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Blow-up and global existence for solutions to the
porous medium equation with reaction and
fast decaying density

Giulia Meglioli* and Fabio Punzo!

Abstract

We are concerned with nonnegative solutions to the Cauchy problem for
the porous medium equation with a variable density p(z) and a power-like
reaction term uP with p > 1. The density decays fast at infinity, in the sense
that p(x) ~ |z|~7 as |x| — 400 with ¢ > 2. In the case when ¢ = 2, if p is
bigger than m, we show that, for large enough initial data, solutions blow-up
in finite time and for small initial datum, solutions globally exist. On the
other hand, in the case when ¢ > 2, we show that existence of global in time
solutions always prevails. The case of slowly decaying density at infinity, i.e.
q € [0,2), is examined in [41].
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1 Introduction
We investigate global existence and blow-up of nonnegative solutions to problem

{p(x)ut = A@™) + ple)ur  in RN x (0,7) (1.1)

u(x,0) = ug(x) in RY x {0}
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where N > 3,uq € L®(RY),ug >0, p € CRY), p>0,p>1,m >1and 7 > 0.
We always assume that

{(i)pEC(RN),p>OinRN, ()
(i) ug € L>®(RYN),ug > 0 in RV,
and that
there exist ki, ko € (0, +00) with k; < ky,79 > 0,¢ > 2 such that
h@d+mygzé5§@@ﬂ+my for all z € RV (12)

The parabolic equation in problem (L)) is of the porous medium type, with a
variable density p(x) and a reaction term p(x)uP. Clearly, such parabolic equation
is degenerate, since m > 1. Moreover, the differential equation in (L)) is equivalent

to
1
up = ——Au™) + uP in RY x (0,7);
L)
thus the related diffusion operator is ﬁA, and in view of (L.2)), the coefficient

1
—— can positively diverge at infinity. The differential equation in (L.I]), posed

x
1,?1( t_‘ele interval (—1,1) with homogeneous Dirichlet boundary conditions, has been
introduced in [34] as a mathematical model of evolution of plasma temperature,
where u is the temperature, p(x) is the particle density, p(x)uP represents the
volumetric heating of plasma. Indeed, in [34], Introduction] a more general source
term of the type A(z)uP has also been considered; however, then the authors
assume that A = 0; only some remarks for the case A(x) = p(x) are made in [34]
Section 4]. Then in [32] and [33] the Cauchy problem (L)) is dealt with in the

case without the reaction term p(x)u?.

In view of (L2) the density p decays at infinity. Indeed,

1 1

—— <plr) < ——— forall |z|]>1, 1.3
kMﬂ+mﬁ_M)—kMﬂ+mﬁ 21 (1.3)

with
q>2.

Since we assume ([[L2)) with ¢ > 2, we refer to p(x) as a fast decaying density
at infinity. On the other hand, in [41] it is studied problem (LI)) with a slowly
decaying density, that is (L2)) is assumed with ¢ < 2.

There is a huge literature concerning various problems related to (LI). For
instance, problem (L) with p = 1,m = 1 is studied in [B, [0, 13| 14, 20, 24

2



20, 35, 48, 52 54 58], problem (L) without the reaction term u” is treated in
[T, 12, [16, 17, 18, 27, 28, 29, 30, 31, B2, 33, B4, 45, 21, 49, 50, 51). Moreover,
problem (L)) with m = 1 is addressed in [36] (see also [10]), where p satisfies (L3))
with 0 < ¢ < 2. In particular, let us recall some results established in [53] for
problem (1) with p=1,m > 1,p > 1 (see also [15, [44]). We have:

e ([53, Theorem 1, p. 216]) For any p > 1, for all sufficiently large initial data,
solutions blow-up in finite time;

e ([63, Theorem 2, p. 217]) if p € (1,m + %), for all initial data, solutions
blow-up in finite time;

e ([53, Theorem 3, p. 220]) if p > m + %, for all sufficiently small initial
data with compact support, solutions exist globally in time and belong to
L® (RN x (0, +00)).

Similar results for quasilinear parabolic equations, also involving p-Laplace type
operators or double-nonlinear operators, have been stated in [1], [2], [3], [7], [8],
@, 221, 23], 137], [38], [39], [42], [43], [46], [55], [59] (see also [40] for the case of
Riemannian manifolds); moreover, in [19] the same problem on Cartan-Hadamard
manifolds has been investigated. In particular, in [37, Theorem 2] it is shown
that if p(x) = (1 4 |z])7? with 0 < ¢ < 2, p > m, and ug is small enough (in
an appropriate sense), then there exists a global solution; moreover, a smoothing
estimate is given. Such result will be compared below with one of our results (see

Remark [2.5]).

In [41] the following results for problem (L)) are established, assuming (I.2))
with 0 < ¢ < 2.

e ([41l Theorem 2.1]. If
D>,
1y has compact support and is small enough, then there exist global in time
solutions to problem (L)) which belong to L®(RY x (0, 400)); here p is a
certain exponent, which depends on N, m, q, k1, ks. In particular, for k1 = ko
we have

e ([41l Theorem 2.3]). For any p > 1, if wg is sufficiently large, then solutions
to problem (L.1)) blow-up in finite time.

e ([41], Corollary 2.4]). If 1 < p < m, then for any ug # 0, solutions to problem
(LI) blow-up in finite time. Moreover ([41, Theorem 2.5]), if m < p < p,
where p < pis a certain exponent depending on N, m, q, k1, ko, then solutions
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to problem (L)) blow-up in finite time for any nontrivial initial datum. For
kl = k27 p= ﬁ

Analogous results, proved by different methods, can be found also in [37,38], where
also more general double-nonlinear operators are treated.

