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Abstract: Normally, electrical and mechanical systems are designed and analysed in separate domains but, in this paper, 
interactions between electric and mechanical elements are analysed looking for improvement in the performance of 
electro-mechanical drivetrains. The work considers a Doubly Fed Induction Generator (DFIG), evaluated with a frequency 
analysis of the full electro-mechanical drivetrain developed and applied to identify how tuning gains and system 
parameters affect the electro-mechanical interactions. Analytical transfer functions are presented and validated by 
simulation and test results. 
 

Nomenclature 

C Damping matrix 

is, ir Stator, rotor current 

K Stiffness matrix 

kp, ki, kf Proportional, integral and forward gains 

Lm, Lr, Ls, Ll Mutual, rotor, stator, leakage inductance 

M Mass matrix 

pp Pole pairs 

q Mechanical state (output) vector 

Q Mechanical forcing term (input) vector 

R Resistance 

TG DFIG electromagnetic torque 

ts Switching period 

vs, vr Stator, rotor voltage 

θG , θr  Rotor mechanical, electrical angle (θr=ppθG) 

θs
*, θslip Stator reference, slip electrical angle 

s, r Stator, rotor flux linkage 

ωf Filter cutoff frequency 

n Mechanical natural frequency 

r,s Rotor electrical speed, stator frequency 

Superscript/subscript 

* Set point 

A  Complex quantity 

s, r Stator, rotor 

DC, G, Fly DC motor, DFIG, Fly-wheel parameters 

GBX, T Gearbox, Turbine parameters 

d, q Stator-flux oriented frame 

v, i Voltage and current controller 

0 Steady state value 

1. Introduction 

In many generation systems, the electrical generator 

is connected to the mechanical prime mover through a series 

of shafts, couplings and gear stages, in order to make the 

generator more accessible, or to change the speed ratio 

between the prime mover and the electrical network. The 

mechanical drivetrain possesses natural resonant modes, 

which if excited can give rise to excessive vibrations, 

causing wear and damage to components [1]. This has 

become a design consideration in multiple sectors such as 

wind energy conversion, transport on-board generation or 

propulsion and industrial drives, where increasing power 

density requirements make drivetrains more exposed to 

develop unwanted interactions between mechanical and 

control modes [2]. In stand-alone systems in particular the 

presence of highly dynamic loads can create torque 

perturbations potentially exciting drivetrain resonances. 

Broadly speaking, this issue is not confined to stand-alone 

generation systems for renewables but concerns vehicle 

applications as well and has led to a re-evaluation of options 

for electric power systems, electric propulsion, engine 

starter/generators, auxiliary power units, environmental 

control systems and electromechanical actuators [3]-[4]. 

Analysis of electromechanical interactions between 

generator, grid and drive-train has been carried out for grid-

connected Doubly-Fed Induction Generators (DFIGs) and 

PM generators in wind energy conversion systems (WECS) 

[5]-[6], for up to a three-inertia model. Wind Turbine (WT) 

simulation tools [6]-[7] investigate the effects of the 

interaction of both domains using different generators. 

A DFIG offers advantages of a fully controllable 

frequency and voltage output with a variable rotor speed of 

around ±30% with respect to the synchronous speed, while 

using a partially-rated converter. DFIGs have been 

extensively applied to wind power generation: Many control 

and connection schemes have been developed looking at 

grid-connected and stand-alone systems under balanced and 

unbalanced conditions, sensor-less control and giving 

operation, control and design principles for the different 

configurations [9]. Field-oriented control along the stator 

flux is adopted as a standard control technique for DFIGs in 

grid-connected [10] and stand-alone applications [11]. 

Extension to four-wire systems allows better performances 

with single-phase loads [12]. Recently, DFIGs have been 

explored as an option for on-board power generation to 

supply a variable-frequency power system [8].  

