Qnext_N). We
never reallocate these queues for each new frontier, but
rather just swap the pointers at the end of each iteration.
Additionally, we use a map to indicate vertices that have
been already visited. Listing 3 shows relevant part of the
code after the HLS Transformation of Listing 1. It is possible
to see, in particular, the parallel_loop, working in parallel on
each vertex in the current frontier, and the loop_iteration that
explores the neighbor list of the vertex, verifies if a neighbor
has been already visited through a compare and swap (cas),
and if it has not, adds it to the next frontier through an
integer fetch and add (ifa), booking the slot of the queue
and writing the id of the neighbor in it. We also show how
the cas is implemented. Since we are synthesizing C code
to Verilog, and not compiling directly for an architecture
that has, for example, a cas instructions (exposed as an
intrinsic), we need to identify the (common) sequence of
instructions that implement cas as an uninterruptible read-
test-write sequence. This is achieved by encapsulating the
sequence of instructions in the pragma OMP atomic. We
omit the ifa code, but its implementation is similar. We also
highlight that cas and ifa, as well as other of these atomic
operations, can obviously be provided as a library to the
user of our synthesis flow.

5 EXPERIMENTAL EVALUATION

In this section, we validate and evaluate the Svelto ap-
proach. We first synthesize a prototypical graph kernel,

void bfs (vertex, offset, map, root) ({

unsigned Q[NV], Qnext[NV];
unsigned Q_ N = 0, Qnext_N=0, level=0;
unsigned *p_Q = ( unsignedx) Q;
unsigned *p_Qnext = (unsigned x) Qnext;
Q_N = 1; Q[0]=root; Qnext_N=0;
while ( QN != 0) {
parallel_loop (0, Q_N, p_Q, p_Onext, &Qnext_N);

unsigned * p_tmp;

p_tmp = p_Q; p_Q = p_Qnext;
Q_N = Qnext_N; Qnext_N = 0;
level++;

p_QOnext = p_tmp;

return level;

}

void parallel_loop(...) {
unsigned i;

1
2
3
4
5
6
7
8
9
10
11
12
13 }
14
15
16
17
18 #pragma omp parallel for
19
20

for (i = start; i < end; ++1)
loop_iteration (i, p_Q, p_Onext, Qnext N);
21 )
22 void loop_iteration(..){
23 unsigned i;
24 for (i = offset[vertex]; 1 < offset[vertex+1]; i++) {
25 if (cas(s&mapledges[i]],0,1) == 0) {
26 p_Onext[ifa(Qnext_N,1)] = edges[i];
27 }
28 }
29 1}

30 unsigned cas (* addr,old, new) {
31 unsigned ret = 1;

32 #pragma omp atomic {
33 if (xaddr==0l1d) {
34 xaddr=new;

35 ret = 0;

36 }

37 }

38 return ret;

39 }

Listing 3: Breadth First Search code example

triangle counting (TC), to validate how the proposed method-
ology adapts to conventional graph algorithms. We then
proceed with the evaluation by synthesizing a more pecu-
liar category of graph kernels - pattern matching routines
corresponding to queries on a graph database. While for the
most common graph algorithms there is a large literature of
approaches that look at optimizing the algorithms at all the
levels (from their formulation to their specific hardware im-
plementation), queries present a significant variety of com-
putational patterns that hand-designed architecture may
not completely capture. The variety of behaviors that the
queries presents can justify the use of a synthesis approach
to generate the hardware descriptions of the accelerators (of
at least some of their key elements), rather than the complex
and time-consuming hardware/software codesign process
needed to distill behaviors and design the specific compo-
nents that would be needed in a specialized architecture.

We used a Xilinx Virtex-7 (xc7vx690t) as target device
for all the experiments. The only constraint for the HLS
tool is the frequency (100 MHz). We measure performance,
reported as number of clock cycles needed to execute a
query, by simulating the RTL designs with Modelsim 10.5.
We perform logic synthesis of the generated Verilog designs
with Vivado v2017.2, and report resource utilization after
the place and route phase. All the generated accelerators
after place and route meet the time requirement.

