
ar
X

iv
:1

91
1.

07
30

5v
3 

 [
m

at
h.

A
P]

  2
2 

Ju
l 2

02
0

Blow-up and global existence for solutions to the

porous medium equation with reaction and

fast decaying density

Giulia Meglioli∗ and Fabio Punzo†

Abstract

We are concerned with nonnegative solutions to the Cauchy problem for
the porous medium equation with a variable density ρ(x) and a power-like
reaction term up with p > 1. The density decays fast at infinity, in the sense
that ρ(x) ∼ |x|−q as |x| → +∞ with q ≥ 2. In the case when q = 2, if p is
bigger than m, we show that, for large enough initial data, solutions blow-up
in finite time and for small initial datum, solutions globally exist. On the
other hand, in the case when q > 2, we show that existence of global in time
solutions always prevails. The case of slowly decaying density at infinity, i.e.
q ∈ [0, 2), is examined in [41].

2010 Mathematics Subject Classification: 35B44, 35B51, 35K57, 35K59, 35K65.
Keywords: Porous medium equation; Global existence; Blow-up; Sub–supersolutions;
Comparison principle.

1 Introduction

We investigate global existence and blow-up of nonnegative solutions to problem

{

ρ(x)ut = ∆(um) + ρ(x)up in R
N × (0, τ)

u(x, 0) = u0(x) in R
N × {0}

(1.1)
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†Dipartimento di Matematica, Politecnico di Milano, Italia (fabio.punzo@polimi.it).
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where N ≥ 3, u0 ∈ L∞(RN), u0 ≥ 0, ρ ∈ C(RN), ρ > 0, p > 1, m > 1 and τ > 0.
We always assume that

{

(i) ρ ∈ C(RN), ρ > 0 in R
N ,

(ii)u0 ∈ L∞(RN), u0 ≥ 0 in R
N ,

(H)

and that

there exist k1, k2 ∈ (0,+∞) with k1 ≤ k2, r0 > 0 , q ≥ 2 such that

k1(|x|+ r0)
q ≤

1

ρ(x)
≤ k2(|x|+ r0)

q for all x ∈ R
N .

(1.2)

The parabolic equation in problem (1.1) is of the porous medium type, with a
variable density ρ(x) and a reaction term ρ(x)up. Clearly, such parabolic equation
is degenerate, sincem > 1. Moreover, the differential equation in (1.1) is equivalent
to

ut =
1

ρ(x)
∆(um) + up in R

N × (0, τ);

thus the related diffusion operator is 1
ρ(x)

∆, and in view of (1.2), the coefficient
1

ρ(x)
can positively diverge at infinity. The differential equation in (1.1), posed

in the interval (−1, 1) with homogeneous Dirichlet boundary conditions, has been
introduced in [34] as a mathematical model of evolution of plasma temperature,
where u is the temperature, ρ(x) is the particle density, ρ(x)up represents the
volumetric heating of plasma. Indeed, in [34, Introduction] a more general source
term of the type A(x)up has also been considered; however, then the authors
assume that A ≡ 0; only some remarks for the case A(x) = ρ(x) are made in [34,
Section 4]. Then in [32] and [33] the Cauchy problem (1.1) is dealt with in the
case without the reaction term ρ(x)up.

In view of (1.2) the density ρ decays at infinity. Indeed,

1

k2(|x|+ r0)q
≤ ρ(x) ≤

1

k1(|x|+ r0)q
for all |x| > 1 , (1.3)

with
q ≥ 2.

Since we assume (1.2) with q ≥ 2, we refer to ρ(x) as a fast decaying density
at infinity. On the other hand, in [41] it is studied problem (1.1) with a slowly
decaying density, that is (1.2) is assumed with q < 2.

There is a huge literature concerning various problems related to (1.1). For
instance, problem (1.1) with ρ ≡ 1, m = 1 is studied in [5, 6, 13, 14, 20, 24,
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26, 35, 48, 52, 54, 58], problem (1.1) without the reaction term up is treated in
[11, 12, 16, 17, 18, 27, 28, 29, 30, 31, 32, 33, 34, 45, 21, 49, 50, 51]. Moreover,
problem (1.1) with m = 1 is addressed in [36] (see also [10]), where ρ satisfies (1.3)
with 0 ≤ q < 2. In particular, let us recall some results established in [53] for
problem (1.1) with ρ ≡ 1, m > 1, p > 1 (see also [15, 44]). We have:

• ([53, Theorem 1, p. 216]) For any p > 1, for all sufficiently large initial data,
solutions blow-up in finite time;

• ([53, Theorem 2, p. 217]) if p ∈
(

1, m+ 2
N

)

, for all initial data, solutions
blow-up in finite time;

• ([53, Theorem 3, p. 220]) if p > m + 2
N
, for all sufficiently small initial

data with compact support, solutions exist globally in time and belong to
L∞(RN × (0,+∞)).

Similar results for quasilinear parabolic equations, also involving p-Laplace type
operators or double-nonlinear operators, have been stated in [1], [2], [3], [7], [8],
[9], [22], [23], [37], [38], [39], [42], [43], [46], [55], [59] (see also [40] for the case of
Riemannian manifolds); moreover, in [19] the same problem on Cartan-Hadamard
manifolds has been investigated. In particular, in [37, Theorem 2] it is shown
that if ρ(x) = (1 + |x|)−q with 0 < q < 2, p > m, and u0 is small enough (in
an appropriate sense), then there exists a global solution; moreover, a smoothing
estimate is given. Such result will be compared below with one of our results (see
Remark 2.5).

In [41] the following results for problem (1.1) are established, assuming (1.2)
with 0 ≤ q < 2.

• ([41, Theorem 2.1]. If
p > p̄,

u0 has compact support and is small enough, then there exist global in time
solutions to problem (1.1) which belong to L∞(RN × (0,+∞)); here p̄ is a
certain exponent, which depends on N,m, q, k1, k2. In particular, for k1 = k2
we have

p̄ = m+
2− q

N − q
.

• ([41, Theorem 2.3]). For any p > 1, if u0 is sufficiently large, then solutions
to problem (1.1) blow-up in finite time.

• ([41, Corollary 2.4]). If 1 < p < m, then for any u0 6≡ 0, solutions to problem
(1.1) blow-up in finite time. Moreover ([41, Theorem 2.5]), if m ≤ p < p,
where p < p̄ is a certain exponent depending on N,m, q, k1, k2, then solutions

3



to problem (1.1) blow-up in finite time for any nontrivial initial datum. For
k1 = k2, p = p̄.

