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Neural-aided GNC Reconfiguration Algorithm for
Distributed Space System: Development and PIL test

Stefano Silvestrinia,1,∗, Michèle Lavagnaa,2

aPolitecnico di Milano, Via La Masa 34, 20156, Milano

Abstract

This paper presents a neural-aided Guidance, Navigation & Control algorithm

for reconfiguration of distributed space systems. The guidance algorithm is

based on Artificial Potential Fields (APF) in the Relative Orbital Elements

(ROE) space. Since the relative orbit determination measurements are typi-

cally referred to the Cartesian metrics (e.g. range or range rate), a linear map-

ping between the set of ROE and the Cartesian coordinates expressed in the

Local-Vertical-Local-Horizontal (LVLH) reference frame is derived. The navi-

gation and control algorithms rely on the relative dynamics expressed in the

same ROE set of coordinates. To cope with uncertainties and nonlinearities of

the system, a Radial Basis Function Neural Network (RBFNN) is employed to

reconstruct the perturbed dynamics. The Artificial Neural Network (ANN) is

coupled with an adaptive Extended Kalman Filter for state estimation. A feed-

back control is designed to track the desired state, whose stability is analyzed

using Lyapunov theory. The guidance, navigation and control algorithms are

tested in a high-fidelity numerical orbit propagator. Moreover, the algorithm is

tested in relevant Processor-In-the-Loop (PIL) simulations using a TI C2000-

Delfino MCU F28379D. The results demonstrate the effectiveness of the algo-

rithm for relative reconfiguration maneuvers involving relative distances ∼ 102
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m with limited fuel consumption and constrained available thrust (≤ 1mN). In

particular along-track maneuvers, relative plane change and formation enlarge-

ment are analysed in the paper, showing the comparison between the proposed

algorithm and the legacy one without the neural network. The benefit of im-

plementing a neural network is particularly highlighted when the nonlinearities

or unmodelled terms in the on-board dynamics become prominent.

Keywords: GNC, ANN, spacecraft, distributed, formation flying, PIL test

1. Introduction

The concept of distributed space systems, composed of several micro-satellites

flying in formation, is becoming increasingly attractive due to the increased ro-

bustness of the resultant mission architecture. Moreover, it is claimed that

better performance, coupled with a cost and time-to-flight reduction, can be

achieved. Different mission objectives can be achieved throughout the mission

by reconfiguring the satellite formation. A high-level of autonomy, and con-

sequent complexity, is required in such mission concept. Indeed, the satellites

are expected to react autonomously to unforeseen events. In particular, the

collision avoidance task is critical in formation reconfiguration especially when

the number of satellites increases. The Guidance Navigation & Control (GNC)

algorithms can be implemented following a centralized (Sarno et al., 2020), de-

centralized or distributed architecture (Silvestrini et al., 2019). On one hand,

the centralized architecture presents two different issues: first, it presents a sin-

gle failure point due to the presence of a master spacecraft; furthermore, the

GNC commands are sent to all the agents of the system, inserting complexity

on the communication link between the master and the other spacecrafts. On

the other hand, the decentralized approach solves the failure point shortcoming

but it lacks of a system-level perception, as each satellite is limited to its own

data. The distributed architecture is selected to cope with the aforementioned

shortcomings of the centralized and decentralized approaches. Even though for-

mation flying missions are not so numerous in literature (Di Mauro et al., 2018;
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Chu, 2015), the path-planning is often tackled as an optimum problem: the opti-

mal trajectory of each satellite is found taking into account the collision hazard

constraint. Both centralized and distributed architecture have been studied

by Chu (2015). Nevertheless, the computational burden is high and difficult

to handle, especially when on-board computational resources are very limited.

Mixed Linear Programming and Particle Swarm Optimization were proposed

by Di Mauro et al. (2018) to solve an optimal continuous control law for satel-

lite reconfiguration. Such approach is hardly fitting the constraints imposed

by the micro-platforms and does not take into account any collision avoidance

strategy. A strategy for convexifying the collision constraint in optimal control

has been reported by Chu (2015). Chernick and D’Amico (2016) presented an

optimal control based on impulsive maneuver leveraging Keplerian dynamics to

determine optimal and predictable maneuvering schemes, without taking into

account the collision avoidance constraint. An impulsive strategy based on the

state transition matrix of the system is also presented by Vadali and Alfriend

(2013). Several authors have partially solved the task of collision-free path-

planning using behaviour-based algorithms. Izzo and Pettazzi (2005) presented

a behaviour-based algorithm, where the guidance desired velocity is determined

as a result of the summation of identified behaviour (target approach, collision

avoidance, etc.). Similar to the behaviour-based approach is the calculation of

the Artificial Potential Field (APF) (Li et al., 2018). The major difference is

that APF outputs desired acceleration, contrary to the behaviour-based that

works with guidance velocities. Steindorf et al. (2017) proposed a guidance and

control approach based on the Artificial Potential Field using relative orbital el-

ements. The authors include a passive collision avoidance strategy applicable to

satellite formations composed of two satellites. In general, the literature is still

poor with respect to algorithms that can be implemented in a distributed archi-

tecture with low computational power, actively managing the collision avoidance

constraint between more than two satellites.

The relative motion between spacecrafts flying in formation is typically re-

constructed by state measurement expressed in Cartesian coordinates in the

3



Hill frame. Hence, in this paper, a linear mapping is developed to transform

the Cartesian state to the relative orbital elements δχ, and vice versa. Schaub

and Alfriend (2002) used a similar approach adopting the mean orbital elements

difference.

This paper extends the APF algorithm in ROE space to a distributed archi-

tecture with more than two satellites. In particular, mutual repulsion for each

satellite pair is calculated to prevent collisions. Differently from Steindorf et al.

(2017), the repulsive term is derived directly from Cartesian measurements,

which is more compliant with a realistic scenario.

The Guidance, Navigation & Control algorithms are highly influenced by

the dynamical models that are implemented on-board. For the sake of limit-

ing computational burden, often these dynamical models are linearized or they

intentionally neglect disturbance terms, which might play a role in the motion

evolution. Such limitation leads to a degradation of performance of the GNC

subsystem. This paper introduces a light and flexible algorithm based on Arti-

ficial Neural Networks to be able to estimate the unmodelled terms efficiently.

In this way, the GNC system relies on accurate on-board dynamics without in-

creasing the computational burden. Several researchers have utilized Artificial

Neural Networks universal approximation theorem to work out the task of es-

timating disturbances and unmodelled terms (Pesce et al., 2020). Nevertheless,

most of the algorithms work off-line using large amount of data to be trained

on. The neural reconstruction of disturbances/unmodelled terms have proven

the possibility to enhance the guidance and control for space mission (Gurfil

et al., 2003; Bae and Kim, 2012; Zhou et al., 2018). However, an online strategy

to reconstruct the dynamics, which can be used in the whole GNC chain, is

still unexplored in literature. Indeed, most of the researchers do not refine the

on-board dynamical model based on the neural network reconstruction.