5.1 Triangle Counting

We synthesized TC from the Graph Algorithm Platform
(GAP) [28]. GAP is a benchmark suite that provides par-
allel shared memory reference implementations (C++ with
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OpenMP) of the six most commonly used graph kernels
(BFS, TC, connected components, Page rank, single source
shortest path, betweenness centrality). TC is a relatively
simple community detection algorithm that identifies all
cliques of size 3 in a graph. We actually synthesized the
GAP reference implementation starting from C++ (although
this work is focused on C, Bambu can also synthesize a
large number of C++ constructs). However, we disabled the
relabeling heuristic, which provides load balancing when
the average degree is high and the degree distribution is
heavily skewed. One of the benefits of our multithreaded
design is to actually deal with load unbalancing. TC is
also included in the Graph Challenge [29], with at least
one submission employing FPGA based designs [30]. Such
a solution only uses HLS for a small part of the design,
employs hand designed components, and relies on a micro-
controller for part of the algorithm. Our synthesized design
implements the full algorithm in hardware.

We synthesized designs varying the number of workers,
contexts per workers, and external memory channels. Figure
5 summarizes our performance scaling evaluation. Figure 5a
shows how the execution latency (clock cycles) varies on a
graph of scale 13 and edge degree 6 (uniform distribution)
generated with GAP itself as we increase the number of
contexts per worker in an architecture with 2 workers, and
4, 8 or 16 memory channels, respectively. In all cases, the
trend shows that as the number of contexts increases, the
performance keeps improving, although it progressively
tapers. With 4 memory channels, the speedup with respect
to 2 workers with a single context is 2.59 times. With 8
memory channels, 4.50 times. With 16 memory channels,
7.21 times. Thus, in general, the additional active execution
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contexts seem to always provide a better exploitation of
the memory as the number of channels increases. At some
point, however, the synchronization costs (we still need to
count atomically the found triangles) start impacting on the
accelerator. Note that while the graph is uniform in edge
degree, the algorithm still remains very unbalanced, as it
starts from a sorted neighbor list and, depending on the
search, without reordering, can break earlier or later. Figure
5b shows the performance scaling with 4 memory channels,
as the number of contexts increases for a fixed number of
workers. The main takeaway is that a design with 2 workers
but increased number of contexts is competitive with larger
designs that hosts more workers. At 16 contexts, the 2.59
speed up of the 2 workers design compares with a speed
up of 2.70 and 2.74 for the 4 workers and 8 workers designs
respectively. The slight increase in performance is afforded
by the additional spatial parallelism of the larger designs,
as the context switching, while quick, still costs several
cycles, and complicates the management of critical sections.
In general, however, context switching generates enough
memory parallelism to keep the 4 memory channels busy.

Table 1 shows the resources utilization (post place &
route) and speeds ups as the number of contexts increases
for architectures with 2 workers and 4 memory channels.
The designs with multiple contexts actually show a reduc-
tion in the number of registers, up to 16 contexts. However,
this is balanced by an increase in the use of look-up tables
(LUTs) and, consequently, of FPGA slices. From the analysis
of the generated Verilog, we verified that Vivado correctly
infers the additional registers for the contexts, but also infers
far fewer registers for the interconnection logic (which leads
to a significant increase in LUTs and slices).

5.2 Graph Database Queries

We have evaluated the proposed approach through synthe-
sis and simulation of seven queries from the Lehigh Univer-
sity Benchmark (LUBM) [31, 32], a well-known benchmark
for Semantic Web repositories. LUBM defines performance
metrics and queries over synthetic datasets generated from
a realistic ontology from the university domain in the
form of Resource Description Framework (RDF) triples.
Each RDF triple, consisting of (subject, predicate, object),
directly maps to a labeled edge between the subject and the
object. Therefore, a set of RDF triples naturally represents
a directed graph with labels on its vertices and edges.
LUBM queries can thus be expressed as a series of graph
pattern matching operations (constrained subgraph isomor-
phism) on such a graph. To allow a comparison with the
current state-of-the-art and our previous approaches, our
experiments consider the same set of queries and datasets
employed in [9, 15]: LUBM-40, consisting of 5,309,056
RDF triples. The queries are generated by converting their
SPARQL [33] description into annotated parallel C code
using the frontend of the Graph Engine for Multithreaded
Systems (GEMS) [14], as in the previous works. The GEMS
frontend originally targets a custom runtime for distributed
high-performance clusters that provides a shared memory
address space, software multithreading, and network data
aggregation. The generated C code consists of graph walks
traversing edges to match specific graph patterns, lookups
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TABLE 1: Resource utilization for triangle counting with 2 workers and 4 memory channels, varying the number of contexts