Analogous results, proved by different methods, can be found also in [37, 38], where
also more general double-nonlinear operators are treated.

1.1 Outline of our results

Let us now describe our main results. We distinguish between two cases: q = 2
and q > 2. First, assume that (1.2) holds with q = 2.

• (Theorem 2.1). If
p > m,

u0 has compact support and is small enough, then there exist global in time
solutions to problem (1.1), which belong to L∞(RN × (0,+∞));

• (Theorem 2.2). For any p > m, if u0 is sufficiently large, then solutions to
problem (1.1) blow-up in finite time.

The proofs mainly relies on suitable comparison principles and properly construc-
ted sub- and supersolutions, which crucially depend on the behavior at infinity of
the inhomogeneity term ρ(x). More precisely, they are of the type

w(x, t) = Cζ(t)

[

1−
log(|x|+ r0)

a
η(t)

]
1

m−1

+

for any (x, t) ∈
[

R
N \B1(0)

]

×[0, T ),

(1.4)
for suitable functions ζ = ζ(t), η = η(t) and constants C > 0, a > 0. The presence
of log(|x| + r0) in w is strictly related to the assumption that q = 2. Observe
that the barriers used in [41] for the case 0 ≤ q < 2, which are of power type in
|x|, do not work in the present situation. Furthermore, note that the exponent p̄
introduced in [41] for 0 ≤ q < 2, when q = 2 becomes p̄ = m. Hence Theorem 2.1
can be seen as a generalization of [41, Theorem 2.1] to the case q = 2.

Now, assume that q > 2. We have the following results (see Theorem 2.3 and
Remark 2.4).

• Let 1 < p < m. Then for suitable u0 ∈ L∞(RN) there exist global in
time solutions to problem (1.1). We do not assume that u0 has compact
support, but we need that it fulfills a decay condition as |x| → +∞. However,
u0 in a compact subset of RN can be arbitrarily large. We cannot deduce
that the corresponding solution belongs to L∞(RN × (0,+∞)), but it is in
L∞(RN × (0, τ)) for each τ > 0.
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• Let p > m ≥ 1. Then for suitable u0 ∈ L∞(RN), problem (1.1) admits a
solution in L∞(RN × (0,+∞)). We need that

0 ≤ u0(x) ≤ CW (x) for all x ∈ R
N ,

where C > 0 is small enough andW (x) is a suitable function, which vanishes
as |x| → +∞. We should mention that, as recalled above, a similar result
was been obtained in [37, Theorem 2], where also double-non linear operators
are treated; see Remark 2.5 below.

• Let p = m > 1. Then for suitable u0 ∈ L∞(RN ), problem (1.1) admits a
solution in L∞(RN × (0,+∞)), provided that r0 > 0 in (1.2) is big enough.

Such results are very different with respect to the cases 0 ≤ q < 2 and q = 2. In
fact, we do not have finite-time blow-up, but global existence prevails, for suitable
initial data. The results follow by comparison principles, once we have constructed
appropriate supersolutions, that have the form

w(x, t) = ζ(t)W (x) for all (x, t) ∈ R
N × (0,+∞),

for suitable ζ(t) and W (x). When p ≥ m, ζ(t) ≡ 1. Observe that we can also
include the linear case m = 1, whenever p > m. In this respect, our result
complement the results in [36], where only the case q < 2 is addressed. Finally,
let us mention that it remains to be understood whether in the case 1 < p < m

solutions can blow-up in infinite time or not.

2 Statements of the main results

For any x0 ∈ R
N and R > 0 we set

BR(x0) = {x ∈ R
N : ‖x− x0‖ < R}.

When x0 = 0, we write BR ≡ BR(0).

For the sake of simplicity, sometimes instead of (2.1), we suppose that

there exist k1, k2 ∈ (0,+∞) with k1 ≤ k2 , q ≥ 2 , R > 0 such that

k1|x|
q ≤

1

ρ(x)
≤ k2|x|

q for all x ∈ R
N \BR .

(2.1)

In view of (H)-(i),

for any R > 0 there exist ρ1(R), ρ2(R) ∈ (0,+∞) with ρ1(R) ≤ ρ2(R)

such that ρ1(R) ≤
1

ρ(x)
≤ ρ2(R) for all x ∈ BR .

(2.2)

Obviously, (1.2) is equivalent to (2.1) and (2.2).

In the sequel we shall refer to q as the order of decaying of ρ(x) as |x| → +∞.
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2.1 Order of decaying: q = 2

Let q = 2. The first result concerns the global existence of solutions to problem
(1.1) for p > m. We assume that

r0 > e,
k2

k1
< (N − 2)(m− 1)

p−m

p− 1
log r0 . (2.3)

Theorem 2.1. Assume (H), (1.2) for q = 2 and (2.3). Suppose that

p > m ,

and that u0 is small enough and has compact support. Then problem (1.1) admits
a global solution u ∈ L∞(RN × (0,+∞)).
More precisely, if C > 0 is small enough, a > 0 is so that

0 < ω0 ≤
Cm−1

a
≤ ω1

for suitable 0 < ω0 < ω1, T > 0,

u0(x) ≤ CT−
1

p−1

[

1−
log(|x|+ r0)

a
T−

p−m

p−1

]
1

m−1

+

for any x ∈ R
N , (2.4)

then problem (1.1) admits a global solution u ∈ L∞(RN × (0,+∞)). Moreover,

u(x, t) ≤ C(T+t)−
1

p−1

[

1−
log(|x|+ r0)

a
(T + t)−

p−m

p−1

]
1

m−1

+

for any (x, t) ∈ R
N×(0,+∞) .

(2.5)

Observe that if u0 satisfies (2.4), then

supp u0 ⊆ {x ∈ R
N : log(|x|+ r0) ≤ aT

p−m

p−1 } .

From (2.5) we can infer that

supp u(·, t) ⊆ {x ∈ R
N : log(|x|+ r0) ≤ a(T + t)

p−m

p−1 } for all t > 0 . (2.6)

The choice of the parameters C > 0, T > 0 and a > 0 is discussed in Remark
4.2.

The next result concerns the blow-up of solutions in finite time, for every
p > m > 1, provided that the initial datum is sufficiently large. We assume that
hypothesis (2.1) holds with the choice

q = 2 , R = e . (2.7)
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So we fix, in assumption (2.2),

ρ1(R) = ρ1(e) =: ρ1 , ρ2(R) = ρ2(e) =: ρ2 .