The impact of electrical perturbations on the DFIG 

flux and torque has been thoroughly analysed in wind 

applications, focusing on the effects of faults [13], 

imbalance [14] and voltage distortion [15]. Mitigating 

strategies are based on the injection of appropriate rejection 

signals through advanced controllers [14]. These studies 

address grid-connected rather than stand-alone systems and 

the analysis is conducted only on the DFIG electrical system, 

without considering the drive-train dynamics. Also, 

mitigating strategies for unbalanced- or distorted-load 
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effects are mainly concerned with steady-state torque 

components pulsating at multiples of the stator frequency, 

typically the second and sixth harmonic. However, dynamic 

modulated loads in stand-alone systems produce also a 

different kind of torque perturbation at much lower 

frequency and much closer to the dominant modes of the 

drivetrain [16]; this is also seen in wind loading on vertical 

axis wind turbines [17]. Mitigation strategies blocking 

critical frequencies from propagating through the control 

chain have been proposed in some industrial drives [18], but 

they need appropriate knowledge on the nature of the 

electromechanical interactions. 

The literature shows little work on electro-

mechanical interactions in stand-alone systems, especially 

regarding DFIGs. The analysis in [19] identified drive-train 

dominant modes, but the excitation of resonant modes by 

switching loads, is supported by simulation only. Time-step 

simulation and numerical eigenvalue analysis appear to be 

the preferred tools to study electromechanical systems, but 

they do not give direct insight into the impact of system and 

control parameters on the electromechanical interactions. 

The motivation for this research was to develop a 

systematic approach to evaluate the effect of control 

parameters and electrical load conditions on the excitation 

of mechanical resonances. This paper presents and validates 

a simplified electromechanical model for a stand-alone 

DFIG coupled to a mechanical system that can be used in 

many power applications from power generation to transport. 

The early work this paper links through had its main focus 

on variable-frequency power generation to supply aircraft 

power systems, so experimental validation is conducted on a 

scaled test platform which was designed specifically to 

represent the electromechanical system behaviour of a 

Rolls-Royce Trent 1000 gas turbine power off-take [19]. 

Nonetheless, the rig can also replicate the behaviour of other 

electro-mechanical systems that require a gearbox to change 

the relative speed to the prime mover. Since the main 

contribution of this work is to create a model able to analyse 

the frequency response of an electro-mechanical system. 

The main contribution of this paper is the frequency 

domains analysis of interactions between the mechanical 

and the electrical elements, including the contribution of the 

control schemes but analysed as a complete system looking 

for perturbations in the mechanical or electric signals. This 

analysis can be expanded to other control schemes, deriving 

separate transfer functions for mechanical and electrical 

systems and then combining them to create a full electro-

mechanical model for the complete system, giving the 

flexibility to put in place any control scheme.  

The main contribution of this paper is the frequency 

domain analysis of interactions between the mechanical and 

the electrical subsystems, including the contribution of the 

control schemes and accounting for the coupling among 

control, electric and mechanical modes and perturbations. 

Being based on analytical transfer functions, this integrated 

analysis approach gives strong insight into the interaction 

mechanism between subsystems and can be easily extended 

to incorporate other control schemes and components in the 

full electromechanical model.  

Its The frequency response is then validated against 

experimental results. The frequency domain model is used 

to show how changes in electrical load and controller gains 

affect the excitation of resonant modes. 

2. Mechanical system  

The mechanical system for this analysis is composed 

of a DC motor and a flywheel, coupled with a set of drive 

shafts, gearbox, DFIG, and a smaller flywheel to represent 

the inertia of a second generator, as shown in Fig. 1 [20]. 

The system in Fig. 1 can be represented by a set of five 

second-order motion equations written in matrix form in (1) 

Mq + Cq + Kq = Q    (1) 

where q is the vector of free angular coordinates, as shown 

in Fig. 1 and Q is the vector of forcing terms. The mass, 

damping and stiffness matrices M, C, and K are defined in 

the Appendix. 

 

1θ θ θ θ θDC T G Fly   q   (2) 

 0 0 0
T

DC GT TQ     (3) 

The natural (undamped) frequencies are related to the 

M and K matrices, where there is more uncertainty in the 

values of the K matrix, since the stiffness of the driveline 

assembly of shafts, couplings and bearings is less well 

defined. 