Cx LUTs % Diff. Slices % Diff. Regs % Diff. Cycles  Speedup
1 1766 0.00 820 0.00 2157 100.00 11,017,552 1.00
2 3891 120.33 1373 67.44 705 -67.32 6,716,294 1.64
4 4387 148.41 1530 86.59 1027 -52.39 5,179,384 2.13
8 5295 199.83 1727 110.61 1576 -26.94 4,559,944 2.42
16 6984 295.47 2202 168.54 2691 24.76 4,259,145 2.59
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Fig. 6: Histogram of tasks’ execution time for the queries on LUBM-40 relative to the fastest task. The execution times are grouped in 100 bins

(x-axis).

to match labels of vertices and edges, filter and count
operations, and combining (joins) of multiple graph patterns
across a variety of policies.

5.2.1 Workload Characteristics

In [15] we have analyzed the runtime characteristics of
the seven queries by measuring the execution time of each
of their tasks. The analysis shows that the majority of the
queries have highly unbalanced tasks: their running time
differs of several orders of magnitude. The execution time
of each task is data dependent, with no direct (or easily
exploitable) relation with the running time of other tasks.

We have further analyzed the workload, looking at the
distribution of the execution time of the queries’ tasks.
Figure 6 shows the distribution of the execution time of the
tasks in TQ1, TQ6, and TQ7 with respect to their shortest
task. In general, we observe two opposite behaviors. In the
first case, queries are composed of a majority of very short
tasks, with a few extremely long lasting. Figures 6a to 6¢
show that the longest task can be up to 6000z longer than
the shortest task. In the second case, the execution time of
the tasks has a relatively smooth distribution. In Figure 6d
the longest task takes up to 80z more time than the shortest.
For the graph pattern matching operations, these differences
in execution times depend on the complexity of the searched
pattern and the selectivity that each step has on the input
data. Thus, a compelling hardware design for these types of
workloads needs to provide dynamic load balancing.

In [15] we also measured the utilization of the memory
banks using an architecture that only employs spatial paral-
lelism with a dynamic task scheduler and the precursor of
the Svelto memory controller. We recorded how many mem-
ory banks are in use at each clock cycle during the parallel
phases of the queries. Figure 7 reports the data collected as
a percentage of the execution time of the parallel sections.
The plots show that the configuration with 4 workers and
4 memory banks is using at least 3 memory banks for more
than 75% of the execution time for all the queries except Q2,
demonstrating the availability of memory parallelism in the
queries as well as the effectiveness of the memory controller.

5.2.2 Strong Scaling Analysis

We now discuss strong scaling results for the seven LUBM
queries used in [9, 15]. As detailed in Section 3, the Svelto
architecture has three degrees of freedom: the number of
memory channels, the number of workers, and the number
of contexts available to each worker. We measure perfor-
mance scalability using workers with a single context but
varying the number of workers (Figure 8) and using two
workers with varying number of contexts (Figure 9). In both
cases, we change the number of memory channels, and stop
the analysis once the performance increase tapers.

Figures 8 and 9 demonstrate the memory-bound nature
of the (sub)graph pattern matching performed by the seven
LUBM queries. In fact, at saturation (i.e., when performance
does not increase anymore with additional workers or con-
texts), the execution time of the queries reduces by almost
a factor of two when doubling the number of memory
channels. Before saturation, instead, differences in execution
times are less significant (or not observable at all).

In Figure 8 we can see that the Svelto architecture pro-
vides scaling with all the queries. It achieves a speedup up
to 8.67x, with 1 context. Note that, with a single context,
the maximum number of outstanding memory operations
at each clock cycle coincides with the number of workers.

