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Abstract

We illustrate and test an approach grounded on embedding moment equa-

tions (MEs) of groundwater flow within a Monte Carlo based modeling strat-

egy to yield a Reduced-Order Model (ROM) that enables the efficient and

accurate evaluation of probability distributions of hydraulic heads in ran-

domly heterogeneous transmissivity fields. The projection space determining

the accuracy of the ROM solution is typically computed through the princi-

pal component analysis of a selected number of full system model solutions

(the so-called snapshots). Computationally expensive sensitivity analyses are

then required to assess the independence of the ROM from the snapshots.

Here, we propose to compute the projection vectors upon relying on the hy-

draulic head covariance evaluated from the solution of corresponding MEs of

groundwater flow.
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Our workflow to compute hydraulic head distributions is organized ac-

cording to the following steps: (i) approximation of mean hydraulic head and

head covariance matrix through (second-order accurate) solutions of MEs;

(ii) computation of the leading eigenvectors of the head covariance matrix to

form the basis set for the ROM projection space; and (iii) construction of the

ROM. Sample probability density functions of hydraulic heads are then effi-

ciently obtained via Monte Carlo simulations relying on the developed ROM.

The proposed methodology is compared against snapshot-based ROMs and

the full system model in a two- and a three-dimensional steady-state ground-

water flow setting where pumping from a point source is superimposed to a

mean uniform flow. Our results show that the projection space computed

by relying on MEs provides a more accurate ROM solution than the one

resulting from reliance on snapshots.

Keywords: Reduced-Order Monte Carlo simulation, Stochastic moment

equations, Proper Orthogonal Decomposition, Heterogeneous medium

1. Introduction1

Numerical solutions of flow and/or transport processes taking place in2

environmental systems at a scale of practical interest are typically asso-3

ciated with high-computational burden [1–3]. This aspect might hamper4

the use of modern uncertainty quantification techniques, local and/or global5

sensitivity analyses, and decision support tools under uncertainty. In the6

presence of spatially-distributed random system parameters, the Probability7

Density Function (PDF) of a target environmental variable is usually esti-8

mated through Monte Carlo (MC) approaches. These in turn commonly9
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require multiple computationally-expensive solutions of a Full System Model10

(FSM) considered to represent the behavior of the studied physical system11

and to yield the relevant modeling goals.12

A stark example is given by groundwater related scenarios, where soil13

parameters, such as porosity and hydraulic conductivity, are frequently con-14

ceptualized as spatial random fields. In this context, MC methods play a15

significant role in dealing with uncertainty quantification [4–6], uncertainty16

reduction (e.g., in the framework of data assimilation techniques, such as the17

ensemble Kalman filter and/or smoother [7–10]), and variance- or moment-18

based global sensitivity analyses [11–15]. Implementation of MC relies on19

performing multiple forward simulations of the selected forward FSM upon20

using a collection of independent realizations of the uncertain model param-21

eters. While MC approaches are conceptually straightforward, convergence22

of the empirical/sample moments of the target model outputs (e.g., variance23

of hydraulic head or solute concentration) is generally slow, i.e., it requires24

a large number of forward model solutions. In this context, Reduced-Order25

Models (ROMs, also termed as surrogate models, metamodels or proxies)26

that can approximate the FSM solution at a reduced computational cost can27

be attractive to assist model development and probabilistic risk assessment.28

Surrogate models have been developed with the aim of reducing com-29

putational burden while capturing the main features of model outcomes.30

Data-driven, projection-based, and multi-fidelity models are three categories31

of surrogate models [16, 17]. Data-driven proxies [18] are commonly built32

by training the surrogate model on available data. Projection-based proxies33

(which are also known as reduced-order, or reduced-basis methods) rest on34
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a projection of the FSM governing equation (including initial and boundary35

conditions) onto a suitable low-dimensional space. For example, the idea un-36

derpinning Reduced-Order Monte Carlo (ROMC) [19, 20] relies on replacing37

the collection of FSM solutions with solutions of a projection-based sur-38

rogate model, yielding an increased computational efficiency. Multi-fidelity39

models [21, 22] are built by (a) relying on coarse grids to capture solutions as-40

sociated with large-scale structures or (b) simplifying physical-chemical pro-41

cesses included in the FSM. Razavi et al. [16] and Asher et al. [17] provided42

comprehensive reviews to the theoretical elements underlying these types43

of surrogate models, including their limitations and applications in ground-44

water modeling. A detailed review of projection-based surrogate models is45

presented by Chen et al. [23].46

Here, we focus on projection-based surrogate models for MC-based solu-47

tions of groundwater flow in the presence of randomly distributed hydraulic48

parameters. In this case, surrogate models generally rely on projecting hy-49

draulic heads onto a few dominant basis functions, making use of the so-50

called Galerkin projection. The basis functions used for the projection can51

be computed by Proper Orthogonal Decomposition (POD) of a certain set52

of snapshots. The latter corresponds to a selected collection of solutions of53

the flow problem, each associated with a random realization of the hydraulic54

parameter field, typically hydraulic conductivity. POD selects projection55

vectors as the most energetic modes (or principal components) associated56

with the snapshots. These modes are computed as the eigenvectors of the57

covariance matrix of the snapshots related to the largest eigenvalues and de-58

scribe the spatial variability of the FSM solutions [24]. Modes’ coefficients59
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required to approximate each realization are computed by imposing that the60

residual of the model equation associated with the approximated solution be61

orthogonal to the projection vectors [19]. Thus, these coefficients are the62

solution of a low-dimensional linear system rather than of the FSM, result-63

ing in considerable CPU time savings. Projection-based surrogate models64

have received increasing attention in modeling groundwater flow and trans-65

port [16, 19, 20, 25–27], because of their rigorous mathematical foundation66

and high accuracy. Deterministic scenarios have been tackled in a variety of67

studies, as summarized in the following. Siade et al. [28] considered determin-68

istic groundwater flow under transient conditions, snapshots in this setting69

corresponding to solutions of the FSM at selected observation times. Li et al.70

[29] developed a POD-based reduced order model for a variable-density flow.71

Boyce et al. [27] and Stanko et al. [26] used POD to reduce the order of72

a model describing unconfined groundwater flow. Several authors [30–32]73

have explored model reduction techniques to simulate flow and solute trans-74

port in (otherwise deterministic) homogeneous and/or heterogeneous aquifer75

systems.76

Although convergence of greedy algorithms towards data-independent77

ROMs is theoretically guaranteed [33, 34], the accuracy of the ROM so-78

lution in practical applications strongly depends on the method used for the79

snapshot selection and their number (as also pointed out by Asher et al.80

[17]), thus limiting its computational efficiency when too many snapshots81

are required. There is clearly a trade-off between the ROM accuracy and its82

computational cost, i.e., an enhanced size of the sample of snapshots yields83

more accurate ROM solutions, at the expense of an increased computational84
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cost. Several studies focus on the search for the most effective basis func-85