1ω ( )nk eig  M K   (4) 

Equation (4) predicts five different frequency values, 

including the trivial eigenvalue ωn0=0 corresponding to the 

rigid motion of the whole system. The four remaining 

modes are associated with the interaction between the DFIG, 

flywheel (and DC motor) and generator flywheel shafts, as 

well as the gearbox, and are shown in Table 1. A reduced-

order model created by neglecting the DC motor and 

gearbox inertias eliminates the high frequency components 

in the frequency analysis, which are difficult to identify in 

the laboratory tests, and gives as a result the two low 

frequency components which are then the first and second 

resonant modes identified in [19]. The inertia of the gearbox 

is the lumped inertia of all the gears but referred to the dc 

motor side. In Table 1, the predicted natural frequencies 

modes for the complete model are compared with the real 

values obtained in [19]. 
Table 1  Natural frequencies 

 

Natural mode Predicted (Hz) Tested (Hz) 

fn1 15.5 13.3 

fn2 19.5 20.0 

fn3 90.7 - 

fn4 154.8 - 

3. Electrical system  

The electrical system is composed of a DFIG 

controlled equipped with current and stator voltage sensors 

and controlled by a Voltage Source Inverter (VSI) via a 

 
Fig. 1.  Description of the mechanical platform  
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dSPACE platform. The system parameters are given in 

Table 2 in the Appendix. Two rotor current controllers and a 

stator voltage controller are implemented in the dq axis to 

control the DFIG [11]. 

 

3.1. Complete control scheme 
The complete controller scheme is shown in Fig. 2, 

where both voltage and current controllers are implemented 

in the system, using a resistive load to test the controller. 

 
 

The grid-side converter (GSC) is not considered in 

this paper, because the main aim of this study is to provide a 

tool for analysing electromechanical interactions arising 

from mechanical excitations and load changes. In usual 

DFIGs, the GSC is synchronized to the stator via fast current 

control loops and typically operates at unity power factor. 

The usually large time constant of the dc-link makes the 

GSC and the rotor current dynamics reasonably uncoupled, 

resulting in the GSC behaving like a current source to 

regulate the minor power flow across the rotor. 

3.2. DFIG model 
Machine equations taken from [21] are used to 

develop the analysis, simulation and control of the DFIG. 

Two axis equations in a general reference frame are 

presented in (5) to (9) using motoring conventions, and the 

DFIG equivalent circuit is shown in Fig. 3: circuit 

parameters are referred to the stator. 

d ψ
ω ψ

d

s
s s s s sv R i j

t
     (5) 

 
d ψ

ω ω ψ
d

r
r r r s r rv R i j

t
      (6) 

ψs s s m rL i L i    (7) 

ψr m s r rL i L i    (8) 

(ψ )m
G s r

s

L
T pp i

L
     (9) 

 

 
 

3.3. DFIG control 
Two nested control loops are used, the outer for the 

stator voltage and the inner for the rotor currents [11]. The 

experimental system is designed with set-points for voltage 

and frequency of 400 V line-to-line and 50 Hz. The 

bandwidth of the current controller was originally set at 1/5 

of the switching frequency, but due to the use of filtering in 

the platform, it was reduced to 500 Hz. The use of 15 Hz for 

the outer voltage controller is discussed in Section 3.5. 

Stator frequency regulation is achieved using a 

reference angle s
* for driving the stator flux: 

 dtss
**    (10) 

Where s
* is the stator reference frequency and 

θr=ppθG. The slip angle estimated by 

rsslip  *   (11) 

 
and used in the reference frame transformations to 

calculate dq quantities as seen in Fig.4, where θr = ppθG. 

The orientation along the stator flux is then obtained with 

the open-loop control strategy in [11], setting the q-axis 

reference rotor current in such a way as to have zero q-axis 

flux according to (7) 

* s
rq sq

m

L
i i

L
     (12) 

3.4. Current control 
A Pseudo Derivative Feed Forward (PDFF) 

controller scheme is chosen for the inner current loop as 

shown in Fig. 5 in a state space form, using the DFIG as the 

controller plant. This scheme has been implemented in a 

PMSM speed controller as seen in [22]. The PDFF 

controller scheme is selected for the current controller 

looking for flexibility to tune the closed loop zeros that have 

a direct effect on the rise time in the system, and at the same 

time tune the noise rejection in the system and the overshoot 

[23]. The cross-coupling terms (CTs) in Fig. 5 are assumed 

to be cancelled by the decoupling inputs (DTs) as detailed in 

(13)-(14). 