Let

s(x) :=















log(|x|) if x ∈ R
N \Be,

|x|2 + e2

2e2
if x ∈ Be .

Theorem 2.2. Let assumption (H), (2.1) and (2.7). For any

p > m

and for any T > 0, if the initial datum u0 is large enough, then the solution u of
problem (1.1) blows-up in a finite time S ∈ (0, T ], in the sense that

‖u(t)‖∞ → ∞ as t→ S− . (2.8)

More precisely, if C > 0 and a > 0 are large enough, T > 0,

u0(x) ≥ CT
−

1

p−1

[

1−
s(x)

a
T

m−p

p−1

]
1

m−1

+

, for any x ∈ R
N , (2.9)

then the solution u of problem (1.1) blows-up and satisfies the bound from below

u(x, t) ≥ C(T − t)−
1

p−1

[

1−
s(x)

a
(T − t)

m−p

p−1

]
1

m−1

+

, for any (x, t) ∈ R
N × (0, S) .

(2.10)

Observe that if u0 satisfies (2.9), then

supp u0 ⊇ {x ∈ R
N : s(x) < aT

p−m

p−1 } .

From (2.10) we can infer that

supp u(·, t) ⊇ {x ∈ R
N : s(x) < a(T − t)

p−m

p−1 } for all t ∈ [0, S) . (2.11)

The choice of the parameters C > 0, T > 0 and a > 0 is discussed in Remark 5.2.
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2.2 Order of decaying: q > 2

Let q > 2. The first result concerns the global existence of solutions to problem
(1.1) for any p > 1 and m > 1, p 6= m. Let us introduce the parameter b̄ ∈ R such
that

0 < b̄ < min{N − 2 , q − 2} . (2.12)

Moreover, we can find c̄ > 0 such that

(r + r0)
−

b̄p

m ≤ c̄ for any r ≥ 0 , (2.13)

with r0 > 0 as in hypothesis (1.2).

Theorem 2.3. Let assumptions (H), (1.2) and (2.12) be satisfied with q > 2.
Suppose that

1 < p < m , or p > m ≥ 1 ,

and that u0 is small enough. Then problem (1.1) admits a global solution u ∈
L∞(RN × (0, τ)) for any τ > 0. More precisely, we have the following cases.

(a) Let 1 < p < m. If C > 0 is big enough, r0 > 0, T > 1, α > 0,

u0(x) ≤ CT α (|x|+ r0)
−

b̄
m for any x ∈ R

N , (2.14)

then problem (1.1) admits a global solution u, which satisfies the bound from
above

u(x, t) ≤ C(T + t)α (|x|+ r0)
−

b̄
m for any (x, t) ∈ R

N × (0,+∞) . (2.15)

(b) Let p > m ≥ 1. If C > 0 is small enough, r0 > 0, T > 0 and (2.14) holds with
α = 0, then problem (1.1) admits a global solution u ∈ L∞(RN × (0,+∞)),
which satisfies the bound from above (2.15) with α = 0.

Remark 2.4. Observe that, in the case when p = m, if C > 0 is small enough,
r0 > 0 big enough to have

(

1

r0

)
b̄p

m

≤ b̄k1(N − 2− b̄) ,

T > 0 and (2.14) holds with α = 0, then problem (1.1) admits a global solution
u ∈ L∞(RN × (0,+∞)) which satisfies the bound from above (2.15) for α = 0.

Note that in Theorem 2.3 we do not require that supp u0 is compact.

The choice of the parameters C > 0, T > 0 and a > 0 is discussed in Remark
4.4.
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Remark 2.5. The statement in Theorem 2.3-(b) is in agreement with [37, The-
orem 2], where it is assumed that p > m, ρ(x) = (1 + |x|)−q with q > 2,
∫

RN ρ(x)u0(x)dx < +∞,
∫

RN ρ(x)[u0(x)]
q̄dx < δ, for some δ > 0 small enough

and q̄ > N
2
(p−m).

Note that the assumption on u0 is of a different type. In particular, in view of
(2.14) and (2.12), the initial datum u0 considered in Theorem 2.3-(b) not neces-
sarily satisfies

∫

RN ρ(x)u0(x)dx < +∞.

In [37] the proofs are based on the energy method, so they are completely dif-
ferent with respect to our approach.

3 Preliminaries

In this section we give the precise definitions of solutions of all problems we address,
then we state a local in time existence result for problem (1.1). Moreover, we
recall some useful comparison principles. The proofs of such auxiliary results can
be found in [41, Section 3].

Throughout the paper we deal with very weak solutions to problem (1.1) and to
the same problem set in different domains, according to the following definitions.

Definition 3.1. Let u0 ∈ L∞(RN) with u0 ≥ 0. Let τ > 0, p > 1, m > 1. We say
that a nonnegative function u ∈ L∞(RN × (0, S)) for any S < τ is a solution of
problem (1.1) if

−

∫

RN

∫ τ

0

ρ(x)uϕt dt dx =

∫

RN

ρ(x)u0(x)ϕ(x, 0) dx

+

∫

RN

∫ τ

0

um∆ϕdt dx

+

∫

RN

∫ τ

0

ρ(x)upϕdt dx

(3.1)

for any ϕ ∈ C∞

c (RN × [0, τ)), ϕ ≥ 0. Moreover, we say that a nonnegative function
u ∈ L∞(RN × (0, S)) for any S < τ is a subsolution (supersolution) if it satisfies
(3.1) with the inequality ” ≤ ” (” ≥ ”) instead of ” = ” with ϕ ≥ 0.

For every R > 0, we consider the auxiliary problem











ut =
1

ρ(x)
∆(um) + up in BR × (0, τ)

u = 0 on ∂BR × (0, τ)

u = u0 in BR × {0} .

(3.2)
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Definition 3.2. Let u0 ∈ L∞(BR) with u0 ≥ 0. Let τ > 0, p > 1, m > 1. We say
that a nonnegative function u ∈ L∞(BR × (0, S)) for any S < τ is a solution of
problem (3.2) if

−

∫

BR

∫ τ

0

ρ(x)uϕt dt dx =

∫

BR

ρ(x)u0(x)ϕ(x, 0) dx

+

∫

BR

∫ τ

0

um∆ϕdt dx

+

∫

BR

∫ τ

0

ρ(x)upϕdt dx

(3.3)

for any ϕ ∈ C∞

c (BR × [0, τ)) with ϕ|∂BR
= 0 for all t ∈ [0, τ). Moreover, we say

that a nonnegative function u ∈ L∞(BR × (0, S)) for any S < τ is a subsolution
(supersolution) if it satisfies (3.3) with the inequality ” ≤ ” (” ≥ ”) instead of
” = ”, with ϕ ≥ 0.