To summarize, this paper presents an autonomous formation reconfiguration

GNC algorithm based on Neural Network - Artificial Potential Field. It includes

a distributed active collision avoidance based on repulsive potential contribution

derived from Cartesian state measurements, suitable for microsatellite applica-
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tions. A tracking feedback controller, based on Lyapunov theorem, guarantees

the artificial potential dynamics to be followed. Additionally, the proposed al-

gorithm exploits an online Radial-Basis Function Neural Network (RBFNN) to

reconstruct the disturbances or unmodelled terms in the dynamics to enhance

the whole Guidance Navigation & Control (GNC) system performance. Finally,

the paper presents the Processor-in-The-Loop (PIL) validation performed with

relevant hardware. Such testing procedure increases the Technology Readiness

Level (TRL) of the algorithm with respect to Model-In-the-Loop (MIL) simu-

lations. The intended contributions of the paper are:

• to develop a fully online algorithm based on Radial-Basis-Function Neural

Network (RBFNN) for dynamics reconstruction that can benefit the whole

GNC architecture. The refinement of the on-board dynamics improves the

navigation performance and guarantees better control accuracy to reach

the target state;

• to develop a GNC algorithm that exploits the RBFNN refinement of the

on-board dynamics while flying. The paper presents a methodology that

could potentially be exploited in several different environments. The dis-

turbances and nonlinear terms may be caused by different sources. In this

paper, a fully nonlinear Cartesian J2-perturbed with relative drag is used

for the ground-truth, whereas the on-board dynamics used in the GNC is

based on ROE dynamics.

• to propose a full GNC algorithm for spacecrafts formation reconfiguration,

suitable for micro platforms implementation;

• to extend the application of the Artificial Potential Field to dynamically

control multiple agents (≥ 2) assuring the collision avoidance constraint

is respected;

• to develop a collision avoidance procedure that takes as input Cartesian

relative measurements and process them in the Relative Orbital Element

space
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• to develop a Functional Engineering Simulator to test and validate the full

GNC algorithm (Model-In-the-Loop MIL);

• to test the algorithms in relevant Processor-In-the-Loop (PIL) simulations

with limited computational power to increase the TRL. The PIL validation

is typically not considered in research papers. The TRL of the algorithm

after PIL validation is increased with respect to simpler MIL validation.

The computational power of the MCU is compatible with microsatellites

on-board resources.

The paper is structured as follows: the dynamical model employed and the

coordinates transformation are presented in Section 2; in Section 3 the Artificial

Potential Field (APF) based on Relative Orbital Elements (ROE) is presented;

in Section 4 the neural-aided navigation and control is presented; in Section 5

and 6 the numerical and PIL simulations results are presented; last, in Section

7 conclusions are drawn.

2. Dynamical Model

The spacecraft formation dynamics is described using the relative orbital

elements, following the work done by D’Amico (2010). The following quasi-

singular relative orbital elements are adopted:

δχ =



δa

δλ

δex

δey

δix

δiy


=



af−ar
ar

(Mf + ωf )− (Mr + ωr) + (Ωf − Ωr) cos(ir)

ef cos(ωf )− er cos(ωr)

ef sin(ωf )− er sin(ωr)

if − ir
(Ωf − Ωr) sin(ir)


(1)

where the subscript f stands for any follower spacecraft orbit, whereas the sub-

script r indicates the reference orbital elements. M is the mean anomaly, a

the semimajor axis, e the eccentricity, i the orbit inclination, ω the argument

of perigee and Ω the right ascension of the ascending node. It is important to
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remark that in this paper the reference orbit is the same for the n spacecraft

building up the formation. The benefit of using such model is that, if the per-

turbations are neglected, the geometry of the relative motion with respect to

a reference orbit is uniquely determined by a set of invariant relative orbital

elements (ROE), except for the relative true anomaly, which follows the Keple-

rian propagation. Indeed, the natural evolution of the dynamic system can be

described as:

˙δχ = Ak · δχ (2)

where

Ak =


0

...

−1.5n
... 06×5

04×1

...

 (3)

Guffanti et al. (2017) and Koenig et al. (2017) later expanded the model to a

J2 perturbed dynamics. The complete dynamical model can be expressed as:

˙δχ = (Ak + AJ2) · δχ+Bu (4)

AJ2 =



0 0 0 0 0 0

− 7
2 (1 + η)(3 cos2 ir − 1) 0 exGFP eyGFP −FS 0

7
2eyQ 0 −4exeyGQ −(1 + 4Ge2

y)Q 5eyS 0

− 7
2exQ 0 (1 + 4Ge2

x)Q 4exeyGQ −5exS 0

0 0 0 0 0 0

7
2S 0 −4exGS −4eyGS 2T 0


(5)

where the terms in Eq. 5 are:

k = γa
− 7

2
r η−4, η =

√
1− e2

r, γ =
3

4
J2R

2
e

√
µ, ex = er cosωr,

ey = er sinωr E = 1 + η, G =
1

η2
, F = 4 + 3η, P = 3 cos2 ir − 1,

Q = 5 cos2 ir − 1, S = sin 2ir, T = sin2 ir

(6)
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where J2 is the zonal harmonic coefficient 1.0826 · 10−3 for Earth, Re is the

Earth radius, µ = 3.986 · 1014m3s−2 is the Earth gravitational constant. The

control input for the model is defined by the accelerations in radial, along-

track and normal direction of the LVLH orbital frame, derived from the inertial

Gauss Variational Equations (GVE). The control matrix is derived from Gauss

Variational Equation (GVE) as in Schaub et al. (2000):

B =
1

arnr



2
η er sin νr

2
η (1 + er cos νr) 0

− 2η2

1+er cos νr
0 0

ηr sinωr + νr η (2+er cos νr) cos(ωr+νr)+ex
1+er cos νr

ηey
tan ir

sin(ωr+νr)
1+er cos νr

−ηr cosωr + νr η
(2+er cos νr) sin(ωr+νr)+ey

1+er cos νr

−ηex
tan ir

sin(ωr+νr)
1+er cos νr

0 0 η cos(ωr+νr)
1+er cos νr

0 0 η sin(ωr+νr)
1+er cos νr


(7)

where νr is the true anomaly.