tions by selecting snapshots along the direction that maximize the error on86

the residual, i.e., selecting the more informative snapshots on the basis of a87

greedy algorithm [35–37]. Pasetto et al. [20] used a similar greedy algorithm88

to develop a computationally advantageous reduced-order MC approach for89

a transient flow scenario when the random transmissivity field is described90

through zonation. In a similar simulation scenario depicting a transient flow91

in a confined aquifer, Boyce and Yeh [38] used two greedy algorithms to it-92

eratively estimate the adequate number of snapshots and their appropriate93

selection times.94

In the presence of randomly heterogeneous transmissivity fields, the ap-95

plication of the greedy algorithm is more challenging due to the large size of96

the model parameter set. Lieberman et al. [39] proposed a greedy algorithm97

for the simultaneous selection of the reduced state and parameter spaces in98

the presence of randomly distributed conductivity. Pasetto et al. [25] showed99

that the ROM error decreases slowly with the number of snapshots for large100

variances and small integral scales of the random conductivity field. As a101

consequence, there is the possibility that the greedy algorithm does not lead102

to the desired accuracy by relying on a reasonably small snapshot set.103

In this broad framework, our study aims at fully integrating Moment104

Equations (MEs) of groundwater flow [40–43] within a model order reduction105

approach to efficiently perform numerical MC simulations in the presence of106

randomly heterogeneous hydraulic parameters. We do so by improving the107

construction of the projection space upon relying on the evaluation of the108

first and second statistical moments (i.e., expectation and covariance) of hy-109
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draulic heads as the solutions of corresponding MEs of groundwater flow in110

a randomly heterogeneous domain. The latter are deterministic equations111

rendering the (ensemble) moments of hydraulic head h(x) and Darcy flux112

q(x) at location vector x. We focus on MEs of fully-saturated steady state113

confined groundwater flow (see, e.g., [40] for the derivation of near-exact (de-114

terministic) integro-differential equations governing the space-time evolution115

of (ensemble) mean heads and [41] or [44] for a review on moment differen-116

tial equations for groundwater flow in highly heterogeneous porous media).117

Numerical approaches have been developed to apply MEs to quantify un-118

certainty associated with forward and inverse modeling of groundwater flow119

in porous media of randomly heterogeneous conductivity including applica-120

tion to field scenarios (see, e.g., [45–47] and references therein). Most recent121

developments allowed embedding stochastic MEs of transient groundwater122

flow in data assimilation and parameter estimation approaches via ensemble123

Kalman filter [46, 48, 49].124

With respect to the snapshot technique, the approach we present, i.e.,125

the derivation of the ROM projection vectors from the solution of moment126

equations, has the advantage that neither the snapshot size should be pre-127

determined, nor procedures associated with imposed validation conditions128

(e.g., greedy algorithm) should be required. Alternative ways to combine129

moment equations and model reduction approaches have been presented to130

reduce the computational costs. For example, Yang et al. [50] and Zhang131

and Lu [51] relied on the Karhunen-Loève expansion to obtain higher order132

approximations of the first and second (ensemble) moments of heads. Li and133

Zhang [52] compared this approach to a collocation method and polynomial134
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chaos expansion, highlighting their advantages with respect to traditional135

MC for the evaluation of the first and second moments of the heads.136

The technique we propose in this study is substantially different from137

these, the main idea being the use of MEs to construct the surrogate model138

with which one can perform standard MC simulations to yield approxima-139

tions of the complete head probability density function. The latter then (in140

principle) enables one to evaluate (ensemble) moments of any order.141

Consistent with the typical workflow of ROMs, our computational pro-142

cedure is structured across two stages, hereafter termed as offline and online143

components, respectively. The offline operations include (i) the solution of144

the MEs and (ii) the computation of the leading eigenvectors of the head co-145

variance matrix. These eigenvectors are used as basis for the ROM projection146

space and enable the construction of a computationally efficient and accurate147

surrogate model. These operations are performed only once, thus entailing148

relatively high CPU time savings in the online stage, which is in turn keyed149

to the application of the reduced-order model in the MC framework. Thus,150

the online phase comprises an MC iteration where the full model is replaced151

by the MEs-based surrogate model. This approach seamlessly embeds for152

the first time moment equations solutions within a Monte Carlo context, en-153

abling the evaluation of the full probability distribution of groundwater flow154

variables.155

The structure of the work is detailed in the following. The deterministic156

partial differential equations governing the (steady-state) spatial distribution157

of the first two (ensemble) moments of hydraulic head in a randomly het-158

erogeneous transmissivity field are briefly summarized in Section 2.2. The159
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mathematical derivation of the ROM and its application in the context of160

MC simulations of groundwater flow are described in Section 3. Illustrative161

two- and three-dimensional showcase examples are introduced in Section 4,162

Section 5 is devoted to the analysis and discussion of results. Conclusions163

are drawn in Section 6.164

2. Problem setting165

We consider steady-state groundwater flow in a confined aquifer denoted166

with Ω ⊂ Rr, r = 2, 3, as described by [53]:167 
∇ · (T (x)∇h(x)) + f(x) = 0 x ∈ Ω

h(x) = H(x) x ∈ ΓD

q(x) · n(x) = Q(x) x ∈ ΓN

(1)168

where h is the hydraulic head; f is a forcing term; H and Q represent the169

assigned hydraulic head at the Dirichlet boundary ΓD and the assigned flux170

at the Neumann boundary ΓN , respectively; q(x) = −T (x)∇h (x) is the flux171

vector; and n is the unit vector normal to the domain boundary (positive172

when pointing outward). Operators and (vector or scalar) quantities are173

defined consistent with the dimensionality of the scenario investigated, e.g.,174

T is transmissivity (for r = 2) or hydraulic conductivity (for r = 3).175

Here, T is described as a second-order stationary spatial random field with176

a given distribution. Equation (1) thus becomes a stochastic partial differ-177

ential equation. While analytical solutions are not available for a generally178

heterogeneous domain and in the presence of general boundary conditions,179

numerical approximations have been proposed in literature to estimate the180
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leading (statistical) moments and/or the probability density function (PDF)181

of heads. As seen in Section 1, these include, e.g., the MEs or the MC ap-182

proach. We provide a brief illustration of these approaches in the following.183

2.1. Moment equations of groundwater flow184

The key idea underpinning the moment equations (MEs) method (see,185

e.g., [41] and references therein) is to solve equation (1) by deriving the186

equations satisfied by the (ensemble) moments of hydraulic heads and fluxes.187

Solving these equations entails expanding all moments appearing in them188

in terms of a small parameter, σY , representing the standard deviation of189

the natural logarithm of T , i.e., Y = lnT . Hydraulic head can then be190

expanded as h = h(0) + h(1) + h(2) + . . . , where h(n) = O(σnY ) (see [41] and191

references therein). One then obtains a set of recursive approximations of the192

otherwise exact MEs that can be solved by truncating the head expansion193

up to a given order (second order being typically used for computational194

limitations). Denoting the ensemble mean (expected value) of Y with 〈Y 〉195

and its standard deviation with σY , (ensemble) mean heads are approximated196

as (see, e.g., [41] and references therein):197

〈h (x)〉 ≈
〈
h(0) (x)