1.1 Outline of our results

Let us now describe our main results. We distinguish between two cases: ¢ = 2
and ¢ > 2. First, assume that (L2) holds with ¢ = 2.

o (Theorem 2.1)). If
p>m,

1y has compact support and is small enough, then there exist global in time
solutions to problem ([LT)), which belong to L= (RY x (0, +00));

e (Theorem [22)). For any p > m, if uy is sufficiently large, then solutions to
problem (L) blow-up in finite time.

The proofs mainly relies on suitable comparison principles and properly construc-
ted sub- and supersolutions, which crucially depend on the behavior at infinity of
the inhomogeneity term p(z). More precisely, they are of the type

1
w(z, t) = CC(t) |1 - M”@ " forany (x,1) € [R¥N\By(0)] x[0,T),
’ (1.4)
for suitable functions ¢ = {(t),n = n(t) and constants C' > 0,a > 0. The presence
of log(|z| 4+ 7o) in w is strictly related to the assumption that ¢ = 2. Observe
that the barriers used in [41] for the case 0 < ¢ < 2, which are of power type in
|z|, do not work in the present situation. Furthermore, note that the exponent p
introduced in [41] for 0 < ¢ < 2, when ¢ = 2 becomes p = m. Hence Theorem 2.1]
can be seen as a generalization of |41, Theorem 2.1] to the case ¢ = 2.
Now, assume that ¢ > 2. We have the following results (see Theorem and
Remark 2.4]).

e Let 1 < p < m. Then for suitable uy € L>®(RY) there exist global in
time solutions to problem (LI). We do not assume that uo has compact
support, but we need that it fulfills a decay condition as |z| — +o00. However,
1o in a compact subset of RY can be arbitrarily large. We cannot deduce
that the corresponding solution belongs to L=(RY x (0,+00)), but it is in
L=(RY x (0,7)) for each 7 > 0.



e Let p > m > 1. Then for suitable uy € L®(R"), problem (.I) admits a
solution in L>®(RY x (0, +00)). We need that

0 < up(x) < CW(x) forall zeRY,

where C' > 0 is small enough and W (x) is a suitable function, which vanishes
as || — +o00. We should mention that, as recalled above, a similar result
was been obtained in [37, Theorem 2], where also double-non linear operators
are treated; see Remark below.

e Let p =m > 1. Then for suitable uy € L>*(R"), problem (LI admits a
solution in L>®(RYN x (0, +00)), provided that 7o > 0 in (L2) is big enough.

Such results are very different with respect to the cases 0 < ¢ < 2 and ¢ = 2. In
fact, we do not have finite-time blow-up, but global existence prevails, for suitable
initial data. The results follow by comparison principles, once we have constructed
appropriate supersolutions, that have the form

w(z,t) = ()W (z) forall (x,t) € RY x (0,400),

for suitable ((t) and W (z). When p > m, ((t) = 1. Observe that we can also
include the linear case m = 1, whenever p > m. In this respect, our result
complement the results in [36], where only the case ¢ < 2 is addressed. Finally,
let us mention that it remains to be understood whether in the case 1 < p < m
solutions can blow-up in infinite time or not.

2 Statements of the main results

For any 2o € RY and R > 0 we set
Br(zo) = {z € RY : ||z — z0|| < R}.

When xy = 0, we write Bg = Br(0).
For the sake of simplicity, sometimes instead of (2.1I), we suppose that

there exist ki, ko € (0,400) with k; < kg, q > 2, R > 0 such that

1 2.1
ki|z|? < —— < kylz|? forall z € RV \ Bg. (2.1)
p(x)
In view of (H])-(i),
for any R > 0there exist p1(R), p2(R) € (0,400) with p1(R) < pa(R)
(2.2)

1 -
such that p;(R) < — < po(R) for all x € Bg.

p(@)
Obviously, (L.2)) is equivalent to (2.1)) and (2.2).
In the sequel we shall refer to ¢ as the order of decaying of p(x) as |z| — +oc.
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2.1 Order of decaying: ¢ = 2

Let ¢ = 2. The first result concerns the global existence of solutions to problem
(L) for p > m. We assume that

ko p—m
= N -2 —1
2 < (V=2 - 2T

Theorem 2.1. Assume (H), (L2)) for ¢ =2 and 23). Suppose that

To > €, log g . (2.3)

p>m,

and that uy is small enough and has compact support. Then problem (ILTl) admits
a global solution v € L= (RN x (0, +00)).
More precisely, if C' > 0 is small enough, a > 0 is so that

m—1

0<w0§

<w
for suitable 0 < wy < wq, T > 0,

1

B log(|x| + ro) T_I;—T} T
a

up(x) < CT 7T [1 for any x € RN, (2.4)

+

then problem (L)) admits a global solution u € L®(RY x (0,+00)). Moreover,

for any (x,t) € RV x (0, 4+00) .
(2.5)

B log(|z| + o) z?—rn}m‘l

u(w,t) < C(T+t) 7 [1 - (T +t) »=1

+

Observe that if ug satisfies (2.4]), then
suppug C {z € R" : log(|z| +ro) < aT% 1 }.