2.1. Coordinates Transformation

The active collision avoidance maneuvers depend on the relative metric dis-

tance between two agents. The relative distance is naturally expressed in the

Cartesian Local-Vertical-Local-Horizontal (LVLH) reference frame. The map-

ping between the Hill X = [x y z ẋ ẏ ż] state to the ROE δχ is required to

process the measurements and compute the guidance and control output. The

transformation matrices are derived by using the classical orbital elements dif-

ference ∆OE = [∆a ∆M ∆ω ∆e ∆i ∆Ω] as follows:

JX
δχ =

∂X

∂∆OE
· ∂∆OE

∂δχ
, JδχX =

∂δχ

∂∆OE
· ∂∆OE

∂X
(8)

where a is the semimajor axis, M is the mean anomaly, ω the argument of

perigee, e the eccentricity, i the inclination and Ω the right ascension of the

ascending node. The first-order approximation of the mapping between the Hill

state and classical osculating orbital elements yields (D’Amico, 2010; Lane and
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Axelrad, 2006):

x =
r

a
∆a− a · cos ν∆e+

ae sin ν√
1− e2

∆M

y =
(
a+

r

1− e2

)
sin ν∆e+

a2

r
η∆M + r∆ω + r cos i∆Ω

z = r sin(ν + ω)∆i− r sin i cos(ν + ω)∆Ω

(9)

Differentiating Eq. 9 the full transformation is obtained:

ẋ =− ne sin ν

2
√

1− e2
∆a+ n sin ν

√
1− e2

(a3

r2

)
∆e+ en cos ν

a3

r2
∆M

ẏ =

[
n
√

1− e2
(

1 +
r

a(1− e2)

)(a3

r2

)
cos ν +

aen sin2 ν

(1− e2)
3
2

]
∆e+

− en sin ν
a3

r2
∆M +

aen sin ν√
1− e2

∆ω

ż =
an√

1− e2

(
sin i

[
sin(ν + ω) + e sinω

]
∆Ω+

+
[

cos(ν + ω) + e cosω
]
∆i
)

(10)

Combining Eq. 9 and 10, the transformation matrices between Hill state X and

classical orbital elements ∆OE, namely ∂X
∂∆OE and its inverse in Eq. 8, are found.

To formulate the complete transformation, the Jacobian of the transformation

between classical orbital elements and relative orbital elements δχ is required.
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Such transformation is obtained from the definition of δχ for ∆OE → 0:

∂∆OE

∂δχ
=



a 0 0 0 0 0

0 1 sinω
e − cosω

e 0 cos i
sin i

0 0 − sinω
e

cosω
e 0 0

0 0 cosω sinω 0 0

0 0 0 0 1 0

0 0 0 0 0 sin i



∂δχ

∂∆OE
=



1
a 0 0 0 0 0

0 1 1 0 0 cos i

0 0 −e sinω cosω 0 0

0 0 e cosω sinω 0 0

0 0 0 0 1 0

0 0 0 0 0 sin i



(11)

2.2. Bounded Orbits

This paper is focused on the presentation of a GNC architecture for space-

craft formation flying. For this reason, the natural motion is not deeply ana-

lyzed. Nevertheless, realistic formation are taken into account to generate initial

and final configurations. In order to reduce the fuel consumption for formation-

keeping actions, the configurations are chosen among the bounded relative orbits

group. To avoid the relative drift, it is critical that the relative motion of the

spacecrafts remains bounded. A fundamental concept in spacecraft Formation

Flying is the orbital energy-matching method to generate bounded formations.

The orbital energy of the satellites is a function of the semi-major axis only:

E = − µ

2a
(12)

Hence, it is sufficient to match the orbital energy of the reference orbit to gener-

ate bounded formations. In order to work out relevant initial conditions, being

either in the Cartesian space or δχ, we refer to the δχ relative space, cfr. Eq. 1.

Clearly, it is sufficient that δa = 0 for the relative orbital elements defining the
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Figure 1: Relative bounded orbits in perturbed models. NL stands for nonlinear model, ROE

for relative orbital elements dynamics.

formation to match the orbital energies. Fig. 1 shows the trajectories propaga-

tion based on energy-matching initial conditions in perturbed models.

3. Artificial Potential on ROE space

The distributed guidance algorithm processes locally all the state estimations

of the satellite formation members. Each satellite knows the relative position

with respect to the rest of the formation. The guidance strategy relies on ar-

tificial potential functions designed in the relative orbital elements space in R6

(Steindorf et al., 2017). The idea is to build a point-wise global potential based

on the contribution of attractive and repulsive potential sources, namely the

target relative orbits and any other satellite located in close neighbouring ar-

eas. The attractive potential is directly expressed in terms of relative orbital

elements, being a convenient way to express relative orbits geometry. Indeed,

a set of relative orbital elements uniquely define one particular formation con-
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figuration. On the other hand, the natural way to express the vicinity between

two satellites is using the Cartesian distance, expressed in the LVLH reference

frame in this particular application. To obtain a uniform expression of the global

potential, the Jacobian of the transformation is derived, based on the results

presented in Section 2.1. The output of the guidance, for each satellite, is what

we call guidance state and indicate as δχg. The guidance algorithm forces the

following dynamics for each satellite i :

˙δχg = −∇Φglb (13)

where Φglb is the global potential:

∇Φglb = ∇Φa +∇Φr (14)

where Φa is the attractive potential, whereas Φr is the repulsive one.

3.1. Attractive Potential: Configuration Target

The reconfiguration objective is to drive the satellites to a predefined relative

configuration, expressed in terms of relative orbital elements. The set of ROE

to be achieved is called reference state and indicated as δχr. The attractive

contribution to the global potential is determined as:

Φa(δχ) =
1

2
ξa
∥∥δχg − δχr∥∥2

(15)

where the parameter ξa is a user-defined variable, which can be used to tune the

guidance according to the scenario. The gradient in the guidance ROE space is

defined as:

∇δχg (·) =

(
∂

∂δa
,
∂

∂δλ
,
∂

∂δex
,
∂

∂δey
,
∂

∂δix
,
∂

∂δiy

)
g

(16)

Consequently, the dynamic contribution to Eq. 14 given by the attractive po-

tential is:

∇δχg = ξa(δχg − δχr) (17)
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3.2. Repulsive Potential: Active Collision Avoidance

The repulsive potential is useful to calculate the trajectory in presence of

other satellites, avoiding collision between agents. As previously stated, to

achieve an efficient active collision avoidance maneuver, the potential is best

representative in terms of the Cartesian state X in the Hill frame, where the

metric distance is defined. Given two satellites, i and j respectively, the repulsive

potential to be computed for Eq. 14 for satellite i is defined as:

Φrij =


1
2ξre

−
d2ij
η = 1

2ξre
−‖Xi−Xj‖2

η if dij < dlim,

0 if dij > dlim

(18)

where dlim is the threshold distance beyond which the collision maneuver is not

required. The state of the relative position of the spacecrafts is known, thus it

is possible to calculate the distance vector as the difference between Xi −Xj.