〉
+
〈
h(2) (x)

〉
(2)198

where
〈
h(0) (x)

〉
and

〈
h(2) (x)

〉
are zero- and second-order (in terms of σY )199

components of the mean head, respectively (note that in this case the mean200

of the first-order correction term is zero, i.e.,
〈
h(1)
〉

= 0 [41]). Similarly, for201

the fluxes:202

〈q (x)〉 ≈
〈
q(0) (x)

〉
+
〈
q(2) (x)

〉
(3)203
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where204 〈
q(0) (x)

〉
= −∇ ·

[
TG (x)∇

〈
h(0)(x)

〉]
(4)205

and206

〈
q(2) (x)

〉
= −TG(x)

[
∇
〈
h(2) (x)

〉
+
σ2
Y

2
∇
〈
h(0) (x)

〉]
+ r(2) (x) (5)207

Here, r(2) (x) is a second-order residual flux, and TG (x) = e〈Y (x)〉 is the208

geometric mean of the transmissivity field.209

Computation of the zero-order mean head is straightforward and details210

are here omitted (see [41, 54] and references therein). The equation satisfied211

by the second-order mean head
〈
h(2) (x)

〉
is [41]:212 

∇ ·
[
TG(x)

(
∇
〈
h(2) (x)

〉
+

σ2
Y

2
∇
〈
h(0) (x)

〉)
− r(2) (x)

]
= 0 x ∈ Ω〈

h(2) (x)
〉

= 0 x ∈ ΓD

q(2)(x) · n(x) = 0 x ∈ ΓN

(6)213

The (second-order) cross covariance between h and T , u(2) (y,x) = 〈T ′ (y)h′ (x)〉(2),214

primed quantities denoting fluctuations with respect to their corresponding215

means, is computed as the solution of the following equation defined for all216

y ∈ Ω [41]:217 
∇ ·

[
TG(x)∇u(2) (y,x)− TG(y)CY (x,y)

〈
q(0) (x)

〉]
= 0 x ∈ Ω

u(2) (y,x) = 0 x ∈ ΓD[
TG(x)∇u(2) (y,x)− TG(y)CY (x,y)

〈
q(0) (x)

〉]
· n(x) = 0 x ∈ ΓN

(7)218

where CY (x,y) = 〈Y ′ (x)Y ′ (y)〉 is the covariance of Y . The equation for219
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the second-order head covariance C
(2)
h is [41]:220 

∇ ·
[
TG(x)∇C

(2)
h (x,y) + u(2) (x,y)∇

〈
h(0) (x)

〉]
= 0 x ∈ Ω

C
(2)
h (x,y) = 0 x ∈ ΓD[
TG(x)∇C

(2)
h (x,y) + u(2) (x,y)∇

〈
h(0) (x)

〉]
· n(x) = 0 x ∈ ΓN

(8)221

The second-order residual flux r(2) is then obtained as [41, 54]:222

r(2) (x) = −〈T ′ (x)∇h′ (x)〉(2) = lim
y→x

[
−∇xu

(2) (y,x)
]

(9)

Details about the numerical solution through the finite element method for223

equations (2)- (9) are described in, e.g, [54], who performed a detailed anal-224

ysis of the solution accuracy as a function of the size of the numerical grid225

employed. We note that computing the numerical approximation of the head226

covariance matrix C
(2)
h on a grid with n nodes entails (i) solving equation (7)227

n times to evaluate the cross-covariance matrix u(2) and (ii) solving equa-228

tion (8) n times to obtain C
(2)
h . These 2n solutions can be computationally229

expensive, the discretized governing equations having the same system size,230

n. However, it is noted that the full-system stiffness matrix (equation (10))231

needs to be computed only once and is then stored [41] to serve all 2n runs.232

Computational efficiency can then be achieved by direct (sparse) factoriza-233

tion as in Xia et al. [54] or through iterative solvers, in case a direct solver234

is too expensive.235

2.2. Monte Carlo simulation236

When compared against an MEs-based approach, MC schemes have the237

advantage of providing an empirical approximation of the full head PDF238
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through a straightforward implementation. MEs are typically used only for239

the evaluation of the first and second moments of the given modeling tar-240

get, and do not provide additional information about possible appearance of241

heavy tails of the associated PDF, which however can have a critical impor-242

tance in risk assessment scenarios. The main drawback of MC methods is243

their slow convergence, so that a high number of model runs is often required244

to obtain reliable results in engineering applications.245

MC techniques start by sampling Nen independent and identically dis-246

tributed realizations of the random parameter Y , here indicated with Y 1, . . . , Y Nen .247

Then, for any realization Y i, the linear Galerkin Finite Element Method248

(FEM) simplifies equation (1) into the the system of linear algebraic equa-249

tions:250

Aihi = bi, i = 1, . . . , Nen (10)

Here, Ai is the full-system stiffness matrix, which is typically sparse, sym-251

metric, and positive definite of size n× n (n is the number of nodes used in252

the spatial discretization); hi is the hydraulic head vector whose components253

are the head solutions at the nodes; bi is the full stress vector, representing254

the effects of the forcing terms and the given boundary conditions. In this255

context, we only need to compute b once and store it.256

The empirical PDF of heads (and the ensuing moments) can be evaluated257

from the realizations h1, . . . ,hNen . Appropriate numerical solvers should be258

employed to solve (10) for each hi. Depending on the grid size, n, and on the259

problem dimension (two- or three-dimensional flow), the solution is efficiently260

obtained through sparse direct solvers (e.g., MA57 [55]) or iterative methods261

such as the preconditioned conjugate gradient [31, 56]. Although this step is262
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much faster than solving the MEs, a large number of realizations is required263

to grant stability in the results due to the slow convergence of MC methods,264

thus resulting in a computationally intensive procedure for most applications.265

3. Moment equations-based reduced-order model266

3.1. Reduced-order models267

We follow the methodology presented by Pasetto et al. [25] and construct268

the ROM by defining a m-dimensional projection space with basis vectors269

p1, . . . ,pm. Each realization of the hydraulic head vector hi in equation (10)270

can be approximated by its projection onto the reduced space:271

hi ≈ h̃i = 〈h〉+
m∑
j=1

αijpj = 〈h〉+ Pαi. (11)

Here 〈h〉 is the mean vector of hydraulic heads, P is the projection matrix272

P = [p1,p2, . . . ,pm], and αij is the jth component of the coefficient vector273