From (2.5) we can infer that

y

suppu(-,t) C {z € RN : log(|z| +ro) < a(T+t)7 1} forallt>0. (2.6)

The choice of the parameters C' > 0,7 > 0 and a > 0 is discussed in Remark
4.2l

The next result concerns the blow-up of solutions in finite time, for every

p > m > 1, provided that the initial datum is sufficiently large. We assume that
hypothesis (2.1]) holds with the choice

gq=2, R=e. (2.7)



So we fix, in assumption (2.2)),

pi(R) = pi(e) = p1, pa(R) = pafe) =i pa.
Let
log(|z|) if zeRY\B,,
|z]? + €2
2e?

Theorem 2.2. Let assumption (H), 1) and @1). For any

if € B,.

p>m

and for any T > 0, if the initial datum ug is large enough, then the solution u of
problem (1)) blows-up in a finite time S € (0,T], in the sense that

|u(t)]|oo = 00 ast — S~ (2.8)

More precisely, if C' > 0 and a > 0 are large enough, T > 0,

ugp(x) > CT [1 — fﬂTyz?_lp] " , forany x € RN (2.9)
a
+

then the solution u of problem (L)) blows-up and satisfies the bound from below

1

u(z,t) > C(T — t)fﬁ [1 - f@ (T — t)m} " , for any (x,t) € RY x (0,5).
" (2.10)
Observe that if ug satisfies (2.9), then
suppug D {z € RY : s(x) < alv1}.
From (2.I0) we can infer that
suppu(-,t) D {z € RN : s(z) <a(T — )71} forallte|0,9). (2.11)

The choice of the parameters C' > 0,7 > 0 and a > 0 is discussed in Remark



2.2 Order of decaying: g > 2

Let ¢ > 2. The first result concerns the global existence of solutions to problem
(L) for any p > 1 and m > 1, p # m. Let us introduce the parameter b € R such
that

0<b<min{N -2, q—2}. (2.12)

Moreover, we can find ¢ > 0 such that

bp
m

(r4+mrg) ™ <¢é¢ foranyr >0, (2.13)

with 79 > 0 as in hypothesis (L2).

Theorem 2.3. Let assumptions (H), (L2) and 2I2) be satisfied with ¢ > 2.
Suppose that
l<p<m, orp>m2>1,

and that ug is small enough. Then problem (LIl) admits a global solution u €
L®(RYN x (0,7)) for any T > 0. More precisely, we have the following cases.
(a) Let 1 <p<m. If C >0 is big enough, 7o >0, T > 1, a > 0,

up(z) < CT* (|x| + ro)_% for any x € RY (2.14)

then problem (L)) admits a global solution u, which satisfies the bound from
above

uw(z, t) < C(T+ ) (Jx| + ro)_% for any (z,t) € RY x (0,+00). (2.15)

(b) Letp>m > 1. If C > 0is small enough, ro > 0, T > 0 and (2.14) holds with
a = 0, then problem (1) admits a global solution u € L (RN x (0,+00)),
which satisfies the bound from above [2.I5) with o = 0.

Remark 2.4. Observe that, in the case when p = m, if C > 0 is small enough,
ro > 0 big enough to have

bp

1 EgEkl(N—Q—E),
(&)

To

T > 0 and 2I4) holds with o = 0, then problem (L)) admits a global solution
u € L®(RY x (0,400)) which satisfies the bound from above [ZIH) for a = 0.

Note that in Theorem 2.3] we do not require that supp ug is compact.

The choice of the parameters C' > 0,7 > 0 and a > 0 is discussed in Remark
44



Remark 2.5. The statement in Theorem [2.3-(b) is in agreement with [37, The-
orem 2] where it is assumed that p > m, p(x) = (1 + |z|)~7 with ¢ > 2,
Jan o( z)dr < 400, [on p(2)[uo(x)|?dz < 6, for some & > 0 small enough
and q > (p m).

Note that the assumption on ug is of a different type. In particular, in view of
RI4) and [212), the initial datum ug considered in Theorem [2.3-(b) not neces-
sarily satisfies [ p(x)uo(x)de < 4o00.

In [37] the proofs are based on the energy method, so they are completely dif-
ferent with respect to our approach.

3 Preliminaries

In this section we give the precise definitions of solutions of all problems we address,
then we state a local in time existence result for problem (LIl). Moreover, we
recall some useful comparison principles. The proofs of such auxiliary results can

be found in [41] Section 3].

Throughout the paper we deal with very weak solutions to problem (.T]) and to
the same problem set in different domains, according to the following definitions.

Definition 3.1. Let ug € L®(RY) with ug > 0. Let 7 >0, p > 1,m > 1. We say
that a nonnegative function u € L®(RY x (0,5)) for any S < 7 is a solution of

problem (L1I) if
/RN/ x)up dt doe = /RN p(x)uo(z)o(z,0) d

+/ /umAwdtdx (3.1)
RN

/ / x)uPp dt dx

RN

for any p € C(RYN x [0,7)), 0 > 0. Moreover, we say that a nonnegative function
u € L®(RY x (0,5)) for any S < 7 is a subsolution (supersolution) if it satisfies
BI) with the inequality ” <7 (7 > 7 ) instead of " =" with ¢ > 0.