The gradient of the potential is calculated using the chain-rule, which involves

the coordinate transformation from Cartesian state X to ROE δχ:

∇δχgΦrij = ∇XΦrij · JXδχ (19)

where JX
δχ is the Jacobian of the coordinate transformation, derived in Section

2.1. The gradient in the Cartesian space is defined as:

∇X(·) =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(20)

Hence, the gradient of the repulsive potential between agents i and j, below the

threshold, can be expressed as:

∇δχgΦrij = −ξr
η
e−

d2ij
η · (Xi −Xj) · JXδχ (21)

The repulsive potential takes into account all the mutual distances between the

formation agents; coherently, the repulsive contribution to the global potential

for satellite i is the summation of the mutual repulsive potential between satellite

i and all the other satellites:

Φr =

n∑
j 6=i

Φrij (22)

where n is the number of spacecrafts in the formation.
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3.3. Natural Dynamics: Action Smoothing

The described derivation of the global artificial potential does not take into

account the natural dynamics of the system, even though the artificial potential

is derived in the ROE space. By including the natural dynamics of Eq. 4 into

Eq. 13, the guidance law is smoothed with respect to the global potential. Hence,

the terms expressing the natural dynamics can be integrated to smooth the effect

of the guidance law resulting in:

˙δχg = −∇Φglb + (Ak + AJ2) · δχ (23)

Thus, the guidance dynamics evolves according to Eq. 23. Such dynamics is used

to generate the desired ROE state, which is subsequently used to determine the

control action to steer the actual trajectory of the spacecraft. The natural

dynamics becomes dominant when the spacecraft is very close to the target

configuration. This eliminates the oscillatory chattering caused by the artificial

potential when very close to the target state.

4. Radial-basis Function Neural Network approximation

An artificial neural network is employed to approximate the dynamical terms

encompassing all the unmodelled nonlinearities and disturbances. The paper

presents a methodology that could potentially be exploited in several different

environments. The disturbances and nonlinear terms may be caused by different

sources, such as gravity harmonics, solar radiation pressure, drag, etc. In this

paper a fully nonlinear Cartesian J2-perturbed with relative drag is used for the

ground-truth, whereas the on-board dynamics used in the GNC is based on ROE

dynamics. The ROE dynamics for unperturbed motion is equal to the Keplerian

matrix in Eq. 4. If the difference in the semimajor axis is null, the Keplerian

dynamics in ROE space vanishes. This makes the perturbations relevant even if

the magnitude is very low. For instance, the J2 perturbation term in the ROE

dynamics is ∼ 10−10s−1.

The universal approximation theorem of artificial neural networks guarantees

the existence of a set of ideal weights W that approximates a function with

14



a bounded arbitrary approximation error (Wu et al., 2012). A Radial-Basis-

Function Neural Network is a single-layer shallow network, whose neurons are

Gaussian functions. As detailed in Pesce et al. (2020), such network architecture

possesses a quick learning process, which makes it suitable for online dynamics

identification and reconstruction. The highlights of the mathematical expression

of the RBFNN are reported here for clarity. For a generic state input δχ ∈ Rn,

the components of the output vector γ ∈ Rj of the network is:

γl(δχ) =

m∑
i=1

wilΦi(δχ) (24)

In a compact form, the output of the network can be expressed as:

γ(δχ) = WTΦ(δχ) (25)

where W = [wil] for i = 1, ...,m and l = 1, ..., j is the trained weight matrix

and Φ(x) = [Φ1(x) Φ2(x) · · · Φm(x)]T is the vector containing the output of

the radial basis functions, evaluated at the current system state.

The online learning algorithm is derived using Lyapunov stability theorem,

as in Pesce et al. (2020). The RBFNN weights matrix is updated as follows:

˙̂
W =

η

ξ
Φ(δ̂χ)eT (26)

where e = δχ − δ̂χ. The latter term is the estimated state output of the

navigation filter, as explained in the following section.

4.1. Neural Navigation

The navigation filter is a Radial-Basis-Function Neural Network (RBFNN)

Adaptive-Extended Kalman Filter (AEKF). The derivation and mathematical

proof for stability and convergence has been reported in Pesce et al. (2020).

The navigation algorithm scheme is depicted in Fig. 2. The formulation is basi-

cally an Extended Kalman Filter coupled with a Radial-Basis-Function Neural

Network. The neural network complements the dynamics with an additional

acceleration term, which contains all the nonlinearities or unmodelled terms
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Figure 2: Overview of adopted navigation filter scheme (Pesce et al., 2020).

that are missing in the dynamical model used in the EKF propagation. For in-

stance, for linear dynamics neglecting perturbations, the neural network would

reconstruct an additional term that takes into account unmodelled harmonics,

drag accelerations and nonlinear terms. The adaptivity is required to update

the process covariance matrix as the neural-disturbance term is refined. The

prediction is based on the augmented dynamics taking into account the contri-

bution of the RBFNN. The measurements are the Cartesian state in the LVLH

frame of the reference satellite. In this case, according to Pesce et al. (2020),

the formulation of the RBFNN-AEKF is given by:

δ̂χ
−
k = Akδ̂χ

−
k−1 + γ(δ̂χ

−
k−1,uk−1) (27)

P−k = F̃k−1P+
k−1F̃T

k−1 + Qk−1 (28)

Kk = P−k HT(HP−k HT + Rk)−1 (29)

P+
k = (I−KkH)P−k (I−KkH)T + KkRkKT

k (30)

δ̂χ
+

k = δ̂χ
−
k + Kk(zk −Hδ̂χ

−
k ) (31)

with

F̃ = Ak +
∂d

∂δχ

∣∣∣∣
δ̂χ

−
k

; H = JX
δχ (32)

and

Qk = αQk−1 + (1− α)(Kkδkδ
T
k KT

k ) (33)
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being A the dynamics matrix, γ the output of the network representing the ap-

proximation of all the unmodelled terms (relative drag and nonlinearities), Pk

the estimation error covariance, Q the process covariance matrix, H the mea-

surement matrix, R the measurements covariance matrix, Kk the Kalman gain,

α is a forgetting factor, zk the measurements and δk = zk−Hδ̂χ
−
k is the filter

innovation. The Jacobian in Eq. 32 of the vector-valued function reconstructed

by the RBFNN is derived from Eq. 25:

∂γ

∂δχ
=
∂WTΦ(x)

∂x
= WT ∂Φ(x)

∂x
∈ Rn×n (34)

In this formulation, the state is assumed to be completely observable. In the

simulations, the Gaussian noise is used to corrupt the measurements to be rep-

resentative of actual sensors output. The noise affects only the EKF update.

4.2. Neural Control

The output of the guidance algorithm is a set of ROE, which may differ

from the target reference ones. To guarantee that the forced guidance dynamics

in Eq. 23 is followed, a feedback control law is employed. The control law is

derived using the Lyapunov stability theorem. In the distributed architecture,

each spacecraft processes the guidance law, including state of the other agents.

The reference signal to track is calculated by the guidance algorithm and follows

the dynamics in Eq. 23. The current error between the desired guidance state

and true state for each satellite is:

eδχ = δχg − δχ (35)

its temporal evolution can be described as:

ėδχ = ˙δχg − ˙δχ = −
(
∇Φa +∇Φr +A(ν)δχ

)
−
(
A(ν)δχ+ γ(δχ) +Bu

)
(36)

If we introduce the following positive semi-definite Lyapunov function:

V =
1

2
eTδχeδχ → V̇ = eTδχėδχ (37)

V̇ =
(
δχg − δχ

)T
·
[
−
(
∇Φa +∇Φr + γ(δχ) +Bu

)]
(38)
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Figure 3: GNC architecture overview.