Proposition 3.3. Let hypothesis (H) be satisfied. Then there exists a solution u
to problem (3.2) with

τ ≥ τR :=
1

(p− 1)‖u0‖
p−1
L∞(BR)

.

Moreover, the following comparison principle for problem (3.2) holds (see [4]
for the proof).

Proposition 3.4. Let assumption (H) hold. If u is a subsolution of problem (3.2)
and v is a supersolution of (3.2), then

u ≤ v a.e. in BR × (0, τ).

Proposition 3.5. Let hypothesis (H) be satisfied. Then there exists a solution u
to problem (1.1) with

τ ≥ τ0 :=
1

(p− 1)‖u0‖
p−1
∞

.

Moreover, u is the minimal solution, in the sense that for any solution v to problem
(1.1) there holds

u ≤ v in R
N × (0, τ) .

In conclusion, we can state the following two comparison results, which will be
used in the sequel.

10



Proposition 3.6. Let hypothesis (H) be satisfied. Let ū be a supersolution to prob-
lem (1.1). Then, if u is the minimal solution to problem (1.1) given by Proposition
3.5, then

u ≤ ū a.e. in R
N × (0, τ) . (3.4)

In particular, if ū exists until time τ , then also u exists at least until time τ .

Proposition 3.7. Let hypothesis (H) be satisfied. Let u be a solution to problem
(1.1) for some time τ = τ1 > 0 and u a subsolution to problem (1.1) for some time
τ = τ2 > 0. Suppose also that

supp u|RN×[0,S] is compact for every S ∈ (0, τ2) .

Then
u ≥ u in R

N × (0,min{τ1, τ2}) . (3.5)

In what follows we also consider solutions of equations of the form

ut =
1

ρ(x)
∆(um) + up in Ω× (0, τ), (3.6)

where Ω ⊆ R
N . Solutions are meant in the following sense.

Definition 3.8. Let τ > 0, p > 1, m > 1. We say that a nonnegative function
u ∈ L∞(Ω× (0, S)) for any S < τ is a solution of problem (3.2) if

−

∫

Ω

∫ τ

0

ρ(x)uϕt dt dx =

∫

Ω

∫ τ

0

um∆ϕdt dx

+

∫

Ω

∫ τ

0

ρ(x)upϕdt dx

(3.7)

for any ϕ ∈ C∞

c (Ω × [0, τ)) with ϕ|∂Ω = 0 for all t ∈ [0, τ). Moreover, we say
that a nonnegative function u ∈ L∞(Ω × (0, S)) for any S < τ is a subsolution
(supersolution) if it satisfies (3.3) with the inequality ” ≤ ” (” ≥ ”) instead of
” = ”, with ϕ ≥ 0.

Finally, let us recall the following well-known criterion, that will be used in the
sequel. Let Ω ⊆ R

N be an open set. Suppose that Ω = Ω1 ∪Ω2 with Ω1 ∩Ω2 = ∅,
and that Σ := ∂Ω1 ∩ ∂Ω2 is of class C1. Let n be the unit outwards normal to Ω1

at Σ. Let

u =

{

u1 in Ω1 × [0, T ),

u2 in Ω2 × [0, T ) ,
(3.8)

where ∂tu ∈ C(Ω1× (0, T )), um1 ∈ C2(Ω1× (0, T ))∩C1(Ω1× (0, T )), ∂tu2 ∈ C(Ω2×
(0, T ))), um2 ∈ C2(Ω2 × (0, T )) ∩ C1(Ω2 × (0, T )).
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Lemma 3.1. Let assumption (H) be satisfied.
(i) Suppose that

∂tu1 ≥
1

ρ
∆um1 + u

p
1 for any (x, t) ∈ Ω1 × (0, T ),

∂tu2 ≥
1

ρ
∆um2 + u

p
2 for any (x, t) ∈ Ω2 × (0, T ),

(3.9)

u1 = u2,
∂um1
∂n

≥
∂um2
∂n

for any (x, t) ∈ Σ× (0, T ) . (3.10)

Then u, defined in (3.8), is a supersolution to equation (3.6), in the sense of
Definition 3.8.

(ii) Suppose that

∂tu1 ≤
1

ρ
∆um1 + u

p
1 for any (x, t) ∈ Ω1 × (0, T ),

∂tu2 ≤
1

ρ
∆um2 + u

p
2 for any (x, t) ∈ Ω2 × (0, T ),

(3.11)

u1 = u2,
∂um1
∂n

≤
∂um2
∂n

for any (x, t) ∈ Σ× (0, T ) . (3.12)

Then u, defined in (3.8), is a subsolution to equation (3.6), in the sense of Defi-
nition 3.8.

4 Global existence: proofs

In what follows we set r ≡ |x|. We construct a suitable family of supersolutions of
equation

ut =
1

ρ(x)
∆(um) + up in R

N × (0,+∞). (4.1)

4.1 Order of decaying: q = 2

We assume (H), (1.2) with q = 2 and (2.3). In order to construct a suitable family
of supersolutions of (4.1), we define, for all (x, t) ∈ R

N × (0,+∞),

ū(x, t) ≡ ū(r(x), t) := Cζ(t)

[

1−
log(r + r0)

a
η(t)

]
1

m−1

+

, (4.2)

where η, ζ ∈ C1([0,+∞); [0,+∞)) and C > 0, a > 0, r0 > e.
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Now, we compute

ūt −
1

ρ
∆(ūm)− ūp.

To this aim, let us set

F (r, t) := 1−
log(r + r0)

a
η(t) ,

and define

D1 :=
{

(x, t) ∈ [RN \ {0}]× (0,+∞) | 0 < F (r, t) < 1
}

.

For any (x, t) ∈ D1, we have:

ūt = Cζ ′F
1

m−1 + Cζ
1

m− 1
F

1

m−1
−1

(

−
log(r + r0)

a
η′
)

= Cζ ′F
1

m−1 + Cζ
1

m− 1

(

1−
log(r + r0)

a
η

)

η′

η
F

1

m−1
−1 − Cζ

1

m− 1

η′

η
F

1

m−1
−1

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1

m−1 − Cζ
1

m− 1

η′

η
F

1

m−1
−1.