For every R > 0, we consider the auxiliary problem

up = ﬁA(um) +u?  in Bg x (0,7)
u=20 on 0Bg x (0,7) (3.2)
u = U in B x {0}.



Definition 3.2. Let ug € L®(Bg) with ug > 0. Let 7 >0, p > 1,m > 1. We say
that a nonnegative function u € L>°(Bgr x (0,5)) for any S < 7 is a solution of

problem B.2)) if
_ /B ) /O (@) dt dz = / p(a)uo(x)p(z,0) da

Br
/ u" Apdt dx (3.3)
R

o,

Br Jo

+ / / p(x)uPpdt dx
Br JO

for any ¢ € C(Bg x [0,7)) with p|op, = 0 for all t € [0,7). Moreover, we say
that a nonnegative function u € L>®(Bg x (0,S5)) for any S < T is a subsolution
(supersolution) if it satisfies [B.3) with the inequality ” < 7 (7 > 7 ) instead of
=" with ¢ > 0.

Proposition 3.3. Let hypothesis (HI) be satisfied. Then there exists a solution u

to problem ([B.2l) with
1

(p— 1)’\140”2;1(31%).

T > TR =

Moreover, the following comparison principle for problem (3.2]) holds (see [4]
for the proof).

Proposition 3.4. Let assumption (H) hold. If u is a subsolution of problem (B.2)
and v is a supersolution of ([B.2), then

u<wv a.e. in Bgx(0,7).

Proposition 3.5. Let hypothesis (Hl) be satisfied. Then there exists a solution u

to problem (ILT]) with
1

(p = Dluolla™

Moreover, u is the minimal solution, in the sense that for any solution v to problem
(LI) there holds

T 2> Ty =

u<v in RY x(0,7).

In conclusion, we can state the following two comparison results, which will be
used in the sequel.
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Proposition 3.6. Let hypothesis (Hl) be satisfied. Let u be a supersolution to prob-
lem ([LI)). Then, if u is the minimal solution to problem (1) given by Proposition
(3.3, then

uw<u ae inRY x(0,7). (3.4)

In particular, if u exists until time T, then also u exists at least until time 7.

Proposition 3.7. Let hypothesis (H)) be satisfied. Let u be a solution to problem
(L)) for some time T =1 > 0 and u a subsolution to problem (LII) for some time
T =19 > 0. Suppose also that

SUpp U|ry «[o,5] s compact for every S € (0,73).

Then
u>u in RY x (0, min{r,n}) . (3.5)

In what follows we also consider solutions of equations of the form

L ™ 4+ uP  in x (0,7
ut:mA(u )+ Q x (0,7), (3.6)

where Q0 C RY. Solutions are meant in the following sense.

Definition 3.8. Let 7 > 0, p > 1,m > 1. We say that a nonnegative function
u e L>®(Qx(0,9)) for any S < 7 is a solution of problem ([B.2)) if

—// p(x)ugptdtdx:// u™ A dt dx
QJo Q OT (37)
+// p(z)uPpdt dx
QJo

for any ¢ € C(Q x [0,7)) with plag = 0 for all t € [0,7). Moreover, we say
that a nonnegative function u € L>(2 x (0,5)) for any S < 7 is a subsolution
(supersolution) if it satisfies [B.3) with the inequality ” < 7 (7 > 7 ) instead of
T =" with ¢ > 0.

Finally, let us recall the following well-known criterion, that will be used in the
sequel. Let Q C RY be an open set. Suppose that Q = ; Uy with ; Ny = 0,
and that ¥ := 9Q; N 9, is of class C'. Let n be the unit outwards normal to €,
at 2. Let

(3.8)

Uy in Ql X [O,T),
u =
Uy In QQ X [O,T),

where dyu € C(, x (0,7)),u* € C?(Qy x (0, T))NCHQy x (0,T)), uy € C(Qy x
(0,7))), ut € C?(2 x (0,T)) NCHQy x (0,T)).
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Lemma 3.1. Let assumption (H) be satisfied.
(i) Suppose that

1
Oyuy > —Au" +ul  for any (x,t) € O x (0,7T),
f (3.9)
Opus > —Aul +ub  for any (z,t) € Qy x (0,7T),
p
ouyr _ oul
U = Ug, % > % for any (x,t) € ¥ x (0,7). (3.10)

Then u, defined in [B.8), is a supersolution to equation ([B.0), in the sense of
Definition [3.8.
(i) Suppose that

1
Owuy < —Au" +uf  for any (z,t) € Q x (0,7),
f (3.11)
Opus < —=Aul +ub  for any (z,t) € Qy x (0,7T),
p
a m a m
U = U, % < % for any (z,t) € ¥ x (0,T). (3.12)

Then u, defined in ([B.8)), is a subsolution to equation ([B.6)), in the sense of Defi-
nition [3.8.