The control term can be solved to make the derivative of the Lyapunov function

negative. The above strategy yields the following control law:

u = B−1
[(
δχg − δχ

)
−
(
∇Φa +∇Φr

)
− γ(δχ)

]
(39)

In this way the derivative of the Lyapunov function is negative semidefinite, van-

ishing only when δχ = δχr, which is within the validity of the Lyapunov theo-

rem. This approach is similar to the one adopted by Steindorf et al. (2017), with

the exception of including the gradient of artificial potential and the RBFNN

output in the control law. By including the gradient of the potential, which

forces the dynamics, the control law calculates the action taking into account

the derivative of the δχg determined by the guidance algorithm. The GNC

architecture is reported schematically in Fig. 3.

Algorithm 1 Neural Distributed GNC for satellite i

1: Initialize RBFNN network NRBF
2: while δχ 6= δχr do

3: Observe state δχi through relative measurements

4: Feed δχ to N (Eq. 25)

5: Estimate system state through AEKF (Eq. 31)

6: Generate guidance path using APF approach (Eq. 13)

7: Execute RBFNN-aided Lyapunov control (Eq. 39)

8: end while
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5. Numerical Simulations

Three reconfiguration scenarios are treated in the following section involving

a formation of four satellites orbiting the Earth. The scenarios are selected to

be representative of different reconfiguration maneuvers that may occur during

a formation flying mission. The simulations are provided to testify the efficiency

of the proposed NN-APF reconfiguration algorithm. The system model parame-

ters are chosen and described in a previous work by Silvestrini et al. (2019). The

RBFNN neurons are Gaussian functions, whose centres are initialized randomly.

The number of neurons is 60. Such number is the results of a trade-off between

RBFNN accuracy and complexity. Tab. 1 reports the orbital parameter of the

reference orbits. The reference orbits are also used to generate relative measure-

ments by adding a fictitious noise, representative of realistic sensors uncertainty

(e.g. ranging, optical or Doppler). In particular, the noise level associated is

described by a Gaussian distribution with standard deviation σpos = 10−1m

and σvel = 10−3m
s for position and velocity respectively. The Gaussian noise is

used to corrupt the measurements to be representative of actual sensors output.

The noise affects only the EKF update. The neural network here is used to

complement the dynamics with an additional acceleration term, which contains

all the nonlinearities or unmodelled terms that are missing in the dynamical

expression used in the EKF propagation. Spacecraft S/C 1 evolution is not

reported for analysis as it is assumed to be controlled and to follow the refer-

ence absolute orbit. In other words, it is assumed that the absolute navigation

and control guarantees the nominal reference orbit to be tracked by the S/C

1. This is not a major limitation since the algorithm deals with relative mo-

tion with respect to the S/C 1. S/C 1 could also be thought as the virtual

center of the defined LVLH frame. The natural motion is propagated using the

absolute dynamics of each spacecraft. The dynamical model comprises relative

drag acceleration (here considering different drag coefficients Cd,SC1 = 1.5 and

Cd,SC2−3−4 = 0.8) and major Earth spherical harmonics. Since the satellites

are close to the same position, the gravitational perturbations will affect both
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Table 1: Reference orbits for numerical simulations

a [km] e [-] i [o] ω [o] Ω [o]

R1 7975 0.1 10 0 0

R2 10254 0.3 10 0 0

equally and not create noticeable drift in the ROEs. The neural-aided algorithm

is beneficial when the dynamics is highly uncertain. Given that the ground-truth

model is Cartesian and the on-board dynamics is based on ROE, it is difficult

to compare the disturbance terms. For Cartesian models, the validation was

performed in a previous work by the author (Pesce et al., 2020). Nevertheless, a

dedicated simulation has been performed to show and report the reconstruction

capabilities of the neural network in the next section.

5.1. Disturbance Reconstruction

The RBFNN is used to reconstruct the dynamical terms, which are not di-

rectly included in the on-board dynamics representation. As mentioned, the

method is quite general and can be applied to different unknown environments

regardless of the sources of the dynamical disturbances. In this paper the

ground-truth dynamics is a fully nonlinear Cartesian model including J2 pertur-

bation, whereas the dynamical model used by the GNC algorithms is based on

ROE. For this reason, it is difficult to show a comparison between the true dis-

turbances and the reconstructed ones. A dedicated simulation is here reported

to show the reconstruction capabilities of the RBFNN, similarly to Pesce et al.

(2020).

In the reported simulation, the ground-truth natural dynamics follows Eq. 4,

whereas the on-board dynamics is simply the Keplerian term Ak of Eq. 4 coupled

with the RBFNN reconstructed term. Fig. 4 shows the network approximation

of the disturbance term due to J2 in ROE dynamics. The root mean squared

error of the approximation is ∼ 10−13s−1 once the network has converged to a

steady-state.
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Figure 4: RBFNN network approximation of the disturbance terms due to J2 in ROE dynam-

ics. The disturbance term is a vector γ ∈ R6.

5.2. Planar to Along-track

The Planar to Along-track (ALO) reconfiguration changes the relative posi-

tion of the spacecraft such that they no longer belong to a symmetric configu-

ration around the reference orbit but they are placed with a certain along-track

offset. Fig. 5 shows the controlled neural reconfiguration. The initial and final

state, expressed in relative orbital elements, are reported in Tab. 2. The re-

configuration is successful and the neural enhanced GNC architecture converges

to stable estimation of the unmodelled terms (relative drag and nonlinearities),

given that no unstable behavior is experienced, see Section 5.1. Fig. 6 shows the

control effort and the navigation results in terms of estimation accuracy. The

repulsive potential aided by the RBFNN network guarantees that the minimum

distance between the agents is respected, as shown in Fig. 7. The relative ma-

neuver initiates after one orbital period. The along-track reconfiguration is the

most demanding in terms of collision avoidance, as the orbital state are very

similar in the final configuration, roughly 100 m apart.

21



Table 2: Relative orbital elements of each spacecraft in the ALO reconfiguration

aδχa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0→ 0 0→ 0 0→ 0 0→ 0

aδλ 0→ 0 0→ 300 0→ 400 0→ 500

aδex 0→ 0 2000→ 0 4000→ 0 6000→ 0

aδey 0→ 0 300→ 0 600→ 0 900→ 0

aδix 0→ 0 500→ 0 500→ 0 500→ 0

aδiy 0→ 0 0→ 0 0→ 0 0→ 0
a dimensional using the semimajor axis of the reference orbit

Figure 5: Planar to Along-track (ALO) neural reconfiguration.
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Figure 6: Control effort and estimation accuracy for the ALO neural reconfiguration.

Figure 7: Relative distances between the formation spacecraft for the ALO scenario. The

dotted line represents the minimum safe distance set for the simulations.