(4.3)

(ūm)r = −
Cm

a
ζm

m

m− 1
F

1

m−1
1

(r + r0)
η. (4.4)

(ūm)rr = −
Cm

a
ζm

m

(m− 1)2
F

1

m−1
−1

(

1−
log(r + r0)

a
η

)

η
1

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

(m− 1)2
F

1

m−1
−1 η

(r + r0)2 log(r + r0)
+
Cm

a
ζm

m

m− 1
F

1

m−1
1

(r + r0)2
η

= −
Cm

a
ζm

m

(m− 1)2
F

1

m−1 η
1

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

(m− 1)2
F

1

m−1
−1 η

(r + r0)2 log(r + r0)
+
Cm

a
ζm

m

m− 1
F

1

m−1
1

(r + r0)2
η.

(4.5)
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∆(ūm) =
(N − 1)

r
(ūm)r + (ūm)rr

=
(N − 1)

r

(

−
Cm

a
ζm

m

m− 1
F

1

m−1
1

(r + r0)
η

)

−
Cm

a
ζm

m

(m− 1)2
F

1

m−1 η
1

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

(m− 1)2
F

1

m−1
−1 η

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

m− 1
F

1

m−1
1

(r + r0)2
η

≤
N − 1

r + r0

(

−
Cm

a
ζm

m

m− 1
F

1

m−1
1

(r + r0)
η

)

−
Cm

a
ζm

m

(m− 1)2
F

1

m−1 η
1

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

(m− 1)2
F

1

m−1
−1 η

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

m− 1
F

1

m−1
1

(r + r0)2
η

(4.6)

We also define

K :=

[

(

m− 1

p+m− 2

)
m−1

p−1

−

(

m− 1

p+m− 2

)
p+m−2

p−1

]

> 0 ,

σ̄(t) := ζ ′ + ζ
1

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
ηk1 (N − 2) ,

δ̄(t) := ζ
1

m− 1

η′

η
+ Cm−1ζm

m

(m− 1)2
η

a

1

log(r0)
k2 ,

γ̄(t) := Cp−1ζp .

(4.7)

Proposition 4.1. Let ζ = ζ(t), η = η(t) ∈ C1([0,+∞); [0,+∞)). Let K, σ̄, δ̄,
γ̄ be as defined in (4.7). Assume (H), (1.2) with q = 2, (2.3) and that, for all
t ∈ (0,+∞),

−
η′

η2
≥

1

log(r0)

Cm−1

a
ζm−1 m

m− 1
k2 (4.8)

and

ζ ′ +
Cm−1

a
ζm

m

m− 1
η

[

(N − 2)k1 −
k2

(m− 1) log(r0)

]

− Cp−1ζp ≥ 0 . (4.9)

then ū defined in (4.2) is a supersolution of equation (4.1).
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Proof of Proposition 4.1. In view of (4.3), (4.4), (4.5) and (4.6), for any (x, t) ∈
D1,

ūt−
1

ρ
∆(ūm)− ūp

≥ Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1

m−1 − Cζ
1

m− 1

η′

η
F

1

m−1
−1

+
Cm

a
ζm

m

m− 1
η

1

ρ(r + r0)2
F

1

m−1

(

1

(m− 1) log(r + r0)
+N − 2

)

−
Cm

a
ζm

m

(m− 1)2
F

1

m−1
−1 η

log(r + r0)

1

ρ(r + r0)2
− CpζpF

p

m−1 .

(4.10)

Thanks to hypothesis (H), (1.2) and (2.3), we have

1

log(r + r0)
≥ 0 , −

1

log(r + r0)
≥ −

1

log(r0)
for all x ∈ R

N , (4.11)

1

ρ(r + r0)2
≥ k1 , −

1

ρ(r + r0)2
≥ −k2 for all x ∈ R

N . (4.12)

From (4.10), (4.11) and (4.12) we get,

ūt −
1

ρ
∆(ūm)− ūp

≥ CF
1

m−1
−1

{

F

[

ζ ′ + ζ
1

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
η(N − 2)k1

]

−ζ
1

m− 1

η′

η
−
Cm−1

a
ζm

m

(m− 1)2
1

log(r0)
ηk2 − Cp−1ζpF

p+m−2

m−1

}

(4.13)

From (4.13) and (4.7), we have

ūt −
1

ρ
∆(ūm)− ūp ≥ CF

1

m−1
−1

[

σ̄(t)F − δ̄(t)− γ̄(t)F
p+m−2

m−1

]

. (4.14)

For each t > 0, set

ϕ(F ) := σ̄(t)F − δ̄(t)− γ̄(t)F
p+m−2

m−1 , F ∈ (0, 1) .

Now our goal is to find suitable C, a, ζ, η such that, for each t > 0,

ϕ(F ) ≥ 0 for any F ∈ (0, 1) .

We observe that ϕ(F ) is concave in the variable F . Hence it is sufficient to have
ϕ(F ) positive in the extrema of the interval (0, 1). This reduces, for any t > 0, to
the conditions

ϕ(0) ≥ 0 ,

ϕ(1) ≥ 0 .
(4.15)
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These are equivalent to

−δ̄(t) ≥ 0 , σ̄(t)− δ̄(t)− γ̄(t) ≥ 0 ,

that is

−
η′

η2
≥
Cm−1

a
ζm−1 m

m− 1

1

log(r0)
k2 ,

ζ ′ +
Cm−1

a
ζm

m

m− 1
η

[

(N − 2) k1 −
k2

(m− 1) log(r0)

]

− Cp−1ζp ≥ 0 ,

which are guaranteed by (2.3), (4.8) and (4.9). Hence we have proved that

ūt −
1

ρ
∆(ūm)− ūp ≥ 0 in D1 .

Now observe that

ū ∈ C(RN × [0,+∞)) ,

ūm ∈ C1([RN \ {0}]× [0,+∞)) , and by the definition of ū ,

ū ≡ 0 in [RN \ D1]× [0,+∞)) .

Hence, by Lemma 3.1 (applied with Ω1 = D1, Ω2 = R
N \ D1, u1 = ū, u2 = 0,

u = ū), ū is a supersolution of equation

ūt −
1

ρ
∆(ūm)− ūp = 0 in (RN \ {0})× (0,+∞)

in the sense of Definition 3.8. Thanks to a Kato-type inequality, since ūmr (0, t) ≤ 0,
we can easily infer that ū is a supersolution of equation (4.1) in the sense of
Definition 3.8.