4 Global existence: proofs

In what follows we set r = |z|. We construct a suitable family of supersolutions of
equation

! ™ 4+ 4P in RY 00
ut:mA(u )+ R™ x (0, 4+00). (4.1)

4.1 Order of decaying: ¢ =2

We assume (H)), (L2) with ¢ = 2 and ([23). In order to construct a suitable family
of supersolutions of ([@1), we define, for all (z,¢) € RY x (0, +00),

- log(r—i-'ro)77 ; 1
a

a(x,t) = a(r(z), t) = CC(t)

where 7, ¢ € C*([0, +00);[0,+00)) and C' > 0, a > 0, 19 > e.
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Now, we compute

To this aim, let us set
and define

Dy := {(z,t) € [RV\ {0}] x (0,400) | 0 < F(r,t) <1}.

For any (z,t) € Dy, we have:

= C¢'Fa1 + CC%FWSIl <_Mn/)
— a
| ! L 1
=C¢ Fm 1 +CC7 <1 — Mn> 77_F C'Cin Fffl
1 a i —1n
1 1
_(JcFm1+(Jc-———77—1mn1-0@’-———117’*1
In m—1n
(4.3)
cm 1
*mrz———m———Fm . 4.4
(@) oI pR (4.4
_ cm m 1 log(r + 7o) 1
" rr — T e 1-—
(@") a ¢ (m —1)2 ( a n 77('r+ro)2log(7’+ro)
cm m 1 n cm m 1 1
~ miFm—l 1 ~ _m Fm*1
+ a ¢ (m—1)2 (r 4+ 19)?log(r + 7o) + a ¢ m—1 (T+T0)2n
cm m 1 1
- miFm
a ¢ (m—1)2 77(7“+7“0)210g(7“+7“0)
cm m 1 n cm m 1 1
Zem M pmhil = Fci .
+ a ¢ (m—1)2 (r 4+ 19)?log(r + 7o) + a ¢ m—1 (T+T0)2n
(4.5)
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N -1 cm m 1 1
= g ——Cmipm—l 7]
r a m— 1 (r+ro)
cm 1 1
2 m_ " pwe
C (m 1) n (r 4+ ro)?log(r + 7o)
Cm m 1 4 Ui
B — miFm—l
+ C (m—1)2 (r 4 ro)?log(r + 7o)
Cm m 1 1
(™ F-i - (4.6)
a m 0

N1 (_@lepﬁ ! 77)
a’> m-—1 (r+ro)
cm m 1 1
(r 4+ ro)?log(r + 7o)
cr m Ja= Ui
(m —1)2 (r +19)?log(r + 19)
Cm M 1 1
* Tg m— 1Fm_1 (r —i—'ro)?n

We also define

m—1 ptm—2
o (L—l) _(Ll) " ]>0,
p+m—2 p+m—2
1 ,'7/ Cmfl m
— A - m _
a(t) = to— ¢ _1nk1(N 2), (4.7)
!
B 1
5(t) = g b+ O e

Proposition 4.1. Let ¢ = ((t), n = n(t) € C*([0,+00); [0, +00)). Let K, &, 0,
5 be as defined in [ET). Assume (H), (L) with ¢ = 2, 23) and that, for all
€ (0, 400),

,'7/ 1 Cmfl o m
- > m k 4.
2 7 log(rg) a ¢ m—1" (48)
and
Cm_l m kg
! m N — 2k — —CPTIP > 0. 4.9
o O | (N = 2k — s >0, (49)

then u defined in (L2) is a supersolution of equation (A.J]).
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Proof of Proposition[{.1. In view of (43), (£4), (45) and ([4.6), for any (z,t) €
D17

1
w——A(u™) — P
p
1 |
:>C§Fm1+CK———_J%w — C(—— - F7
1n —1n

cm m 1 1 1
+ m Fm—1 + N -2
a ¢ —lnmr+mP (mw—nbgr+m> )

(4.10)

1 1 P
_m M pRb PP
T w0
Thanks to hypothesis (H), (L2) and ([2.3]), we have
I S
log(r + 7o) — log(r +1o) —  log(ro)
1 1
————>k, ——————>—k forall RY. 4.12
o) = p(rJrTO)Q > —ky forall ze (4.12)

From (AI0), (£11) and ([£I2) we get,

1

uy — —A(u™) —
p
1 1 ! m—1
m—1n7 m
¢ I C’mflgm m
m—1n a (m — 1)2log(ro)

From (AI3) and (£7), we have

1 1
i — ~A@™) —a? > CFwm-17!
p

For each t > 0, set

for all z € RV, (4.11)

)

MN—2M4 (4.13)

nky — CP~ 1CPFPJ$ 2}

(4.14)

Ql

() F = 6(t) =7 () F -

— p+m—2]

—2
o(F) = G()F = 8(t) = 3 (F“FT, Fe(0,1).
Now our goal is to find suitable C, a, (,n such that, for each t > 0,
©(F)>0 forany F € (0,1).