 
Fig. 2.  DFIG controller scheme 

 
Fig.3.  Equivalent circuit for the DFIG 

 
Fig. 4.  Stator flux alignment in the DFIG  
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2
*( ) (ω ω ) m

rd s r r rq
s

L
DT v L i

L

 
    

 
 

  (13) 

2
*

*
( ) (ω ω )

ω

sq sq sm m
rq s r r rd

s ss

v i RL L
DT v L i

L L

    
       

    
    

   (14) 

In Fig. 5, the terms Kpi ,Kfi and Kii are the controller 

gains and Gi(s) is the rotor DFIG transfer function. The VSI 

is treated as ideal, apart from computation delays which are 

represented by I(s) [24]. F1(s) represents the anti-aliasing 

filter. These effects are defined by (15) and (16): 

1
( )

0.5 1s

I s
t s




   (15) 

1

ω
( )

ω

f

f

F s
s




   (16) 

where the terms ts and ωf are the switching period for 

the VSI (0.2 ms) and the filter cutoff frequency (720 Hz) for 

the sensors in the platform respectively. 

  
sLR

sG
rr

i 


1
  ,     

rs

m

LL

L2

1  (17) 

 

3.5. Voltage plant model and control 
A PI controller is used for this application with a 

bandwidth of at least 10 times slower than the current 

controller. The voltage controller plant is derived accounting 

for variations in the stator flux and load. 

Assuming perfect alignment on the stator flux, (7) gives: 

 

ψ ψsd s sd m rd sL i L i    ,ψ 0sq s sq m rqL i L i     (18a,b) 

 

With small-signal perturbations, denoted with , (18-

a) gives: 

1
ψm

sd rd sd
s s

L
i i

L L
        (19) 

Neglecting the stator resistance and again assuming 

perfect orientation – namely neglecting any error in the 

stator frequency, the stator equation (5) is split into: 

ssd sv   ,   sssssqv  *
  (20) 

The voltage plant is completed including the transfer 

functions between d-axis stator current, flux and voltage 

components. By considering a purely resistive load and 

accounting for perturbations in the load resistance RL 

  sdLsdLLsdsd iRiRRiv  000  (21) 

because isd0=0. Similarly, the perturbation of the stator 

voltage magnitude is simply 

sq

sqsd

sqsqsdsd
sqsds v

vv

vvvv
vvv 















2
0

2
0

0022  (22). 

Equations (19)-(22) are summarized in the block 

diagram in Fig. 6, which provides the plant transfer function 

for the voltage controller design. 

 

 
 

The model in Fig. 6 allows for small variations in the 

stator flux that will be reflected in the changes in stator 

voltage around an operating point. Further analysis was 

done looking for the stability and noise rejection of the 

system resulting in an optimal range of bandwidths of 13 to 

20 Hz for the outer controller, so a value of 15 Hz for the 

voltage controller was selected. Care must be taken in 

designing the controller, since any possible interaction in the 

system could be amplified around the cut-off frequency of 

the controller. 

4. Electro-mechanical system 

Frequency analysis using the separate transfer 

functions of the different individual mechanical and 

electrical systems is presented in the next section, where all 

the individual equations are merged to form a transfer 

function of the complete electro-mechanical system. A 

simplified model of an ideal gearbox is used since the 

contribution of the separate elements was analysed, both 

mathematically and experimentally, with little contribution 

on the magnitude of the frequency components. The 

inductance ratio Ls/Lm in (12) is supposed exactly known 

and the current controller is assumed fast enough to achieve 

an almost instantaneous field orientation through (10)-(12). 

Also, the decoupling terms present in the current controller 

are considered in the transfer function analysis to perfectly 

cancel the cross-coupling terms in the DFIG equations, 

without affecting the main loop. 

4.1. Electrical system transfer functions 
The transfer function analysis takes into account the 

individual contribution of the elements in the system. The 

transfer function Fi(s) of the closed-loop current controller 

is derived from Fig. 5 and given in (23). 

* *

1

( ) ( )

( )

1 ( ) ( ) ( )rd rq

I
i I

rqrd

I
i I

ki
G s I s kp

ii s
Fi s

kii i F s G s I s kf
s

 
   

  
     
 

 (23) 

From (20)-(22) and Fig.6, the transfer function of the 

voltage plant is 

 
Fig.5.  Current controller for the DFIG 

 
Fig.6.  Voltage plant for the resistive load  
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s
R

L

L

i

v
G

L

s

ms

rd

s
v











1

*

   (24) 

The PI voltage controller Cv(s) and the closed-loop 

voltage control transfer function Fv(s) are given in (25)-(26). 