Remark 4.2. Let
p > m

and assumption (2.3) be satisfied. Let ω := Cm−1

a
. In Theorem 2.1 the precise

hypotheses on parameters C > 0, ω > 0, T > 0 are the following:

p−m

p− 1
≥ ω

m

m− 1
k2

1

log(r0)
, (4.16)

ω
m

m− 1

[

k1(N − 2)−
k2

(m− 1) log(r0)

]

≥ Cp−1 +
1

p− 1
. (4.17)
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Lemma 4.1. All the conditions in Remark 4.2 can be satisfied simultaneously.

Proof. Since p > m the left-hand-side of (4.16) is positive. By (2.3), we can select
ω > 0 so that (4.16) holds and

ω
m

m− 1

[

k1(N − 2)−
k2

(m− 1) log(r0)

]

>
1

p− 1
.

Then we take C > 0 so small that (4.17) holds (and so a > 0 is accordingly
fixed).

Proof of Theorem 2.1. We prove Theorem 2.1 by means of Proposition 4.1. In
view of Lemma 4.1, we can assume that alla conditions in Remark 4.2 are fulfilled.
Set

ζ = (T + t)−α , η = (T + t)−β , for all t > 0 .

Consider conditions (4.8), (4.9) of Proposition 4.1 with this choice of ζ(t) and η(t).
Therefore we obtain

β −
Cm−1

a

m

m− 1
k2(T + t)−α(m−1)−β+1 ≥ 0 (4.18)

and

−α(T + t)−α−1 +
Cm−1

a

m

m− 1

[

k1(N − 2)−
k2

(m− 1) log(r0)

]

(T + t)−αm−β

− Cp−1(T + t)−αp ≥ 0 .
(4.19)

We take

α =
1

p− 1
, β =

p−m

p− 1
. (4.20)

Due to (4.20), (4.18) and (4.19) become

p−m

p− 1
≥
Cm−1

a

m

m− 1

k2

log(r0)
, (4.21)

Cm−1

a

m

m− 1

[

k1(N − 2)−
k2

(m− 1) log(r0)

]

≥ Cp−1 +
1

p− 1
. (4.22)

Therefore, (4.8) and (4.9) follow from assumptions (4.16) and (4.17). Thus the
conclusion follows by Propositions 4.1 and 3.6.
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4.2 Order of decaying: q > 2

We assume (H), (1.2) and (2.12) for q > 2 and (2.13). In order to construct a
suitable family of supersolutions of (4.1), we define, for all (x, t) ∈ R

N × (0,+∞),

ū(x, t) ≡ ū(r(x), t) := Cζ(t)(r + r0)
−

b̄
m ; (4.23)

where ζ ∈ C1([0,+∞); [0,+∞)) and C > 0, r0 > 0.

Now, we compute

ūt −
1

ρ
∆(ūm)− ūp.

For any (x, t) ∈
[

R
N \ {0}

]

× (0,+∞), we have:

ūt = C ζ ′ (r + r0)
−

b
m . (4.24)

(ūm)r = − b̄ Cm ζm (r + r0)
−b̄−1 . (4.25)

(ūm)rr = b̄ (b̄+ 1)Cm ζm (r + r0)
−b̄−2 . (4.26)

Proposition 4.3. Let ζ = ζ(t) ∈ C1[0,+∞); [0,+∞)), ζ ′ ≥ 0. Assume (H), (1.2)
and (2.12) for q > 2, (2.13), and that

b̄k1(N − 2− b̄)Cmζm − c̄ Cpζp > 0 . (4.27)

Then ū defined in (4.23) is a supersolution of equation (4.1).

Proof of Proposition 4.3. In view of (4.24), (4.25), (4.26) and the fact that

1

(r + r0)b̄+1r
≥

1

(r + r0)b̄+2
for any x ∈ R

N ,

we get, for any (x, t) ∈ (RN \ {0})× (0,+∞),

ūt −
1

ρ
∆(ūm)− ūp

≥ Cζ ′(r + r0)
−

b̄
m +

1

ρ

{

(N − 2− b̄)Cmζmb̄(r + r0)
−b̄−2

}

− Cpζp(r + r0)
−

b̄p

m .

(4.28)
Thanks to hypothesis (1.2), (2.12) and (2.13), we have

(r + r0)
−b̄−2

ρ
≥ k1(r + r0)

−b̄−2+q = k1 ,

− (r + r0)
−

b̄p

m ≥ −c̄

(4.29)
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Since ζ ′ ≥ 0, from (4.28) and (4.29) we get

ūt −
ρ
∆(ūm)− ūp ≥ k1b̄(N − 2− b̄)Cmζm − c̄ Cpζp . (4.30)

Hence we get the condition

k1b̄(N − 2− b̄)Cmζm − c̄ Cpζp ≥ 0 , (4.31)

which is guaranteed by (2.12) and (4.27). Hence we have proved that

ūt −
1

ρ
∆(ūm)− ūp ≥ 0 in (RN \ {0})× (0,+∞) .

Now observe that
ū ∈ C(RN × [0,+∞)) ,

ūm ∈ C1([RN \ {0}]× [0,+∞)) ,

ūmr (0, t) ≤ 0 .

Hence, thanks to a Kato-type inequality we can infer that ū is a supersolution to
equation (4.1) in the sense of Definition 3.8.

Remark 4.4. Let
q > 2

and assumption (2.12) be satisfied. In Theorem 2.3 the precise hypotheses on
parameters α, C > 0, T > 0 are as follows.

(a) Let p < m. We require that
α > 0, (4.32)

b̄ k1(N − 2− b̄)Cm − c̄ Cp ≥ 0 (4.33)

(b) Let p > m. We require that
α = 0, (4.34)

b̄ k1(N − 2− b̄)Cm − c̄ Cp ≥ 0 (4.35)

Lemma 4.2. All the conditions in Remark 4.4 can hold simultaneously.

Proof. (a) We observe that, due to (2.12),

N − 2− b̄ > 0.

Therefore, we can select C > 0 sufficiently large to guarantee (4.33).
(b) We choose C > 0 sufficiently small to guarantee (4.35).
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Proof of Theorem 2.3. We now prove Theorem 2.3 in view of Proposition 4.3. In
view of Lemma 4.2 we can assume that all conditions in Remark 4.4 are fulfilled.
Set

ζ(t) = (T + t)α, for all t ≥ 0 .

Let p < m. Inequality (4.27) reads

b̄ k1(N − 2− b̄)Cm(T + t)mα − c̄ Cp(T + t)pα ≥ 0 for all t > 0 .