We observe that ¢(F') is concave in the variable F'. Hence it is sufficient to have

©(F) positive in the extrema of the interval (0, 1). This reduces, for any ¢ > 0, to
the conditions

0) >0,

#(0) 2 (4.15)

v(1)>0.
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These are equivalent to

that is
/ Cm—l m 1
- 12 Z Cmil k27
n a m — 1log(ro)
Cmil m k’g
' m N —2)k — — PP >
¢+ a ¢ m—1" ( )b (m — 1) log(ro) Crer20,

which are guaranteed by (2.3)), (4.8) and (4.9). Hence we have proved that

1
u— —A@m)—u’ >0 in Dy.
P

Now observe that
i€ CRYN x [0, +00)),
a™ € CY([RY \ {0}] x [0, +0c0)), and by the definition of @,
u=0in [RY\ D] x [0, +00)).
Hence, by Lemma B.1] (applied with Q; = Dy, Qy = RN \ Dy, u; = 4, ug = 0,
u = 1), u is a supersolution of equation
i — %A(am) @ =0 in RV {0}) x (0, +00)

in the sense of Definition 3.8 Thanks to a Kato-type inequality, since u!*(0,t) < 0,
we can easily infer that @ is a supersolution of equation (AJ]) in the sense of
Definition 3.8 O

Remark 4.2. Let
p>m

and assumption (2Z3) be satisfied. Let w = Cn;fl. In Theorem [2] the precise
hypotheses on parameters C' > 0, w > 0, T > 0 are the following:

p—m m 1
> k 4.1
p—1 =Y *log(ro)’ (4.16)
w—" k(N = 2) — i > oty 1 (4.17)
m—1" (m —1)log(re)| — p—1 '

16



Lemma 4.1. All the conditions in Remark[{.9 can be satisfied simultaneously.

Proof. Since p > m the left-hand-side of (4.I6) is positive. By (2.3), we can select
w > 0 so that (A.I6]) holds and

m ]{32 1
— |ki(N —2) — :
“m—1 i ) (m — 1) log(ro) ~ p—1

Then we take C' > 0 so small that (£I7) holds (and so a > 0 is accordingly
fixed). O

Proof of Theorem[2.1. We prove Theorem 2.1l by means of Proposition {1l In
view of Lemma [L.1], we can assume that alla conditions in Remark are fulfilled.
Set

C=(T+t)™, n=(T+t)?, forall t>0.

Consider conditions (4.8), (4.9) of Proposition I with this choice of ((t) and 7(t).
Therefore we obtain

Cmfl

Joo(T + t)~m=D=AHL > 4.18
§- S (T > (4.18)
and
Cm_l m k’g
—a(T + 1)~ ——— k(N —2) — T +t)-om=b
(T +1) + a m-—1 1 ) (m — 1) log(ro) (T+1)
—CP YT+t >0.
(4.19)
We take 1
p—m
- N 4.2
a=—tg. gLt (1.20)
Due to (£20), (£I8) and (£I9) become
_ m—1
p—m > C m ko | (4.21)
p—1 a m — 1log(rg)
Cm—l m ]{ZQ 1
— |k (N = 2) — >Ccr 4 —— 4.22
a m-—1 i ) (m —1)log(re) | — Jrp—l (422)
Therefore, (£.8) and (4.9) follow from assumptions (£I16) and (AI7). Thus the
conclusion follows by Propositions 4.1l and O

17



4.2 Order of decaying: g > 2
We assume (H]), (L2) and ([2.I2) for ¢ > 2 and ([2.13). In order to construct a
suitable family of supersolutions of (£I]), we define, for all (z,t) € RY x (0, +00),

a(x,t) = a(r(@), t) == OC(t)(r + o)™ (4.23)

where ¢ € C([0, +00); [0, +00)) and C' > 0, rg > 0.
Now, we compute

1
u — —A(a™) — aP.
P

For any (z,t) € [RN \ {0}] x (0, +00), we have:

Uy =C ¢ (r+r) . (4.24)
(@), = —bC™ (™ (r + 1) " (4.25)
(@) = b(b+ 1) C™C™ (r 4 19) 072 (4.26)

Proposition 4.3. Let ¢ = ((t) € C[0, +0); [0, +0)), (" > 0. Assume (H]), ([L2)
and 212) for ¢ > 2, 213), and that

bk (N —2 —b)C"(™ —cCP¢P > 0. (4.27)
Then u defined in ([A23) is a supersolution of equation ([A.1]).
Proof of Proposition[4.3 In view of (A.24]), (£25), (£.26) and the fact that

1 1
_ > = for any = € RY,
(1 + 7o) (1 + 7 )+2 Yy

we get, for any (x,t) € (RV\ {0}) x (0, +0c0),

1
iy — ~A(a™) — aP
3 (™)

> CC(r + 1) + % {(N —2—b)C™C™b(r + ro)*b”} — OPCP(r + 7o)

(4.28)
Thanks to hypothesis (L2), 212) and [213), we have

(r+mry) =072 _
p ' (4.29)



Since ¢’ > 0, from (£.28) and ([4.29) we get
Uy — ;A(am) — P > kb(N — 2 — b)C™(™ — e CP(P . (4.30)

Hence we get the condition
kib(N —2 —b)C™(™ —cCP(P >0, (4.31)
which is guaranteed by (2.12)) and (£27]). Hence we have proved that
1
Uy — ;A(a’”) —a” >0 in (R™\ {0}) x (0, +c0).

Now observe that

u € C(RY x [0, +00)),

@™ € CHRY\ {0}] x [0, +00)) ,

u'(0,t) <0.

Hence, thanks to a Kato-type inequality we can infer that u is a supersolution to
equation (4] in the sense of Definition 3.8
O

Remark 4.4. Let
q>2
and assumption ([2I2)) be satisfied. In Theorem the precise hypotheses on

parameters o, C' >0, T'> 0 are as follows.