5.3. Planar Synthetic Aperture Variation

Formation flying missions are foreseen to be employed in configuration that

allow synthetic aperture of the distributed system. A Planar Synthetic Aperture

Variation (SAV) is a reconfiguration maneuver in which the equivalent instru-

ment diameter is varied. Fig. 8 shows the controlled neural reconfiguration.

The initial and final state, expressed in relative orbital elements, are reported

in Tab. 3.

The reconfiguration is successful and the neural enhanced GNC architecture

converges to stable estimation of the unmodelled terms, given that no unstable
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Table 3: Relative orbital elements of each spacecraft in the SAV reconfiguration

aδχa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0→ 0 0→ 0 0→ 0 0→ 0

aδλ 0→ 0 0→ 0 0→ 0 0→ 0

aδex 0→ 0 100→ 1000 300→ 3000 600→ 6000

aδey 0→ 0 100→ 1000 300→ 3000 600→ 6000

aδix 0→ 0 0→ 0 0→ 0 0→ 0

aδiy 0→ 0 0→ 0 0→ 0 0→ 0
a dimensional using the semimajor axis of the reference orbit

Figure 8: Planar Synthetic Aperture Variation (SAV) neural reconfiguration.
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Figure 9: Control effort and estimation accuracy for the SAV neural reconfiguration.

Figure 10: Relative distances between the formation spacecraft for the SAV scenario. The

dotted line represents the minimum safe distance set for the simulations.

behavior is experienced, see Section 5.1. Fig. 9 shows the control effort and

the navigation results in terms of estimation accuracy. The repulsive potential

aided by the RBFNN network guarantees that the minimum distance between

the agents is respected, as shown in Fig. 10. The relative maneuver initiates

after one orbital period.

5.4. Relative Plane Change

The Relative Plane Change (RPC) reconfiguration is essentially an inversion

of the relative inclination vector. The component δix, see Eq. 1, is actually the

algebraic difference of the spacecraft orbital inclination. Hence, the reconfigura-
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Table 4: Relative orbital elements of each spacecraft in the RPC reconfiguration

aδχa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0→ 0 0→ 0 0→ 0 0→ 0

aδλ 0→ 0 0→ 0 0→ 0 0→ 0

aδex 0→ 0 200→ 200 400→ 400 600→ 600

aδey 0→ 0 300→ 300 600→ 600 900→ 900

aδix 0→ 0 500→ −500 300→ −500 500→ −500

aδiy 0→ 0 0→ 0 0→ 0 0→ 0
a dimensional using the semimajor axis of the reference orbit

tion shown in this section is equivalent to an inclination change maneuver. Such

reconfiguration has been chosen because of its complexity on control, involving

along-radial-cross track control. Fig. 11 shows the controlled neural reconfig-

uration. The initial and final state, expressed in relative orbital elements, are

reported in Tab. 4.

The reconfiguration is successful and the neural enhanced GNC architecture

converges to stable estimation of the unmodelled terms, given that no unstable

behavior is experienced, see Section 5.1. Fig. 12 shows the control effort and

the navigation results in terms of estimation accuracy. The repulsive potential

aided by the RBFNN network guarantees that the minimum distance between

the agents is respected, as shown in Fig. 13. The relative maneuver initiates

after one orbital period.

5.5. Formation Position Swap

The reconfiguration is specifically designed to include a collision avoidance

maneuvers for the sake of demonstration. Basically, the agents 2, 3, 4 are asked

to swap relative orbits with respect to spacecraft 1, once again fixed along the

reference orbit. The threshold dlim in Eq. 18 is set to 50 m and an exit condition

for the simulation due to collisions is set to 10 m. In particular, the maneuver
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Figure 11: Relative Plane Change (RPC) neural reconfiguration.

is:

δχref,2 = δχ0,3, δχref,3 = δχ0,4, δχref,4 = δχ0,2, (40)

Fig. 14 shows the controlled neural reconfiguration. The initial and final state,

expressed in relative orbital elements, are reported in Tab. 5.

The reconfiguration is successful and the neural enhanced GNC architecture

converges to stable estimation of the unmodelled terms, given that no unstable

behavior is experienced, see Section 5.1. Fig. 15 shows the control effort and

the navigation results in terms of estimation accuracy. The repulsive potential

aided by the RBFNN network guarantees that the minimum distance between

the agents is respected, as shown in Fig. 16. The relative maneuver initiates

after one orbital period.
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Figure 12: Control effort and estimation accuracy for the RPC neural reconfiguration.

Figure 13: Relative distances between the formation spacecraft for the RPC scenario. The

dotted line represents the minimum safe distance set for the simulations.

5.6. Comparison

The Neural-aided algorithm for reconfiguration has been compared with the

standard APF algorithm presented in Steindorf et al. (2017) and extended in

Silvestrini et al. (2019). Tab. 6, 7 and 8 present the results for the relevant re-

configurations in low-eccentricity reference orbits. In particular, Tab. 6 reports

the ∆V effort of the Neural-Lyapunov control and the standard Lyapunov con-

trol presented in Section 4.2. The control effort is generally higher in the case

of neural control. This may be due to the fact that during the initial phase

of the reconfiguration, the main learning process of the network occurs (Pesce
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Table 5: Relative orbital elements of each spacecraft in the PS reconfiguration

aδχa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0→ 0 0→ 0 0→ 0 0→ 0

aδλ 0→ 0 0→ 0 0→ 0 0→ 0

aδex 0→ 0 200→ 400 400→ 600 600→ 200

aδey 0→ 0 300→ 600 600→ 900 900→ 300

aδix 0→ 0 500→ 300 300→ 100 100→ 500

aδiy 0→ 0 0→ 0 0→ 0 0→ 0
a dimensional using the semimajor axis of the reference orbit

Figure 14: Position Swap (PS) neural reconfiguration.

29



Figure 15: Control effort and estimation accuracy for the PS neural reconfiguration.

Figure 16: Relative distances between the formation spacecraft for the PS scenario. The

dotted line represents the minimum safe distance set for the simulations.

et al., 2020). In this phase the controller is affected by the non-converged term

γ(δχ). Nevertheless, as reported in Tab. 8 and 9, the achieved accuracy of the

final configuration using the neural controller is superior, which is linked to the

higher required ∆v. The dynamics reconstruction based on RBFNN benefits

the navigation also. The position estimation mean error is always lower when

RBFNN-AEKF is used. The dynamical model refinement allows the filter to

generate a more precise a-priori estimation, which is then corrected with the

same measurements in both methods. The difference in estimation error in-

creases as the nonlinearities become more relevant in the dynamics. Indeed,
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Table 6: Comparison of control effort between standard APF reconfiguration algorithm and

the proposed NN-APF. Low-eccentricity scenario.