( ) v
v v

Ki
C s Kp

s
    (25) 

*
2

( ) ( ) ( )
( )

1 ( ) ( ) ( ) ( )

sq v v
v

v vs

v C s Fi s G s
F s

C s Fi s G s F sV


 



  (26) 

With the assumption of purely resistive load invoked 

in Section 2 and accounting for variations in the load 

resistance RL, the perturbation in the stator current is 

*
0

2
0 0

1 s
s q s q L

L L

V
i v R

R R
        (27) 

The perturbation in the q-axis rotor current follows 

from (18-b) and (27): 

 
*
0

2
0 0

1s s s s
r q s q s q L

m L m mL

L L V L
i i v R

L R L LR
         (28) 

 

The linearization of the torque equation (9) under 

field-oriented conditions (18) gives 

 0 0ψ ψm
G rq sd sd rq

s

L
T pp i i

L
      ,   

s

m
T

L

L
ppk   (29) 

Equation (29) needs to be rewritten in terms of the 

inputs Vs
* and RL. To this purpose, irq and sd are first 

expressed in terms of vsq and RL using (28) and (20-b), 

and finally vsq is eliminated using Fv(s) in (26). Since the 

relationship irq0 =-(Ls/Lm) isq0=(LsVs0
*/LmRL0) is used, the 

resulting expression is: 

 
* *

*0 0

* 2
0 0

2s s
G v s L

L s L

ppV V
T F s V R

R R

 
      

 
 

      (30) 

From (30), the transfer function between reference 

voltage and DFIG torque follows 

   
*
0

* *
0

2G s
v

s L s

T ppV
FE s F s

V R 


  


             (31) 

Fig. 7 shows the diagram of the electromechanical 

system. In this simplified model, there is no feedback from 

the mechanical system to the electrical. It has to be noted 

that the effects of the irq controller (finite dynamics) are 

neglected in the transfer function analysis since a perfect 

alignment in the stator flux is considered. Provided that the 

measurement of rotor angle is correct, the electrical system 

should not be affected by the excitation of mechanical 

natural modes, but the mechanical system is highly 

susceptible to disturbances coming from the electrical side. 

 

 
 

4.2. Mechanical system transfer function 

The mechanical transfer function FM(s)  

 

 
 

G

G

T

K
sFM




 22    (32) 

linking electromagnetic torque TG and DFIG shaft torque 

perturbations K2(2-G) is developed using mechanical 

matrix equation (1) with the matrices given in the Appendix 

which take into account the full system. Algebraic 

manipulations have been carried out with Wolfram-

Mathematica leading with a very complicated structure 

which is not reported in this paper. However, a reduced-

order mechanical model can also be implemented in the 

analysis since the frequency components associated with the 

gearbox and the DC machine inertia can be neglected. 

 

4.3. Complete system transfer function 

The relevant inputs for the electrical system are 

voltage and load perturbations Vs
* and RL. They are 

linked to the DFIG shaft torque perturbation by combining 

(32) with (31) and (30) 

 
 

   sFMsFE
V

KsFEM

s

G
V 






*
2

2
  (33) 

 
 

 sFM
R

ppV

R
KsFEM

Ls

s

l

G
R 3

0
*

2*
2

2






       (34) 

The frequency response from (34) is presented in Fig. 

10 a) using a value of 12  as the base value for the electric 

load, which represents the full load value of the DFIG. The 

mechanical resonances can be identified in response to 

changes in reference voltage and electrical load. 

5. Transfer function validation 

Fig. 8 a) represents the frequency response of the 

system and compares the values from (31) with 

experimental results obtained by introducing a sinusoidal 

disturbance on the voltage controller reference value. The 

analysis is compared and validated with laboratory results, 

circular dots (o) and time domain simulation, cross markers 

(x). The simulation has been validated against the model 

presented in [19]. 

The electrical transfer function in Fig. 8 a) shows 

little attenuation to disturbance at low frequencies, with a 

 
Fig.7.  Block diagram of the electro-mechanical system 
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first order roll-off due to the voltage controller with a corner 

frequency of 15 Hz, and a higher-order roll-off at 500 Hz 

due to the current controller. Hence disturbances in voltage 

can excite the mechanical natural modes, with a gain of 1-

10NmV-1. The sensitivity changes linearly with load current. 