(a) Let p < m. We require that

a >0, (4.32)
bki(N —2—b)C™ —cCP >0 (4.33)
(b) Let p > m. We require that
a=0, (4.34)
bki(N —2—b)C™ —¢cCP >0 (4.35)

Lemma 4.2. All the conditions in Remark[{.4) can hold simultaneously.
Proof. (a) We observe that, due to ([2.12]),
N—-2-b>0.

Therefore, we can select C' > 0 sufficiently large to guarantee (4.33]).
(b) We choose C > 0 sufficiently small to guarantee (£.35]). O
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Proof of Theorem[2.3. We now prove Theorem 2.3] in view of Proposition 4.3 In
view of Lemma we can assume that all conditions in Remark [4.4] are fulfilled.
Set

C(t)y=(T+1t)*, forall t>0.

Let p < m. Inequality (£.27) reads

bEki(N — 2 — B)C™(T + )™ —cCP(T + )" >0 forall ¢>0.

This follows from (4.32)) and (4.33]), for 7" > 1. Hence, by Propositions [4.3] and
the thesis follows in this case.

Let p > m. Conditions (£34)) and (43%) are equivalent to (4.27). Hence, by
Propositions and [3.5] the thesis follows in this case too. The proof is complete.
]

5 Blow-up: proofs

In what follows we set r = |x|. We construct a suitable family of subsolutions of
equation

1
= ——Au™) +uf  in RY x (0,7). (5.1)

5.1 Order of decaying: ¢ = 2

Suppose (H]), 1) and 27). To construct a suitable family of subsolution of
(5.1)), we define, for all (z,t) € [RN \ B.] x (0,T),

1

) = utr(e), 6 = O6(0) |1~ 2E o)) (52)
+
and
B ~Ju(z,t) in RV B.] x (0,7),
w(x,t) =w(r(x),t) = {v(x,t) i B, % (0.7), (5.3)
where 1
- o r?+ern|mt
v(x,t) =v(r(z),t) == C(t) [1 Y E} X (5.4)
Let us set
Frt):=1— loi(r) (1),
and >y ()
r?+e*n
G(r,t):=1— 5er o



For any (x,t) € (RV\ B,) x (0,7, we have:

1 1 1 1
=C(Fm-1 + CCijfl <—Mn/> =

a

= CC'Fat + O¢—— (1 - log“)n) %Fl (Jc#” Famil =

a —1n
1 1
—o¢FR 40— T pts ccilF——l
m—1mn —1n
(5.5)
cm m L1
my = 2 em M pat 5.6
(") a ¢ m—1 !
m 1 log(r) 1
" rr — cmem m-171 1-—
) g ()
cm o, om EEEI cm o, m B O
+ TC (m—1)2 LR log(r) a 1 el (5.7)
_ ggm m = 1 .
a’ (m—1)>2 T log(r)
cm m 1 i cm m 11
Zm_ Fme | ~ m Ty
i aC (m—1)2 1 7“210g(7“)jL aC m—1 e

For any (z,t) € B. x (0,T), we have:

2¢?2  a

2
CCGm T —|—CC7G__1 (_T +e ?7_) _

:cg’(;ﬁ+c€ PR A W R S e = e
m—1 2¢2 a) m—1n

e = e L et CCLQG**1
m—1n7

(5.8)
Gt T
@), = - Mg Ly, (5.9
m m m 1 Ui Cm m . — T2
(U )rr =-C C 1 Gm 1620, + — e me—l T]QE (510)
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We also define

! le
o(t) =¢ +¢ Ly — nk2<N_2+7)’
1n a — m—1

1 7
t)=¢c——1
50 =L
(t) = CPI¢?, (5.11)

, ¢ v N C™' - om
a(t) =0t gt

m—1 p+m—2
-1 p—1 —1 p—1
K- (L) _ (L) - 0.
p+m—2 p+m—2
Proposition 5.1. Let p > m. Let T € (0,00), ¢, n € CY([0,T);[0,T)). Let o, §,
v, 0o, K be defined in (BI0)). Assume that, for all t € (0,T),

a(t) >0, Kla(®)] = <a(t)y(t)», (5.12)
(m —a(t) < (p+m — (1) (5.13)
p+m—2 m—1
ao(t) >0, Klgol(t) »=T < a(t)y(t) >, (5.14)
(m —1)ay(t) < (p+m —2)y(t). (5.15)
Then w defined in (B.3)) is a subsolution of equation (B.J).
Proof of Proposition[521]. Let u be as in (5.2)) and set
Dy = {(z,t) € RN\ B.) x (0,T) | 0 < F(r,t) <1}.
In view of (B.5), (5.6]), (5.7)), we obtain, for all (z,t) € D,
A" -
u, — —A(u™) —u
Uy P u w
1 1
— C¢'Fa-1 4 Cgilpm - Ccin_pf—l
1 m— 11
L Cm m 1 1 cm 1
Foai—_—_(m_ "~ p - [ ~ 1 N-1 __m [t
e <<m—1>log<r> * ) T g
— Cpcppﬁ
In view of hypotheses (2.I)) and (2.7]), we can infer that
1 1
— <hky, —— <—k forall r € RY\ B,. (5.16)

pr? pr?
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Moreover,

1 1
<1, forall zecR"\B,.. (5.17)