αi.274

Substituting equation (11) into equation (10) and imposing the residual275

to be orthogonal to the projection space P yields the following linear system276

for the coefficient vector αi:277

PTAiPαi = PTb−PTAi 〈h〉 (12)

where superscript T represents transpose. The system matrix in equation (12)278

has size m×m. The solution of equation (12) and the subsequent calculation279

of h̃i in equation (11) for i = 1, . . . , Nen, where i identifies the i-th random280

realization of the transmissivity field, is termed online phase, as it has to be281

repeated for each T i. The most expensive (in terms of computational time)282
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operations in this online phase are those acting on the FSM dimension n and283

correspond to (a) assembling the stiffness matrix Ai and (b) performing the284

projection onto the reduced space.285

The most computationally expensive phase of a ROM is the construction286

of the projection vectors, for which one is required to collect the snapshots287

by computing a certain number of FSM solutions. However, this operation288

is typically performed only once, during the so-called offline phase. We re-289

call that the Karhunen-Loève(KL) theorem is at the heart of POD, because290

it enables expressing the head random field as a linear combination of the291

dominant eigenfunction solutions of the Fredholm integral equation associ-292

ated with the covariance function of the head field. The spatial discretization293

of this eigenfunction problem becomes an eigenvector problem for the head294

covariance matrix, Ch. Thus, the offline phase in POD aims at computing295

the dominant eigenvectors of Ch. POD finds a projection basis by approxi-296

mating the head moments with the empirical moments of a number of FSM297

solutions (see equation (10)), h1, . . . ,hNsn , termed snapshots [25]. The qual-298

ity of the resulting projection vectors depends on the number of snapshots299

Nsn and on the procedure used for their selection. Fully addressing these300

issues in the case of stochastic equations is still an open issue. The resulting301

ROM is here termed as SnapROM.302

To avoid computation of the snapshots and to preserve the optimality303

of the KL eigenvectors, an alternative approximation of the head covariance304

matrix is required. Here, we propose to approximate the head covariance305

matrix Ch with the solution of the MEs (2)-(9). The projection vectors306

p1,p2, . . . ,pm are then calculated as the leading eigenvectors of the covari-307
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ance matrix, C
(2)
h , solution of equation (8). The resulting ROM is here308

denoted as MEsROM.309

As a remark, we note that conductivity distributions in geologic media310

have sometimes been modeled through a unique, in some cases multimodal,311

distribution (see, e.g., the model taxonomy illustrated by Winter et al. [44]).312

It is recognized that this stems from a homogenization of conductivity values313

within a unique population, while they can be associated with diverse re-314

gions characterized by differing geological attributes. One may alternatively315

conceptualize the porous medium as a random composite system. In the316

latter setting, the domain is composed of regions (or zones) of geo-materials317

with contrasting values of hydraulic properties (e.g., [44, 57–59] and refer-318

ence therein). This conceptualization enables one to represent the system as319

a set of disjoint blocks (whose location might be uncertain), each constituted320

by a given geomaterial. As such, conductivities within each block can be321

represented through a unimodal distribution characterized by a mild vari-322

ance and the solution of second-order approximations stemming from MEs323

of groundwater flow can be obtained as implemented by [60]. In this sense,324

our workflow is fully compatible with these settings, which constitute the325

context within which our work is framed. The heterogeneous settings we326

consider can then be seen as representative of the natural variability con-327

tained within a geologic unit, which can potentially be depicted through328

heterogeneity models of the kind we consider [44].329

3.2. ROM implementation and computational cost330

In this section we compare the computational costs of the models listed331

in Table 1. These costs are evaluated in terms of the increase of the number332
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of FLOPS (floating point operations) with the problem size, i.e., the number333

of nodes n used in the spatial discretization. For example, associating a cost334

O(n) to an operation indicates that the number of FLOPS required for the335

task is proportional to n.336

The operations performed in the offline stage (i.e., computations with337

the FSM and building of the ROM matrices) are outlined as follows: (i) ap-338

proximation of the mean hydraulic head and head covariance matrix through339

(second-order accurate) solutions of MEs; and (ii) computation of the leading340

eigenvectors of the approximated head covariance matrix, which form the ba-341

sis for the projection space. A computational disadvantage of the MEsROM342

approach with respect to SnapROM resides in the diagonalization of the co-343

variance matrix. In this sense, MEsROM requires computing the leading344

eigenvectors of C
(2)
h , which is a full matrix of dimension n × n (computa-345

tional cost of order O(n3)). SnapROM circumvents this drawback by relying346

on the observation that the matrix of the snapshot perturbations around the347

mean, X = 1/
√
Nsn

[
h′,1, . . . ,h′,Nsn

]
, yields the snapshot covariance matrix348

XXT. It is easy to demonstrate that each eigenvector vi of the small-size349

matrix XTX is related to the corresponding eigenvector pi of the snapshot350

covariance XXT by pi = Xvi, while keeping the same eigenvalues. Thus,351

SnapROM solves an eigenvalues problem of dimension Nsn ×Nsn, or, equiv-352

alently, applies the singular value decomposition (SVD) to matrix X, with a353

computational cost of order O(nN2
sn). The online phase for the calculation354

of hi for each realization i requires the following tasks:355

1. assembly of the system matrix Ai: using a FEM approach, the cost is356

O(3Ne) FLOPS, where Ne is the number of triangles in the mesh (typ-357
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ically Ne ≈1.7 n and 5 n in two- and three-dimensional triangulations,358

respectively); we denote this cost as O(sn), where s ≈ 7 or s ≈ 15 in359

two and three dimensions, respectively;360

2. solution of the linear system (10), Aihi = b, where Ai is sparse and361

symmetric. Here we used the direct solver MA57 that relies on a variant362

of Gaussian elimination for sparse matrices [55]. The computational363

cost in this case depends on the sparsity structure of Ai, in particular364

on the half bandwidth δ. For example, if the non-zero elements are365

concentrated inside a band of width 2δ+1, the cost for the factorization366

is O(nδ2) FLOPS. Note that δ typically increases linearly with n if367

no optimal strategies for grid node renumbering (which is typically368

very costly) are employed. Note that the same computational cost369

estimate applies when a direct sparse solver is replaced by iterative370

Krylov-subspace methods. For these reasons we consider the cost of371

this operation to be formally of O(n3).372

The total online cost for the FSM is therefore governed by the solution of373

the sparse linear system.374

The online operations and the associated costs for SnapROM /MEsROM375

are:376

1. assembly of the elements of the system matrix Ai (it is the same step377

required for FMS), with a cost of O(sn) FLOPS;378

2. computation of the ROM matrix of equation (12), PTAiP, with a cost379

of O(snm+ nm2) FLOPS;380

3. solution of the linear system (12) of dimension m, with a cost of O(m3)381

FLOPS;382
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4. computation of the approximated solution in the FSM space as h̃i (11):383