The current controller gains have little effect on how 

disturbances on voltage are passed through to the 

mechanical system. However, in cascade control, the 

bandwidth of the inner current loop does set limits on the 

bandwidth of the outer voltage loop. Differences in phase 

angles can also be noted in Fig. 8 b), where the simulation 

results seem to have a tendency to increase this angle at 

higher frequency. Overall, the results confirm the small 

signal analysis, especially for the magnitude of the 

frequency response. 

Fig. 8 c) shows the frequency response of the electro-

mechanical system, with three values of resistive load 

considered for small variations on the reference voltage. 

Mechanical resonances appears also in FEMV(s)  

 

6. Laboratory results 

The electro-mechanical platform described in [20] and 

Fig.1 is used to analyze the interactions in the system. The 

rotor side is supplied by a 700 Vdc voltage source inverter 

implemented with a braking resistor for the super 

synchronous regime. Only torque reading from the DFIG 

shaft is available in the results. A brake was applied to the 

fly-wheel generator inertia looking to eliminate possible 

variations in the stiffness due to backlash. Results are 

presented for three different rotor speeds (ωr). 800 rpm, 

1000 rpm and 1200 rpm (slip=0.2, 0 and -0.2). All the tests 

are in steady-state for two load values of 116  and 58  

per phase, corresponding to a stator load of 0.2 p.u to 0.4 

p.u. 

 

 
a) 

 
b) 

 
c) 

Fig.8.  Frequency response of the different transfer 

functions: a) FE (s) (31), b) FEMR (s) (34), c) FEMV(s) (33) 
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From Fig. 9 it is possible to identify the impact of the 

speed of both the DC machine and the DFIG (ωDC and ωDFIG 

respectively) on the torque response in the system, which is 

attributed to mechanical unbalance. Fig 9 also shows a 

frequency component at 2ωDC. Two resonant modes are 

present in the DFIG torque analysis, the first one appearing 

at around 13 Hz and the second at 22 Hz, identified by the 

dashed lines. If this mechanical excitation is close to a 

natural mode, then the torque component is amplified, as 

shown in Figs. 9 a) and c). No frequency components 

associated with the gearbox or DC inertias were identified. 

 

 
Figs. 10 a) and b) show the effect on the DFIG shaft 

torque when a 15V disturbance is injected into the reference 

voltage for the frequencies and loads shown at 1000rpm 

shaft speed. 

This method was used to obtain the results in Fig 8 c) 

to validate the small signal analysis and confirm that 

disturbances in the electrical system couple through to the 

mechanical system. 

Fig 10 c) shows the frequency response of the 

measured mechanical torque in the DFIG shaft and the 

estimated electric torque on the DFIG at 1000 rpm. This 

 

a) 

 
b) 

 
c) 

Fig.9.  DFIG shaft torque frequency response a) ωr=800 

rpm, b)1000 rpm, c)1200 rpm  

 
a) 

 
b) 

 
c) 

Fig.10.  DFIG shaft torque frequency response a) Rl=58 

ohms with different frequency injection, b) disturbance only 

at 5Hz, c) using a switching load at 2 Hz 
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experiment was performed by switching a resistive load 

with a frequency of 2 Hz between two resistive values of 

0.2pu and 0.4pu with a duty cycle of 50%. The torque 

analysis shows that the odd harmonics are present in the 

system as a result of the load switching. Results using 1Hz 

and 3Hz were also evaluated but the 2Hz switching shows a 

stronger impact since the 7th harmonic is closer to the 

predicted 1st resonant mode. 

Fig. 10 a) shows that electrical oscillations can be 

introduced into the mechanical system by a perturbation 

coming directly from the voltage reference. From Fig. 8 c) 

the current controller has a sharp cut-off, which significantly 

attenuates torque but only above the cut-off frequency of 

500 Hz.  It sets an upper limit on the voltage bandwidth and 

also allows ideal orientation to be assumed over the range of 

mechanical frequencies of interest. In contrast, the voltage 

bandwidth could be reduced to introduce attenuation of the 

13 Hz and 22 Hz frequency components. However, the 

benefit in terms of additional attenuation is small as the roll-

off is gentle, there would be an impact on the voltage 

regulation, and the voltage loop becomes unstable for a 

bandwidth below 13 Hz if the same damping factor is set in 

the tuning of the system. There is a linear relationship 

between load current and magnitude of the torque 

disturbance, Fig. 10 b) shows that the excitation of resonant 

modes is greater at higher loads. Changes in load can 

therefore excite the resonant modes, particularly if the load 

is switched at the resonant frequency or a subharmonic 

thereof. 