Low-e NNAPF Control APF Control

Scenario ∆V1[ms ] ∆V2[ms ] ∆V3[ms ] ∆V1[ms ] ∆V2[ms ] ∆V3[ms ]

ALO 19.81 21.39 23.55 19.48 2.15 23.39

SAV 12.09 14.81 22.64 11.88 14.84 23.08

RPC 12.13 12.43 12.76 11.69. 11.89 12.20

PS 20.42 21.64 19.67 20.18 21.14 19.29

for high-eccentricity reference orbits, the enhancement in state estimation us-

ing RBFNN-AEKF is remarked. Tab. 10, 11, 12 and 13 present the results for

the analysed reconfigurations in high-eccentricity reference orbits. The NNAPF

algorithm outperforms the standard APF, in terms of accuracy and navigation

estimate. The ALO and RPC reconfigurations are challenging due to the in-

volved relative distances, the change of plane and the limited maximum thrust

available. However, also in this case, the NNAPF strategy delivers better fi-

nal configuration in terms of accuracy. One important result is that, whenever

the neural-improvement in the target accuracy is not significant, the NN-APF

control effort to deliver the same accuracy of APF is considerably lower. The

high-eccentricity scenario is more demanding since nonlinearities are prominent.

The accuracy is poorer because both the controller struggle to handle such dis-

turbance. Nevertheless, the RBFNN achieves a better accuracy with respect

to the traditional APF algorithm. In addition, it is important to remark that

the RBFNN can be tuned (number of parameters, weights, learning function)

to improve the performance, whereas the APF is less flexible.
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Table 7: Comparison of navigation accuracy between standard APF reconfiguration algorithm

and the proposed NN-APF. Low-eccentricity scenario.

Low-e NNAPF Navigation APF Navigation

Scenario σ1 [m] σ2 [m] σ3 [m] σ1 [m] σ2 [m] σ3 [m]

ALO 0.02 0.03 0.03 0.03 0.04 0.04

SAV 0.04 0.05 0.06 0.05 0.06 0.07

RPC 0.03 0.03 0.03 0.03 0.04 0.04

PS 0.03 0.03 0.03 0.04 0.04 0.05

Table 8: Comparison of target configuration accuracy between standard APF reconfiguration

algorithm and the proposed NN-APF. Low-eccentricity scenario.

Low-e Neural Accuracy[%] Accuracy[%]

Scenario |∆δχ|
|δχref | 1

|∆δχ|
|δχref | 2

|∆δχ|
|δχref | 3

|∆δχ|
|δχref | 1

|∆δχ|
|δχref | 2

|∆δχ|
|δχref | 3

ALO 2.25 1.88 1.69 3.26 2.88 2.35

SAV 5.11 5.08 4.76 5.11 5.02 4.76

RPC 10.77 7.87 6.99 10.96 8.86 7.78

PS 7.66 13.98 7.02 4.20 3.80 5.30

Table 9: Norm of the Relative Orbital Elements error (dimensionless) with respect to the

target ROE state. Low-eccentricity scenario. A rough order of magnitude in meters can be

obtained dimensionalizing the ROEs by multiplying by the semimajor axis.

Low-e Neural Accuracy Accuracy

Scenario |∆δχ|1 |∆δχ|2 |∆δχ|3 |∆δχ|1 |∆δχ|2 |∆δχ|3

ALO 8.5 · 10−7 9.4 · 10−7 1.1 · 10−6 1.2 · 10−6 1.4 · 10−6 1.5 · 10−6

SAV 6.7 · 10−6 1.7 · 10−5 3.2 · 10−5 7.02 · 10−6 1.9 · 10−5 3.4 · 10−5

RPC 8.3 · 10−6 8.6 · 10−6 1.1 · 10−5 8.5 · 10−6 9.8 · 10−6 1.16 · 10−5

PS 7.5 · 10−6 2.7 · 10−5 5.4 · 10−6 8.8 · 10−6 3.1 · 10−5 6.3 · 10−6
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Table 10: Comparison of control effort between standard APF reconfiguration algorithm and

the proposed NN-APF. High-eccentricity scenario.

High-e NNAPF Control APF Control

Scenario ∆V1[ms ] ∆V2[ms ] ∆V3[ms ] ∆V1[ms ] ∆V2[ms ] ∆V3[ms ]

ALO 16.25 23.67 31.91 15.29 20.64 28.19

SAV 16.72 33.56 61.42 21.48 38.78 66.65

RPC 12.99 13.66 14.43 14.76 15.35 16.02

PS 26.23 30.28 23.56 29.66 33.55 23.13

Table 11: Comparison of navigation accuracy between standard APF reconfiguration algo-

rithm and the proposed NN-APF. High-eccentricity scenario.

High-e NNAPF Navigation APF Navigation

Scenario σ1 [m] σ2 [m] σ3 [m] σ1 [m] σ2 [m] σ3 [m]

ALO 0.05 0.06 0.07 0.06 0.08 0.08

SAV 0.05 0.05 0.07 0.06 0.08 0.08

RPC 0.04 0.04 0.04 0.05 0.05 0.05

PS 0.05 0.05 0.05 0.07 0.07 0.07

Table 12: Comparison of target configuration accuracy between standard APF reconfiguration

algorithm and the proposed NN-APF. High-eccentricity scenario.

High-e Neural Accuracy Accuracy [%]

Scenario |∆δχ|
|δχref | 1

|∆δχ|
|δχref | 2

|∆δχ|
|δχref | 3

|∆δχ|
|δχref | 1

|∆δχ|
|δχref | 2

|∆δχ|
|δχref | 3

ALO 15.11 17.08 20.44 19.35 23.40 27.22

SAV 16.25 12.61 11.84 17.65 13.87 12.94

RPC 54.55 34.44 28.42 65.60 38.52 32.90

PS 23.31 32.75 19.23 24.80 35.75 20.68
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Table 13: Norm of the Relative Orbital Elements error (dimensionless) with respect to the

target ROE state. High-eccentricity scenario. A rough order of magnitude in meters can be

obtained dimensionalizing the ROEs by multiplying by the semimajor axis.

High-e Neural Accuracy Accuracy

Scenario |∆δχ|1 |∆δχ|2 |∆δχ|3 |∆δχ|1 |∆δχ|2 |∆δχ|3

ALO 4.2 · 10−6 6.6 · 10−6 9.9 · 10−6 5.6.8 · 10−6 9.1 · 10−6 1.3 · 10−5

SAV 2.2 · 10−5 5.2 · 10−5 9.8 · 10−5 2.4 · 10−5 5.7 · 10−5 1.1 · 10−4

RPC 3.3 · 10−5 2.9 · 10−5 3.3 · 10−5 3.9 · 10−5 3.3 · 10−5 3.8 · 10−5

PS 1.7 · 10−5 3.5 · 10−5 1.1 · 10−5 1.9 · 10−5 3.8 · 10−5 1.2 · 10−5

5.6.1. Thrusters Misalignment

An additional simulation set is presented here to tackle another practical

problem in spacecraft GNC. Thruster misalignment can be regarded as uncertain

terms that affect each satellite differently. Hereby, for the purpose of assessing

NN-APF orbit control performance, a thruster on each satellite axis that has a

random angular misalignment from the desired thrust axis is considered. This

results in a Gaussian random noise with zero-mean and σu = 10−4 m
s2 . When an

acceleration is commanded, the misalignment causes the satellite to accelerate

in a direction that is not perfectly aligned with the desired direction. This is a

practical concern on real satellites and is an area where feedback control must

be utilized to keep the satellites on the desired orbit. In this simulation set,

the neural-aided algorithm always performs better in terms of control accuracy,

increasing only marginally the control cost, as shown in Tab. 14 and 15.