O(nm) FLOPS.384

Thus, the online cost for SnapROM and MEsROM is dominated by O(snm+385

nm3) FLOPS.386

The cost of the most expensive operation during the online phase shifts387

from O(n3) in FSM, to O(snm + nm3) in SnapROM and MEsROM. When388

n becomes large, the computational advantage of SnapROM and MEsROM389

becomes clear (see also Section 5.3). The most expensive operations in this390

case are the projections onto and from the dimension of the full system, listed391

above at points 1. and 4., which involve a cost proportional to n. This cost392

might be further decreased in ROMs when considering a reduction of the393

parameter space or an affine representation of the system matrix (see, e.g.,394

[26, 61]). This particular issue can be the subject of a future analysis.395

Figure 1 exemplifies our approach by depicting a flowchart detailing the396

procedures for (i) integration of moment equations in a reduced-order mod-397

eling strategy for Monte Carlo simulation of groundwater flow (relying on398

MEsROM), (ii) snapshot-based reduced-order Monte Carlo approach (rely-399

ing on SnapROM) and (iii) standard Monte Carlo simulation (relying on400

FSM).401

4. Computational examples402

The ROMs described in Section 3 are here compared in a two- and a403

three-dimensional setting where (steady-state) pumping is superimposed to404

a uniform (in the mean) flow. Exemplary depictions of the two- and three-405

dimensional domains considered are presented in Figures 2 and 3, respec-406
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tively. The MEs illustrated in Section 2.1 are formulated considering hy-407

draulic conductivity (K) fields in the three-dimensional scenario.408

In all of the scenarios examined, we consider the natural logarithm of409

transmissivity Y = lnT (or of conductivity K in three-dimensions) to be a410

Gaussian second-order stationary random field whose covariance CY is char-411

acterized by an exponential function:412

CY (d) = σ2
Y exp

(
−
[
d1
τ1

+
d2
τ2

+
d3
τ3

])
(13)

where d = [d1, d2, d3] is the separation vector, di and τi being the spatial413

separation distance (or lag) and correlation scale along xi, respectively, and414

σY is the standard deviation of Y . The two-dimensional scenario is defined415

for i = 1, 2 only. If not specified otherwise, we consider σY = 1 and the416

ensemble mean (expectation) of Y is set equal to 0.417

The two-dimensional (2D) scenario is a 20×10 (all quantities are in con-418

sistent units) domain where Dirichlet boundary conditions are imposed along419

the left and right sides with constant deterministic head (i.e., h = 3 at x1 = 0420

and h = 0 at x1 = 20). A point well extracting a unit pumping rate (f = −1)421

is located at the center of the domain, while the top and bottom boundaries422

are impervious. The flow domain is discretized through a regular grid with423

81 × 41 nodes and 6400 triangular elements. Unless specified otherwise, in424

the 2D scenario we set τ1 and τ2 equal to 2 and 1, respectively.425

The three-dimensional (3D) set-up corresponds to a 600 × 600× 60 do-426

main where a point extraction takes place from the center node of the topside427

boundary at a constant rate f = −100. Dirichlet conditions are set across428

the left and right sides (with constant head h = 70 at x1 = 0 and h = 70 at429

x1 = 600), the remaining boundaries being impervious. In this 3D scenario430
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we set τ1, τ2, and τ3 equal to 100, 100 and 20, respectively. The flow domain431

is discretized through a regular grid with 25 × 25 × 13 nodes and 34560432

tetrahedral elements.433

The analysis of both 2D and 3D scenarios is beneficial to assess the CPU434

cost of MEsROM with respect to n and the problem dimensionality. We use435

the widely tested GSLIB software [62] to generate the random Y realizations436

with the aforementioned input parameters.437

We quantify the accuracy of both SnapROM and MEsROM (as listed438

in Table 1) through the L2 norm of the error against the head realizations439

associated with the reference solutions obtained through the FSM. In this440

sense, the error metric η is the average error on the whole set of MC solutions.441

For example, for the heads we have:442

ηh =
1

N

Nen∑
i=1

wwwh̃i − hi,FSM
www2

L2

(14)

A second error metric considered is the average relative error µ:443

µh =
1

N

Nen∑
i=1

wwwh̃i − hi,FSM
www2

L2

‖hi,FSM‖2L2

(15)

Similarly, we consider the absolute error and relative error on the head vari-444

ances as:445

ησ2
h

=
wwwσ̃2

h − σ2,FSM
h

www2

L2

, µσ2
h

=

wwwσ̃2
h − σ2,FSM

h

www2

L2wwwσ2,FSM
h

www2

L2

(16)

where σ̃2
h is the approximated head variance computed from h̃i.446
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5. Results and discussion447

5.1. Offline phase: Computation of the projection space448

5.1.1. Computational cost of the offline phase449

In the following sections we compare the accuracy of the results associ-450

ated with SnapROM and MEsROM. Since the accuracy of SnapROM de-451

pends upon the number of snapshots collected during the offline phase, we452

set the latter parameter in a way that two ROMs are characterized by an453

equivalent offline phase (in terms of computational time). Thus, we start our454

analysis by exploring the computational cost of the offline phase associated455

with MEsROM and SnapROM.456

Table 2 lists the system size (i.e., the number of nodes) and the associated457

CPU times required to solve the MEs and to perform a single run of the458

FSM (evaluated as mean time over 100,000 runs using the processor Inter(R)459

Xeon(R) CPU E5-2650 v3 @ 2.30GHz with 128 GB RAM) for the 2D and460

3D scenarios. For comparison purposes, we also list the ratio (rounded to the461

nearest integer) between the CPU time associated with the MEs and a single462

FSM run. These results show that solving the MEs requires a computational463

cost that roughly corresponds to 482 and 282 FSM solutions in the 2D and464

3D scenarios, respectively.465

In order to obtain the same computational cost between the offline phases466

of the two ROMs, one needs to consider also the CPU time necessary for the467

computation of the projection matrix from the head covariance matrix. The468

cost of the iterative method adopted by MEsROM linearly increases with469

the number of eigenvectors pi, i = 1, . . . ,m, while the SVD on the snapshots470

adopted by SnapROM enables computing all eigenvectors at once.471
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The total offline cost of MEsROM versus the number of eigenvectors m472

(which corresponds to the dimension of the reduced model) is depicted in473

Figure S1 in the the supplementary material (SM) and compared with the474

offline cost associated with SnapROM when using Nsn =500 and Nsn =300475

snapshots for the 2D and 3D scenarios, respectively. In the 2D scenario, the476

cost required to obtain 500 snapshots and their resulting projection matrix477

using SVD is slightly higher than the one required to solve the MEs and ob-478

tain m = 60 eigenvectors. In the 3D scenario, the offline stages of MEsROM479

and SnapROM are characterized by approximately the same computational480

cost when using 300 snapshots for SnapROM and m = 60 eigenvectors for481

both ROMs.482

For this reason, in the following we consider a number of 500 (or 300)483

snapshots for SnapROM in the 2D (or 3D) scenarios, respectively, which484

roughly yields the same computational cost of the offline stages in SnapROM485

and MEsROM (see Table 2).486

5.1.2. Quality of the projection space487

We now assess the quality of the eigenvectors derived from the solution488

of the MEs as well as from the set of snapshots. Figure 4 depicts the first489

six eigenvectors computed on the basis of Nsn =500 and 100,000 snapshots490

together with the corresponding results associated with the MEs in the 2D491

scenario. Considering the eigenvectors obtained for Nsn=100,000 as refer-492

ence, it is clear that the snapshot technique with Nsn =500 does not provide493

the same accuracy as the MEs-based approach, whose results are visibly494

closer to the reference solution. This result is quantitatively supported by495

Table 3 where the L2-norm of the errors between the approximated eigenvec-496
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tors and their reference counterparts are listed. The MEs-based eigenvectors497