<0
— ) 10g<r> )

1< =
~  log(r)

From (5.16) and (5.17) we have

1
u, — —Au™) —uP
U= (u™) —u
1 1 / Cmfl
SClel{F{gHLCin—jL ¢ = n ko (5.18)
i a m—1

m—1
)] _CLQ/ _ Cp—lchp;mIQ} '

1
< (Noze ot
m—1mn

m—1

Thanks to (5.11]) and (5.I8)

1
Uy — ;A@m) —u” < CF7'p(F),

(5.19)

where
p(F) = a(t)F — 8(t) — 1) F5 . (5.20)

Due to (5.19), our goal is to find suitable C' > 0, a > 0, ¢, n such that

©(F) <0, forall Fe(01).

To this aim, we impose that
sup (F) = max ¢(F) = ¢(Fp) <0,
Fe(0,1)

for some Fy € (0,1). We have

Then,
p+m—2

where the coefficient K = K(m,p) has been defined in (5.I1). By hypotheses
(E12) and (B.I3)
o(F) <0, 0<F<l1. (5.21)
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So far, we have proved that
u, — —AW")—u” <0 in Dy. (5.22)

Furthermore, since u™ € CY([RY \ B,] x [0,T)), due to Lemma B.1] (applied with
O = Dy, Qs = RY\ [B, U Dy],u1 = u,uy = 0,u = u), it follows that u is a
subsolution to equation

1

u, — —AW™) —uw? =0 in[RY\B,]x(0,7T), 5.23
in the sense of Definition [3.§

Let
D3 :={(z,t) € B. x(0,7) | 0< G < 1} .

In view of (B.8), (5.9) and (5.I0), for all (z,t) € Ds,

1
vy — ——A@W") — 0P
TR
1 ! 1 m—1 N—-11 m—1 1
e R (] [ (e e R e S R o
m—1n  p a m—1 e 'p a m —1e?
¢ 77_1 lcmil m__m__ 1, p—1pp BT
m—1n p a? ¢ (m—l)ze477 ereG
(5.24)
Using (2.2), (524) yield, for all (z,t) € Ds,
1
vi——AW™) — 0P
= (™)
1 , ! cmt N
< CGm-1! {G {C + Li + p2 ¢ m —277:| (5.25)
m—1mn a m—1e
o p—1,p T
e cr G :
Thanks to ([£.7) and (5.25),
1 1
vy — ;A(vm) — P < CGm119(G), (5.26)
where s
W(G) == gp(t)G = (1) — ()G =T (5.27)

Now, by the same arguments used to obtain (5.23), in view of (5.14) and (5.15)
we can infer that

H(G)<0 0<G<1.
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So far, due to (5.26]), we have proved that

1
vy — ——=A@") —v? <0 forany (z,t) € Ds. (5.28)
p(x)
Moreover, by Lemma [3.1] v is a subsolution of equation
1
vy — —A@™)—v? =0 in B, x (0,7T), 5.29
= A 0.7) (5.29)

in the sense of Definition Now, observe that w € C(RY x [0, 7)), indeed,

u=v=C((t) {1—?]7“1 in 0B, x (0,7).
-

Moreover, w™ € C1(RY x [0,T)), indeed,

W™, = ("), = —cme(yn—m 110 {1 - @] " m OB x (0,T).

m—1e a a |,

Hence, by Lemma Bl again, w is a subsolution to equation (5.I)) in the sense of
Definition [3.8 O

Remark 5.2. Let
p>m,
1

and assumptions 1) and 1) be satisfied. Let define w := <——. In Theorem
2.2, the precise hypotheses on parameters C > 0, a > 0, w > 0 and T > 0 is the
following.

m—1 1 m—1

max < 1 + mksy N—-24+——]:1+mpo < (p+m—2)CP 1,
m—1 a e2
(5.30)
K cm-t 1\
_ K {1+mk‘2 (N—2+7)] ;

(m—1) »1 a m—1

. (5.31)

Cm—l E)

prf; p—m m—1
1 < .
(14 }‘Wm—U@—DC

Lemma 5.1. All the conditions in Remark[5.2 can hold simultaneously.
Proof. We can take w > 0 such that
wo < w < wy

for suitable 0 < wy < w; and we can choose C' > 0 sufficiently large to guarantee

(.30) and ([B.31) (so, a > 0 is fixed, too). O
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Proof of Theorem[2.2. We now prove Theorem 2.2 by means of Proposition [l
In view of Lemma [5.1l we can assume that all conditions of Remark [5.2] are fulfilled.
Set

(=(T-t), n=(T—-t)", forall t>0,

and « and 8 as defined in (£.20). Then

1 cmt om 1 P
= N -2 T —t) »1
a(t) lm—ljL a m—1k2(m—1+ )]( t) ’

p—m p

o) = (m—=1)(p—1) T=8, (5.32)
A(t) = CP T — 1) 7T
oo(t) == ﬁ {1 + ﬂzgm CZ } (T — 1) 1.

Let p > m. Condition (5.30) implies (5.12), (5.13), while condition (5.31))
implies (B.14)), (5.15). Hence by Propositions 5.1 and B.7 the thesis follows. O
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