5.6.2. Highly Perturbed Environment

The comparison presented in Section 5.6 showed how the NNAPF algorithm

guarantees a more accurate navigation and control, at the cost of slightly higher

∆v. The results show that also the legacy algorithm was able to bring the rela-

tive maneuvers to completion. This may be due to the fact the the disturbance

terms included in the ground-truth relative dynamics are still handled by the
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Table 14: Comparison of control effort between standard APF reconfiguration algorithm and

the proposed NN-APF. Thruster misalignment scenario.

Thrust Mis. NNAPF Control APF Control

Scenario ∆V1[ms ] ∆V2[ms ] ∆V3[ms ] ∆V1[ms ] ∆V2[ms ] ∆V3[ms ]

ALO 12.95 14.82 17.23 12.42 14.48 16.96

SAV 12.04 14.89 22.76 11.61 14.95 23.21

RPC 12.15 12.42 12.71 11.66 11.91 12.20

PS 20.45 20.56 19.78 20.05 21.13 19.43

Table 15: Comparison of target configuration accuracy between standard APF reconfiguration

algorithm and the proposed NN-APF. Thruster misalignment scenario.

Thrust Mis. Neural Accuracy[%] Accuracy[%]

Scenario |∆δχ|
|δχref | 1

|∆δχ|
|δχref | 2

|∆δχ|
|δχref | 3

|∆δχ|
|δχref | 1

|∆δχ|
|δχref | 2

|∆δχ|
|δχref | 3

ALO 11.06 8.12 6.86 11.96 9.08 7.54

SAV 3.07 2.05 1.92 3.72 3.13 2.93

RPC 11.01 8.03 7.07 11.78 8.48 7.57

PS 6.04 11.4 10.01 7.85 12.34 11.05
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Figure 17: Mean accuracy of NNAPF and APF in highly perturbed environment. The per-

turbation coefficient is the multiplicative term of J2 perturbation to generate the fictitious

disturbance.

APF control. In order to showcase the quality of the NNAPF algorithm, a set

of numerical simulations have been performed adding fictitious perturbations

to the ground-truth dynamics to challenge both algorithms. In particular, the

perturbation coefficient kpert is introduced. The perturbation coefficient kpert

is a multiplicative term used to increase the J2 perturbation to generate the

fictitious disturbance:

F = kpert · FJ2 (41)

Figure 17 reports the mean accuracy of the final formation configuration for

different values of kpert. The results are averaged over the scenarios and over the

satellites. The results show that a constant increase in performance is achieved

by the NNAPF when perturbations become more dominant. As already noted in

Section 5.6, the better NNAPF accuracy is achieved at the cost of slightly higher

∆v. The increase in ∆v is within the range [0.5− 1.0]ms in all the simulations.
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Figure 18: Discrepancy in calculation between

PIL and SIL simulations.

Table 16: Average and maximum execu-

tion time of GNC routines using a single core

TMS320C28x 32-Bit CPUs @200 MHz of TI

C2000-Delfino MCUs F28379D

Routine Average Max

[ms] [ms]

rbfnn(.) 0.89 0.90

aekf(.) 0.81 0.82

apf(.) 0.32 0.32

ctrl(.) 0.28 0.33

6. Processor-In-the-Loop Validation

The presented simulations based on the NNAPF algorithm, comprising the

whole RBFNN-GNC architecture, were simulated using a Desktop computer

using Intel R© CoreTM i5-3470 CPU @3.20 GHz. The computational time for a

single step execution of the NNAPF is < 50ms.

The NNAPF has been developed for an on-board applications, hence it is critical

to evaluate its computational burden on relevant processor and hardware. For

this reason, Processor-In-the-Loop simulations are performed using a TI C2000-

Delfino MCUs F28379D, which is a dual-core TMS320C28x 32-Bit CPUs @200

MHz. The algorithm is developed in Matlab/Simulink R©. The software is then

ported to the MCU using the dedicated coder. The algorithm is run in external

mode PIL, interfacing with the orbital simulator running on a Desktop com-

puter using Intel R© CoreTM i5-3470 CPU @3.20 GHz. The average execution

times of the autonomous GNC routines are limited, as reported in Tab. 18.

Fig. 18 shows the discrepancy in the calculated control by the MCU and the

Desktop simulator. The values are in the order of ∼ 10−12 m
s2 , which can be as-

sumed to be numerical error, thus validating the PIL test. The MCU presented

in this analysis is representative of the hardware integrated in the frictionless

5DoF facility installed at Politecnico di Milano (Visconti et al., 2018; Ottolina
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et al., 2019). Naturally, the algorithm development follows the same workflow

adopted here: the numerical algorithms are coded in Matlab/Simulink R©, tested

in Desktop computers and finally automatically ported into the MCU using the

dedicated coder. This enables fast prototyping and hardware validation of the

selected algorithms.

7. Conclusion

A neural Guidance, Navigation & Control algorithm based on Artificial Po-

tential Field and Radial-Basis Function Neural Network is presented. The Ar-

tificial Potential Field algorithm has been extended to smooth the guidance

dynamics and manage reconfigurations with more than two agents. The al-

gorithm takes as input the Cartesian measurements of relative states between

satellites. The developed navigation filter and controller is coupled with a neu-

ral reconstructed term that encompass all the disturbances or nonlinearities

not modelled in the on-board dynamical model. Such refinement of on-board

dynamics enhance the whole GNC system performance. Radial-Basis-Function

Neural Networks have been employed for the inherent nonlinear neurons struc-

ture, which yields a faster learning process. The dynamics reconstruction works

online, meaning that offline training is not needed. The Neural Network Arti-

ficial Potential Field (NNAPF) algorithm has been tested numerically and in

Processor-In-the-Loop (PIL) simulations using a single core TMS320C28x 32-

Bit CPUs @200 MHz of TI C2000-Delfino MCUs F28379D unit. The numerical

and PIL tests demonstrated:

• the neural reconstructed dynamics yields more accurate navigation and

final target configuration with respect to Artificial Potential Field algo-

rithm.

• the algorithm can be executed using limited computational power, thus

making it suitable for on-board applications.

The future work will focus on solving the drawback of Artificial Potential Field

algorithms, which is the potential instability that may arise with the collision
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avoidance constraints with several agents approaching the same area simultane-

ously. In addition, the algorithms will be tested in the 5-Dof frictionless facility

at Politecnico di Milano (Visconti et al., 2018; Ottolina et al., 2019).
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