are associated with a smaller L2-error than their counterparts based on 500498

snapshots. The only exception is given by p3, where the snapshots-based499

eigenvector displays a support which is spatially more diffused than its MEs-500

based counterpart (see Figure 4). Otherwise, Figure 4 evidences that the501

spatial pattern of eigenvectors p4, p5, and p6 is poorly captured by relying502

on 500 snapshots. In conclusion, these results suggest that, even under con-503

ditions where one devotes the same CPU time to collect snapshots (via FSM504

solutions) and for the solution of MEs, the snapshot-based eigenvectors are505

not as accurate as their MEs-based counterparts. Clearly, one can improve506

the quality of the snapshots-based eigenvectors by computing an increased507

number of snapshots. However, this would result in a more expensive offline508

phase.509

5.2. Online phase: Accuracy of the ROM solutions510

Here, we aim at assessing whether the improved accuracy in the projection511

vectors obtained through the MEs-based approach also enhances the accu-512

racy of the ROM solutions. We first address the 2D scenario and evaluate513

the spatial distribution of the absolute difference between the head variances514

computed by MC simulations based on the FSM with Nen = 100, 000 and515

by MEsROM and SnapROM with Nsn = 500 (Figure 5 (a) and (b), respec-516

tively). Errors associated with MEsROM are everywhere smaller than those517

of SnapROM and are characterized by a spatial distribution similar to the518

one of the errors between FSM-based head variances and their second-order519

approximations evaluated by MEs (see also Figure S2 of the supplementary520

material). One can note that the largest errors are concentrated around the521
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pumping well and rapidly drop (by one order of magnitude) with distance522

from it. These results unambiguously show that MEsROM consistently out-523

performs SnapROM in terms of accuracy on the reconstructed head variance524

field.525

The quality of the reduced order models can also be assessed locally,526

by evaluating the rate of convergence of (statistical) moments of heads at527

given locations in the system. As an example, Figure S3 depicts the first528

four moments (i.e., mean, variance, skewness, and kurtosis) of heads eval-529

uated at point (d) in Figure 2 versus the number of MC realizations, as530

obtained through FSM, SnapROM, and MEsROM. All of these models dis-531

play a similar behavior, in terms of convergence of these moments. The first532

two moments appear to attain convergence within about 20,000 MC realiza-533

tions, skewness and kurtosis requiring more than 50,000 realizations. While534

asymptotic values of moments associated with MEsROM and SnapROM vis-535

ibly differ from their FSM-based counterparts, MEsROM is always closer to536

FSM than SnapROM, a feature which is particularly evident when consider-537

ing the third and fourth (statistical) moments.538

The ensemble error metrics µh and ηh (see equations (14) and (15)) associ-539

ated with σ2
Y = 1.0 are shown in Figures 6(a) and (b) as a function of the size540

m of the ROM projection space. Corresponding results for the ensemble error541

metrics µσ2
h

and ησ2
h

related to head variance are depicted in Figures 6(c) and542

(d), which compare errors related to MEsROM and SnapROM for a given543

m. While it is obvious that the performance of the two reduced models is544

improved with the increase of model size (i.e., for increasing m), it is inter-545

esting to note that absolute and relative errors on both mean and variance546
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are consistently lower for MEsROM than for SnapROM.547

For completeness, we further compare the metrics ησ2
h

and ηh consider-548

ing various values of variance (σ2
Y =0.1, 1.0 and 2.0) and different correlation549

scales ((τ1, τ2) = (2, 1), (4, 2), (8, 4) and (16, 8)) in Table 4. One can see550

that MEsROM outperforms SnapROM in terms of both ηh and ησ2
h

when the551

variance of Y is small to mild (i.e., σ2
Y = 0.1 and 1.0). This is especially ev-552

ident when considering short correlation scales (e.g., when (τ1, τ2) = (2, 1)),553

where the error ησ2
h

for SnapROM is twice the one associated with MEs-554

ROM. When σ2
Y = 2.0, SnapROM outperforms MEsROM in terms of ησ2

h
, a555

feature which is particularly clear for random fields characterized by small556

values of correlation scales. This finding can be attributed to the increased557

approximation errors in the MEs solutions associated with larger σ2
Y (see,558

e.g., [63]).559

The ratio between either ησ2
h

or ηh related to SnapROM and its MEsROM-560

based counterpart increases with τ . This is related to the observation that an561

increase in the spatial correlation yields a corresponding increase of the degree562

of spatial homogeneity of the single realizations of Y . This aspect is in turn563

reflected in a reduction of approximation errors due to (i) perturbation and564

(ii) truncation of the projection space for MEs, which leads to an improved565

performance with respect to SnapROM. For example, it can be noted that566

the relative error on ησ2
h

is approximately equal to one for (τ1, τ2) = (16, 8)567

and σ2
Y =2. Note that the relative error on ηh is always larger than one for568

all fields explored, thus implying that MEsROM is always characterized by a569

smaller error about mean heads than SnapROM (as quantified by such global570

metric).571
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In Figure 7 we explore the quality of SnapROM and MEsROM as a572

function of the dimension m of the reduced Galerkin projection space by573

depicting the spatial distribution of head covariance between point (a) (see574

Figure 2) and all other locations in the domain obtained by MEs, MEs-575

ROM, SnapROM, and the FSM. Visual comparison between MEsROM and576

SnapROM indicates that the former outperforms the latter in terms of accu-577

racy for all of the values ofm explored. As expected, the quality of MC results578

based on MEsROM is not significantly improved with respect to MEs, sug-579

gesting that performing MC simulations through MEsROM can contribute580

only to rendering higher-order (ensemble) moments, which are not captured581

by a typical implementation of MEs.582

As a further comment to these results, it should be also noted that relying583

solely on a global metric related to the variance (i.e., ησ2
h
) or to the mean584

value (i.e., ηh) does not provide a complete depiction of the consequences of585

relying on either approach on the characterization of the whole PDF of heads.586

Thus, as an additional element of interest in the analysis, we consider the587

joint PDF of the heads at pairs of points in the system. Figure 8 depicts these588