This follows from (4.32) and (4.33), for T > 1. Hence, by Propositions 4.3 and 3.5
the thesis follows in this case.

Let p > m. Conditions (4.34) and (4.35) are equivalent to (4.27). Hence, by
Propositions 4.3 and 3.5 the thesis follows in this case too. The proof is complete.

5 Blow-up: proofs

In what follows we set r ≡ |x|. We construct a suitable family of subsolutions of
equation

ut =
1

ρ(x)
∆(um) + up in R

N × (0, T ). (5.1)

5.1 Order of decaying: q = 2

Suppose (H), (2.1) and (2.7). To construct a suitable family of subsolution of
(5.1), we define, for all (x, t) ∈ [RN \Be]× (0, T ),

u(x, t) ≡ u(r(x), t) := Cζ(t)

[

1−
log(r)

a
η(t)

]
1

m−1

+

, (5.2)

and

w(x, t) ≡ w(r(x), t) :=

{

u(x, t) in [RN \Be]× (0, T ),

v(x, t) in Be × (0, T ),
(5.3)

where

v(x, t) ≡ v(r(x), t) := Cζ(t)

[

1−
r2 + e2

2e2
η

a

]
1

m−1

+

. (5.4)

Let us set

F (r, t) := 1−
log(r)

a
η(t) ,

and

G(r, t) := 1−
r2 + e2

2e2
η(t)

a
.
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For any (x, t) ∈ (RN \Be)× (0, T ), we have:

ut = Cζ ′F
1

m−1 + Cζ
1

m− 1
F

1

m−1
−1

(

−
log(r)

a
η′
)

=

= Cζ ′F
1

m−1 + Cζ
1

m− 1

(

1−
log(r)

a
η

)

η′

η
F

1

m−1
−1 − Cζ

1

m− 1

η′

η
F

1

m−1
−1 =

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1

m−1 − Cζ
1

m− 1

η′

η
F

1

m−1
−1.

(5.5)

(um)r = −
Cm

a
ζm

m

m− 1
F

1

m−1
1

r
η. (5.6)

(um)rr = −Cmζm
m

(m− 1)2
F

1

m−1
−1

(

1−
log(r)

a
η

)

η
1

r2 log(r)

+
Cm

a
ζm

m

(m− 1)2
F

1

m−1
−1 η

r2 log(r)
+
Cm

a
ζm

m

m− 1
F

1

m−1
1

r2
η =

= −
Cm

a
ζm

m

(m− 1)2
F

1

m−1 η
1

r2 log(r)

+
Cm

a
ζm

m

(m− 1)2
F

1

m−1
−1 η

r2 log(r)
+
Cm

a
ζm

m

m− 1
F

1

m−1
1

r2
η.

(5.7)

For any (x, t) ∈ Be × (0, T ), we have:

vt = Cζ ′G
1

m−1 + Cζ
1

m− 1
G

1

m−1
−1

(

−
r2 + e2

2e2
η′

a

)

=

= Cζ ′G
1

m−1 + C
ζ

m− 1

(

1−
r2 + e2

2e2
η

a

)

η′

η
G

1

m−1
−1 − Cζ

1

m− 1

η′

η
G

1

m−1
−1 =

= Cζ ′G
1

m−1 + Cζ
1

m− 1

η′

η
G

1

m−1 − Cζ
1

m− 1

η′

η
G

1

m−1
−1 .

(5.8)

(vm)r = −
Cm

a
ζm

m

m− 1
G

1

m−1
r

e2
η . (5.9)

(vm)rr = −Cmζm
m

m− 1
G

1

m−1
1

e2
η

a
+
Cm

a2
ζm

m

(m− 1)2
G

1

m−1
−1η2

r2

e4
. (5.10)

21



We also define

σ(t) := ζ ′ + ζ
1

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
ηk2

(

N − 2 +
1

m− 1

)

,

δ(t) := ζ
1

m− 1

η′

η
,

γ(t) := Cp−1ζp,

σ0(t) := ζ ′ +
ζ

m− 1

η′

η
+
N

e2
ρ2
Cm−1

a
ζm

m

m− 1
η ,

K :=

(

m− 1

p+m− 2

)
m−1

p−1

−

(

m− 1

p +m− 2

)
p+m−2

p−1

> 0.

(5.11)

Proposition 5.1. Let p > m. Let T ∈ (0,∞), ζ, η ∈ C1([0, T ); [0, T )). Let σ, δ,
γ, σ0, K be defined in (5.11). Assume that, for all t ∈ (0, T ),

σ(t) > 0, K[σ(t)]
p+m−2

p−1 ≤ δ(t)γ(t)
m−1

p−1 , (5.12)

(m− 1)σ(t) ≤ (p+m− 2)γ(t) . (5.13)

σ0(t) > 0, K[σ0](t)
p+m−2

p−1 ≤ δ(t)γ(t)
m−1

p−1 , (5.14)

(m− 1)σ0(t) ≤ (p+m− 2)γ(t) . (5.15)

Then w defined in (5.3) is a subsolution of equation (5.1).

Proof of Proposition 5.1. Let u be as in (5.2) and set

D2 :=
{

(x, t) ∈ (RN \Be)× (0, T ) | 0 < F (r, t) < 1
}

.

In view of (5.5), (5.6), (5.7), we obtain, for all (x, t) ∈ D2,

ut −
1

ρ
∆(um)− up

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1

m−1 − Cζ
1

m− 1

η′

η
F

1

m−1
−1

+ F
1

m−1
Cm

a
ζm

m

m− 1
η

1

ρr2

(

1

(m− 1) log(r)
+N − 1

)

−
Cm

a
ζm

m

(m− 1)2
F

1

m−1
−1 η

log(r)

1

ρr2

− CpζpF
p

m−1 .

In view of hypotheses (2.1) and (2.7), we can infer that

1

ρr2
≤ k2 , −

1

ρr2
≤ −k1 for all x ∈ R

N \Be . (5.16)
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Moreover,

− 1 ≤ −
1

log(r)
≤ 0 ,

1

log(r)
≤ 1 , for all x ∈ R

N \Be . (5.17)

From (5.16) and (5.17) we have

ut −
1

ρ
∆(um)− up

≤ CF
1

m−1
−1

{

F

[

ζ ′ + ζ
1

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
η k2

×

(

N − 2 +
1

m− 1

)]

−ζ
1

m− 1

η′

η
− Cp−1ζpF

p+m−2

m−1

}

.