Asymmetries present in the system (for example 

electrical unbalance or bearing wear) introduce additional 

disturbances in the torque, speed and current of the DFIG 

[25]. The frequency and magnitude of the disturbance 

depend on the nature of the asymmetry and the point of 

operation, and can also be related to low frequency 

components in the rotor. As Fig. 10 c) shows, a change in 

load level gives significant changes in which frequency 

components are present. 

7. Conclusion 

The main contribution of this work is the 

development of a frequency domain model for analysing the 

electromechanical interactions in a DFIG-based generator 

system. The proposed model identifies critical resonances in 

the system that can be triggered by both mechanical and 

electrical excitations in the platform. In this paper a transfer 

function analysis uses the whole system to show that 

disturbances in the electrical load couple directly into the 

mechanical system with little or no attenuation at the 

frequencies of the natural resonant modes. However, the 

mechanical disturbances do not feed back into the electrical 

system, provided that the orientation and decoupling are 

correct. Theoretical and experimental results show that low-

frequency switched electrical loads can excite the resonant 

modes in the system through the harmonics induced in the 

torque. 

The experimental work has shown that torque 

pulsations are also introduced into the mechanical system by 

mechanical unbalance at multiples of the rotor speeds. The 

ratio of 1.5, between the DFIG and DC motor speeds, set by 

the gearbox, can be seen in the frequency response of the 

DFIG shaft. It also can be seen that these perturbations are 

proportional to the torque required from the electric 

generator as seen in figure 9 and 10, meaning that these 

effects will be more evident at higher power levels (lower 

resistance), especially at rated torque and overload situations.   

Voltage loop tuning parameters appear to be crucial 

for the attenuation or amplification of the resonant 

frequencies. Torque disturbances can be attenuated by the 

correct tuning in combination with the use of filters as seen 

in [18]. The transfer function analysis is a powerful tool and 

can be used to investigate control-based solutions to block 

those harmful frequencies that can excite resonant modes on 

the mechanical drivetrain. Although the analysis has been 

developed for a DFIG, the approach is general and could be 

applied to other generator technologies and drivetrain 

configurations.   
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10. Appendices  

Table 2   Drive Train and DFIG Parameters 

 

DC Machine inertia JDC (kg∙m2) 0.197 

GT flywheel inertia JT (kg∙m2) 7 

Gearbox referred inertia JGBX (kg∙m2) 0.052 

Flywheel and DFIG inertia JF, JG (kg∙m2) 0.359 

Damping standard value CDC, C1, C2, C3 (Nms/rad) 3.26 

Turbine shaft stiffness K1 (Nm/rad) 25947.12 

DFIG shaft stiffness K2 (Nm/rad) 5409.58 

Flywheel shaft stiffness K3 (Nm/rad) 5442.38 

DC motor shaft stiffness KDC (Nm/rad) 63240.6 

Gear ratios n12= n13 1.5 

Stator leakage inductance Lls (mH) 3.6 

Stator resistance Rs () 0.2974 

Rotor leakage inductance Llr (mH) 4 

Rotor resistance Rr () 0.4493 

Mutual inductance Lm (mH) 67.1 

Matrices M, C and K in (1) are: 

 d i a g , , , ,D C T G F l y G B XJ J J J JM       (36) 

1 1

2 12 2

3 13 3

2 2
1 12 2 13 3 1 12 2 13 3

0 0 0

0 0

0 0 0

0 0 0

0

DC DC

DC DC

C C

C C C C

C n C

C n C

C n C n C C n C n C
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 
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 
 
 

 
 

     

C

 (37) 

1 1

2 12 2

3 13 3

2 2
1 12 2 13 3 1 12 2 13 3

0 0 0

0 0

0 0 0

0 0 0

0

DC DC

DC DC

K K

K K K K

K n K
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 
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     

K

 (38) 

 

where n refers to the gear ratio according to Table 2. In each 

matrix, the subscript is related to the elements displayed in 

Fig. 1. 

 

 