PDFs for the pair of points (a) and (b) shown in Figure 2. The reference589

MC results (obtained with 100,000 FSM solutions) are shown in the first590

column for the values of σ2
Y = 0.1, 1, 2. These joint PDFs are visibly non-591

Gaussian, with tailing that seemingly increases with σ2
Y . Differences between592

the reference solution and those obtained with SnapROM and MEsROM are593

depicted in the second and third columns of Figure 8, respectively, for m =594

30. The main differences between the results of SnapROM (second column)595

and the reference solution are concentrated around the peak of the probability596
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distribution. The corresponding MEsROM errors are characterized by a597

smaller maximum value and decrease more rapidly with distance from the598

peak. Results of similar quality are obtained when considering (empirical)599

probability densities of heads at the five exemplary locations identified in600

Figure 2 (see Figures S4-S6), as well as other positions in the domain (not601

shown), for various values of variance of Y . These analyses suggest that602

MEsROM renders more accurate PDFs than SnapROM in this scenario.603

As tails of probability distributions are markedly relevant in environmen-604

tal risk assessment procedures, the results summarized in Figure 9 focus605

on the relative absolute differences (∆q) of the 10-th (Figure 9a) and 90-th606

(Figure 9b) quantiles of cumulative density functions obtained by the FSM607

and the two reduced-order methods (i.e., MEsROM and SnapROM associ-608

ated with m = 30) at locations along a selected transect of the 2D domain609

(see Figure 2). The 10-th quantiles are always captured more accurately610

by MEsROM than by SnapROM, an exception being noted at the domain611

center (here exemplified by x2 = 5) where the point source is located. This612

behavior is consistent with the observation that the head gradient theoret-613

ically tends to infinity at the pumping location and it is well documented614

that any numerical solution (including the FSM) is affected by large errors615

that are dependent upon the particular mesh employed in the simulation.616

With reference to the 90-th quantiles, it is hard to discriminate between the617

performance of MEsROM or SnapROM.618

We now consider the results of the 3D scenario and assess the way various619

reduced order modeling strategies which can lead to properly capture higher620

order moments of the head PDFs. Figure 10 (first row) depicts the sample621
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PDFs of hydraulic heads at the five reference locations identified in Figure 3.622

The black curve is computed by FSM with an ensemble size of 100,000, and623

is considered as reference solution, blue and green symbols corresponding624

to MEsROM and SnapROM with 300 snapshots considering m equal to 30.625

Corresponding differences (∆) between reference results and approximations626

obtained through MEsROM and SnapROM are also depicted (second row627

in Figure 10). These results contribute to reinforce our previous findings,628

documenting that MEsROM outperforms SnapROM also in this case in terms629

of accuracy of the reconstruction of head PDFs. An additional appreciation630

of the accuracy in recovering the high and low probability values (i.e., values631

associated with the tails) of the distribution can be obtained by analyzing632

the error on the quantiles along a section of the domain. Figure 11 depicts633

the spatial distribution of the relative difference between the 10-th (top row)634

and 90-th (bottom row) quantiles of head probability distributions obtained635

by FSM and the two reduced-order methods with m = 30 along the section636

at x1 = 300. These results clearly show that MEsROM always renders more637

accurate values of the 10-th quantiles than SnapROM. With reference to the638

90-th quantiles, MEsROM outperforms SnapROM at most locations across639

the section. As such, these results further support our prior conclusions based640

on the two-dimensional setting considered above.641

5.3. Online cost642

We recall that SnapROM and MEsROM share the same online phase.643

Thus, the cost of a single MC solution is the same for both ROMs (this is644

also verified in our simulations).645

Table 5 lists the ratio between the average CPU times of a single MC646
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solution computed through the FSM and the ROMs associated with different647

dimensions of the reduced model, m, for the 2D and 3D scenarios analyzed.648

With reference to the 2D scenario, our results show that the CPU time649

of the FSM is about 10 times higher than ROMs with m = 5. Otherwise,650

both SnapROM and MEsROM can lose their computational advantage when651

m > 40, thus indicating that the projection onto the reduced subspace of the652

full stiffness matrix (i.e., the calculation of the PTAiP matrix in eq. (12))653

is a computationally expensive critical task. The computational advantage654

of both ROMs becomes markedly clear in the 3D scenario. For example,655

one can note that the FSM becomes almost 29 times slower than the ROMs656

when m = 5. These results are consistent with the analysis about the online657

cost illustrated in Section 3.2, where it is remarked that the most expensive658

operation of the online phase for FSM is O(n3), while being O(nm(s+m2))659

for SnapROM and MEsROM.660

6. Conclusions661

Our analyses and results lead to the following major conclusions:662

• The moment equations-based reduced-order model (MEsROM) outper-663

forms its snapshot-based counterpart (SnapROM) in terms of solution664

accuracy and is not plagued by issues linked to the selection of snap-665

shot size, which constitutes a common drawback in the application of666

traditional snapshot-based reduced-order models. Comparison of the667

effectiveness of these two ROMs is performed upon selecting a snapshot668

size in SnapROM (500 in 2D and 300 in 3D) which yields approximately669

equal CPU times of the offline phases for both approaches (see Table 2).670
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Joint analyses of absolute error maps of head variances (Figure 5) and671

features of the associated (sample) probability density functions (Fig-672

ures 8 - 11 and S4-6) document that MEsROM provides more accurate673

results than SnapROM in most of the scenarios analyzed.674

• MEsROM results are particularly more accurate than their SnapROM675

counterparts when considering low values of the variance of Y (e.g.,676

σ2
Y = 0.1, 1, see Table 4). For larger values of the transmissivity vari-677

ance (σ2
Y = 2) SnapROM yields more accurate results on the head678

variance, but not on the other statistics on the head PDF tested (see,679

e.g., Figure 8).680

• SnapROM and MEsROM are characterized by the same computational681

steps during the online phase of the workflow we develop for the Monte682

Carlo simulations. The CPU time required to obtain the collection of683

MC solutions through the ROMs is up to 10 time lower than what684

can be observed for the Full System Model (FSM) solution when using685

the reduced dimension m = 5 in the two-dimensional (2D) scenario.686

Computational advantages increase with the size of the numerical mesh687

in the three-dimensional (3D) scenario considered (see Section 3.2 and688

Tables 2, 5). For example, for values m = 30 of the dimension of the689

reduced model, the CPU time of a single FSM solution is twice or eight690

times larger than the one of a single ROM solution for the 2D (where691

the full system size is n = 3321) or the 3D (where n = 8125) scenario,692

respectively.693

Our study documents that the critical operation of the online phase is the694
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construction of the stiffness matrix and its projection onto the reduced order695

subspace. Future developments of our MEsROM approach involve adapting696

the workflow to incorporate methods for the reduction of the parameter space697

and using an affine representation of the system matrix with respect to the698

random space of the transmissivity/conductivity. To this aim, discrete ma-699

trix interpolation schemes (e.g., DEIM [61, 64, 65]) and purely data-driven700

methods are considered as promising fields of future research.701

Additional elements of interest associated with future developments of the702

integration between MEs and model-reduction strategies in a MC framework703

include the analysis of transient flow scenarios or solute transport through704

randomly heterogeneous domains. With reference to the latter, one could705

envision relying on, e.g., differential moment equations for transport (see,706

e.g., [66, 67]) in conjunction with an adaptive model reduction technique707
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Figure 1: Flowchart of the procedures for (i) integration of moment equations in a reduced-

order modeling strategy for Monte Carlo simulation of groundwater flow (relying on MEs-

ROM), (ii) snapshot-based reduced-order Monte Carlo approach (relying on SnapROM)

and (iii) standard Monte Carlo simulation (relying on FSM).
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Figure 2: Representation of the two-dimensional flow domain, the black triangle at the

domain center corresponding to the location of the point source with unit pumping rate.