(5.18)

Thanks to (5.11) and (5.18)

ut −
1

ρ
∆(um)− up ≤ CF

1

m−1
−1ϕ(F ), (5.19)

where
ϕ(F ) := σ(t)F − δ(t)− γ(t)F

p+m−2

m−1 . (5.20)

Due to (5.19), our goal is to find suitable C > 0, a > 0, ζ , η such that

ϕ(F ) ≤ 0 , for all F ∈ (0, 1) .

To this aim, we impose that

sup
F∈(0,1)

ϕ(F ) = max
F∈(0,1)

ϕ(F ) = ϕ(F0) ≤ 0 ,

for some F0 ∈ (0, 1). We have

dϕ

dF
= 0 ⇐⇒ σ(t)−

p+m− 2

m− 1
γ(t)F

p−1

m−1 = 0

⇐⇒ F0 =

[

m− 1

p+m− 2

σ(t)

γ(t)

]
m−1

p−1

.

Then,

ϕ(F0) = K
σ(t)

p+m−2

p−1

γ(t)
m−1

p−1

− δ(t)

where the coefficient K = K(m, p) has been defined in (5.11). By hypotheses
(5.12) and (5.13)

ϕ(F0) ≤ 0 , 0 < F0 ≤ 1 . (5.21)
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So far, we have proved that

ut −
1

ρ(x)
∆(um)− up ≤ 0 in D2 . (5.22)

Furthermore, since um ∈ C1([RN \ Be] × [0, T )), due to Lemma 3.1 (applied with
Ω1 = D2,Ω2 = R

N \ [Be ∪ D2], u1 = u, u2 = 0, u = u), it follows that u is a
subsolution to equation

ut −
1

ρ(x)
∆(um)− up = 0 in [RN \Be]× (0, T ) , (5.23)

in the sense of Definition 3.8.
Let

D3 := {(x, t) ∈ Be × (0, T ) | 0 < G < 1} .

In view of (5.8), (5.9) and (5.10), for all (x, t) ∈ D3,

vt −
1

ρ(x)
∆(vm)− vp

= CG
1

m−1
−1

{

G

[

ζ ′ +
ζ

m− 1

η′

η
+

1

ρ

Cm−1

a
ζm

m

m− 1

N − 1

e2
η
1

ρ

Cm−1

a
ζm

m

m− 1

1

e2
η

]

+ −
ζ

m− 1

η′

η
−

1

ρ

Cm−1

a2
ζm

m

(m− 1)2
r2

e4
η2 − Cp−1ζpG

p+m−2

m−1

}

(5.24)
Using (2.2), (5.24) yield, for all (x, t) ∈ D3,

vt−
1

ρ
∆(vm)− vp

≤ CG
1

m−1
−1

{

G

[

ζ ′ +
ζ

m− 1

η′

η
+ ρ2

Cm−1

a
ζm

m

m− 1

N

e2
η

]

−
ζ

m− 1

η′

η
− Cp−1ζpG

p+m−2

m−1

}

.

(5.25)

Thanks to (4.7) and (5.25),

vt −
1

ρ
∆(vm)− vp ≤ CG

1

m−1
−1ψ(G), (5.26)

where
ψ(G) := σ0(t)G− δ(t)− γ(t)G

p+m−2

m−1 . (5.27)

Now, by the same arguments used to obtain (5.23), in view of (5.14) and (5.15)
we can infer that

ψ(G) ≤ 0 0 < G ≤ 1 .
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So far, due to (5.26), we have proved that

vt −
1

ρ(x)
∆(vm)− vp ≤ 0 for any (x, t) ∈ D3 . (5.28)

Moreover, by Lemma 3.1 v is a subsolution of equation

vt −
1

ρ(x)
∆(vm)− vp = 0 in Be × (0, T ) , (5.29)

in the sense of Definition 3.8. Now, observe that w ∈ C(RN × [0, T )), indeed,

u = v = Cζ(t)

[

1−
η(t)

a

]
1

m−1

+

in ∂Be × (0, T ) .

Moreover, wm ∈ C1(RN × [0, T )), indeed,

(um)r = (vm)r = −Cmζ(t)m
m

m− 1

1

e

η(t)

a

[

1−
η(t)

a

]
1

m−1

+

in ∂Be × (0, T ) .

Hence, by Lemma 3.1 again, w is a subsolution to equation (5.1) in the sense of
Definition 3.8.

Remark 5.2. Let
p > m ,

and assumptions (2.1) and (2.7) be satisfied. Let define ω := Cm−1

a
. In Theorem

2.2, the precise hypotheses on parameters C > 0, a > 0, ω > 0 and T > 0 is the
following.

max

{

1 +mk2
Cm−1

a

(

N − 2 +
1

m− 1

)

; 1 +mρ2
Cm−1

a

N

e2

}

≤ (p+m− 2)Cp−1 ,

(5.30)

K

(m− 1)
p+m−2

p−1

max

{

[

1 +mk2
Cm−1

a

(

N − 2 +
1

m− 1

)]

p+m−2

p−1

;

(

1 +mρ2
Cm−1

a

N

e2

)

p+m−2

p−1

}

≤
p−m

(m− 1)(p− 1)
Cm−1 .

(5.31)

Lemma 5.1. All the conditions in Remark 5.2 can hold simultaneously.

Proof. We can take ω > 0 such that

ω0 ≤ ω ≤ ω1

for suitable 0 < ω0 < ω1 and we can choose C > 0 sufficiently large to guarantee
(5.30) and (5.31) (so, a > 0 is fixed, too).
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Proof of Theorem 2.2. We now prove Theorem 2.2, by means of Proposition 5.1.
In view of Lemma 5.1 we can assume that all conditions of Remark 5.2 are fulfilled.
Set

ζ = (T − t)−α , η = (T − t)−β , for all t > 0 ,

and α and β as defined in (4.20). Then

σ(t) :=

[

1

m− 1
+
Cm−1

a

m

m− 1
k2

(

1

m− 1
+N − 2

)]

(T − t)−
p

p−1 ,

δ(t) :=
p−m

(m− 1)(p− 1)
(T − t)−

p

p−1 ,

γ(t) := Cp−1(T − t)−
p

p−1 ,

σ0(t) :=
1

m− 1

[

1 +
ρ2Nm

e2
Cm−1

a

]

(T − t)−
p

p−1 .

(5.32)

Let p > m. Condition (5.30) implies (5.12), (5.13), while condition (5.31)
implies (5.14), (5.15). Hence by Propositions 5.1 and 3.7 the thesis follows.
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