Figure 9 shows how the execution times with two work-
ers improve while increasing the number of workers from 2
to 32. The plots show that the Svelto architecture scales lin-
early when increasing the number of contexts. Actually, we
can see that results between Figure 8 and Figure 9 are com-
parable when considering the same overall number of Tasks.
E.g., the execution times of 2 workers with 2 contexts each
(4 concurrent tasks in total) in Figure 9 is comparable to the
execution time with 4 workers (1 context each) in Figure 8.
In practice, this demonstrates that with this type of mem-
ory bound applications the proposed architecture increases
throughput by providing latency tolerance through context
switching, and that the context switching mechanisms, as
implemented, do not introduce performance overheads.

Figure 10 shows that the Svelto architecture with context
switching is, as expected, also area efficient. In fact, when
considering the same overall number of Tasks, designs with
fewer contexts and more workers are larger than designs
with more contexts and fewer workers. Fixing the number
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Slice (LUT and flip-flop pair), thus filling up the device and
complicating the interconnection.

of contexts, the size in terms of registers and LUT/Slices
grows linearly with the number of workers. However, when
fixing the number of workers, the size in terms of registers
and LUT/Slices apparently grows super-linearly with the
number of contexts. We believe that the reason of this
trend is a higher complexity in placing and routing. Each
additional context leads to the replication of all registers in
the datapaths, which in turn require the allocation of a full

5.2.3 Performance Comparison
In this section, we compare the Svelto approach with our two
previously published approaches: the Parallel Controller [9]
(PC) and the Dynamic Task Scheduler [15] (DS).

For this comparison, we configured the Svelto-generated
architectures with 4 memory channels, matching the previ-
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Fig. 10: Resource utilization analysis: Figures 10a to 10e show how Registers and LUTs allocation changes (post place and route) in the synthesis
of TQ3 varying the number of contexts (from 2 to 16) and the number of Workers (from 2 to 32). The number of memory channel is fixed to 4.

TABLE 2: Performance comparison

Parallel Dynamic Svelto Speedup
Controller Scheduler PC DS
# Cycles # Cycles # Cycles

Q1 1,001,581,548 287,527,463 269,158,569  3.72  1.07
Q2 2,801,694 2,672,295 2,422,525 116 1.10
Q3 98,163,298 95,154,310 81,911,448 120 116
Q4 42,279 19,890 18,128 233 1.10
Q5 13,400 8,992 8555 157 1.05
Q6 629,671 199,749 171,689  3.67 116
Q7 35,511,299 24,430,557 21,509,718 1.65 1.14

ous works. To fairly compare Svelto with DS we set up a
number of workers and contexts almost matching the DS
performance from [15]. This implies to have 4 workers for
DS and 1 worker with 8 contexts for Svelto. For consistency,
we also report the results obtained by PC with 4 workers.

In Table 2 we report the performance obtained by the
three approaches, while in Table 3 we show the impacts on
the resource consumption and on the maximum frequency.
Since the memory accesses done by DS and Svelfo archi-
tectures are both almost saturating the 4 memory channels,
we were expecting only a limited improvement with Svelto,
even if it provides a higher degree of parallelism. Anyway,
we are still seeing a speedup up to 1.16x over DS. On the
other hand, the performance difference is higher when we
compare Svelto with PC. In fact, we see that Svelto is up to
3.72x faster than PC.

While providing higher parallelism, the Svelfo architec-
tures utilize fewer resources than both the previous ap-
proaches. In fact, Table 3 shows that, in all the cases except
Q2, Svelto has a better resource utilization than PC and DS.
Compared to PC architectures, Svelto provides reductions
up to 50% in LUTs and 49.41% in Slices. With respect to
DS architectures, Svelto provides a reduction in resource

utilization up to 33.10% in LUTs and 34.11% in Slices. In
terms of timing performance, all the three approaches gener-
ate designs meeting the 100 Mhz constraint with maximum
frequency differences in the range of +/-10%.

6 CONCLUSION

This paper presents Svelto, an HLS methodology for the
generation of custom accelerators optimized for irregular
graph kernels. The methodology exploits an architectural
template that supports single-cycle context switching, and
hides external memory access latency, maximizes memory
utilization, and provides dynamic load balancing. We define
the required analysis and synthesis steps to generate the
accelerators starting from a high-level specification in C
with OpenMP annotations. Svelto provides speedups up to
3.72x and reduces resource utilization up to 50% over the
current state-of-the-art solutions.
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