Constant head conditions are set at the right and left sides, no-flow boundaries being

set at the top and bottom. The five exemplary locations selected for the illustration of

the results correspond to points (a) with coordinates (2, 1), (b) with coordinates (6, 3),

(c) with coordinates (10, 5), (d) with coordinates (14, 7), and (e) with coordinates (18, 9).

The color scale refers to values of a selected realization of log-transmissivity.
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Figure 3: Representation of the three-dimensional flow domain considered in our study.

A point source is located at the center node of the topside boundary. Constant head

values are set along the right and left side of the domain, the remaining sides corre-

sponding to no-boundaries. The five exemplary locations selected for the illustration of

the results correspond to points (a) with coordinates (150, 300, 30), (b) with coordinates

(300, 300, 30), (c) with coordinates (300, 150, 30), (d) with coordinates (450, 300, 30), and

(e) with coordinates (300, 450, 30). The color scale refers to values of a selected realization

of log-conductivity.

46



0 10 20
0

5

10

0

0.005

0.01

0.015

0.02

0.025

0 10 20
0

5

10

-0.04

-0.02

0

0.02

0 10 20
0

5

10

-0.04

-0.02

0

0.02

0.04

0 10 20
0

5

10

-0.02

-0.01

0

0.01

0.02

0 10 20
0

5

10

-0.03

-0.02

-0.01

0

0.01

0.02

0 10 20
0

5

10

-0.08

-0.06

-0.04

-0.02

0

0.02

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

5

10

2
x

2
x

2
x

2
x

2
x2p

3
p

4
p

5
p

6
p

2
x1p

1
x

1
x

1
x

500
sn
N = 100,000

sn
N = MEsFSM, FSM,
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head covariance matrix when σ2
Y = 1.

47



0 10 20
0

5

10

0

0.002

0.004

0.006

0.008

0.01

0 10 20
0

5

10

0

0.002

0.004

0.006

0.008

0.01

1x

2x

1x

(a) (b)MEsROM SnapROM

Figure 5: Absolute error on head variances associated with 100,000 reduced-order MC

solutions characterized by m = 30 by MEsROM (left) and by SanpROM with 500 snap-

shots (right). The reference variance is obtained through the MC solution obtained via

the FSM.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

5 10 15 20 25 30

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

5 10 15 20 25 30

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

5 10 15 20 25 30

h
m

h
h

m

2
h

s
m2

h
s
h

m

m m

(a) (b)

(c) (d)

SnapROM

MEsROM

Figure 6: Mean absolute (ηh, panel a) and relative (µh, panels b) errors on head realizations

versus the reduced order dimension, m; mean absolute (ησ2
h
, panel c) and relative (µσ2

h
,

panels d) errors on head variance versus the the reduced order dimension, m.

48



0
.0
0
6
1

0
.0
0
6
1

0
.0
1
2
1

0
.0
1
2
1

0
.0
1
8
2

0
.0
1
8
2

0
.0
2
4
20
.0
3
0
3

0 10 20
0

5

10

0
.0
0
6
1

0
.0
0
6
1

0
.0
1
2
1

0
.0
1
2
1

0
.0
1
8
2

0
.0
1
8
2

0
.0
2
4
20
.0
3
0
3

0 10 20
0

5

10

0
.0
0
6
1

0
.0
0
6
1

0
.0
1
2
1

0
.0
1
2
1

0
.0
1
8
1
8
2

0
.0
1
8
2

0
.0
2
4
20
.0
3
0
3

0 10 20
0

5

10

0
.0
0
6
1

0
.0
0
6
1

0
.0
1
2
1

0
.0
1
2
1

0
.0
1
8
2

0
.0
1
8
2

0
.0
2
4
20
.0
3
0
3

0 10 20
0

5

10
(a) (b)

(c) (d)

1x

2x

2x

1x

MEsROM SnapROM MEs FSM
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Short name Description Main equations Leading online cost

FSM Full System Model based

on standard finite element

method

(1) and (10) O(n3)

SnapROM Reduced Order Model

based on the snapshot

technique for the evaluation

of the projection matrix

(1) and (10)-(12) O(Nsnm+ nm2)

MEsROM Reduced Order Model

based on stochastic mo-

ment equations for the

evaluation of the projection

matrix

(2)-(9) and (10)-(12) O(Nsnm+ nm2)

Table 1: Description of the compared full-system and reduced-order methods used to

perform the Monte Carlo simulations.
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n FSM MEs Ratio Snapshot

2D scenario 3321 8.3E-3 4.0 482 500

3D scenario 8125 0.26 73.69 282 300

Table 2: Number of nodes in the 2D and 3D scenarios; CPU times for solving stochastic

moment equations (MEs); CPU time of a single full system model (FSM) solution com-

puted by averaging 100,000 MC runs; The ratio between CPU times of solving MEs and

mean single run; selected snapshot size for SnapROM according to the CPU cost of MEs

(refer to Section 3.2).

p1 p2 p3 p4 p5 p6

Nsn = 500 0.0485 0.0650 0.1609 0.5955 0.5598 0.3433

MEs 0.0172 0.0467 0.20687 0.1163 0.2943 0.2595

Table 3: L2-norm of the error between the reference eigenvectors obtained with a large

number of snapshots (Nsn=100,000), and their approximations obtained using Nsn=500

snapshots and MEs. The parameter setting is the same used in Figure 4.
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(τ1, τ2)

σ2Y (2,1) (4,2) (8,4) (16,8)

ησ2
h

0.1 2.6391 1.9840 1.8862 1.8571

1.0 1.4032 1.2347 1.1618 1.1528

2.0 0.9477 0.9667 0.9793 1.0912

ηh

0.1 1.0729 1.0550 1.0494 1.0477

1.0 1.0916 1.0873 1.0655 1.0566

2.0 1.1006 1.1025 1.1051 1.1382

Table 4: Ratio between the errors (ησ2
h

and ηh) by SnapROM model (with Nsn = 500 and

m = 30) and the errors by MEsROM using 100,000 FSM solutions as references. Results

obtained for different values of the hydraulic transmissivity variance σ2
Y and correlation

scales (τ1, τ2). Results larger than one indicate a better performance of MEsROM with

respect to SnapROM.

m

5 10 20 30 40

2D scenario 9.96 6.39 3.92 2.09 1.11

3D scenario 28.54 23.01 12.80 8.23 4.41

Table 5: Relative CPU time (with respect to the FSM CPU time) of a single

SnapROM/MEsROM model solution during the online-stage as a function of reduced-

order dimension, m, on the 2D and 3D scenarios analyzed. The CPU time is obtained by

averaging the CPU time of 100,000 ROM runs.
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