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Abstract—In this paper, a discrete-time sliding mode control
law is proposed for nonlinear (possibly multi-input) systems,
in the presence of mixed input-state constraints and additive
bounded disturbances. The control law is defined by formulating
a nonlinear predictive control problem aimed at generating a
control input that imitates an unconstrained discrete-time sliding
mode law. In addition to satisfying input and state constraints,
the resulting control law has all the properties of discrete-time
sliding mode, and in particular, finite time convergence of the
state onto the sliding manifold in the nominal case, or into an
a-priori defined boundary layer of the sliding manifold in case
bounded disturbances are present.

Index Terms—Sliding mode control, uncertain systems, nonlin-
ear predictive control, constrained control.

I. INTRODUCTION

In continuous-time sliding mode control (SMC), a discontinu-
ous control law enforces convergence of the state on a manifold
S (sliding manifold), containing all state values for which a
suitable sliding variable is equal to zero. By enforcing the
state to remain on S , the SMC law aims at state convergence
to the origin, exploiting strong robustness properties [1]. In
practice, dealing with finite sampling frequencies often leads to
defining SMC laws in discrete time, namely discrete-time SMC
(DSMC). Different DSMC approaches were proposed, among
others, in [1]–[7]. Due to the discretization of the dynamics,
the presence of disturbance terms with DSMC laws only allows
convergence of the state into a boundary layer of S.

To define DSMC laws that account for both input and state
constraints, one can combine DSMC with model predictive
control (MPC), also known as receding-horizon control: due
to the complexity of stabilizing nonlinear MPC schemes, this
approach was mostly studied for linear systems. The first works
in this field merged DSMC with generalized linear predictive
control [8]. The same approach was extended to nonlinear
systems, but relying on a linear approximation of the dynamics
[9]. As an alternative, in [10], the DSMC reaching law of
[3] generates a reference for an MPC controller, for the case
of unconstrained single-input uncertain linear systems. Also,
[11] proposes an MPC law for single-input perturbed linear
systems, which guarantees asymptotic convergence of the state
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to a boundary layer of S . Moreover, [12] presents single-input
MPC laws for unperturbed linear and nonlinear systems, where
S is used to define the terminal constraint of the MPC problem,
while [13] proposes a DSMC law for linear multi-input systems
based on the solution of a robust linear MPC problem: the
resulting control law guarantees finite-time convergence of the
state onto S (in case of vanishing disturbance) or into an a-
priori determined boundary layer of it (in case of persistent
disturbance). DSMC for setpoint tracking in constrained linear
systems was studied in [14] and [15]: [14] relies on a dual-
mode receding horizon DSMC law which exploits the flatness
property of suitably defined sliding hyperplanes, while [15]
proposes a second-order DSMC scheme to add virtual reference
variables to the receding horizon law.

Rather than merging MPC and DSMC in a single control law,
a different approach composes separate DSMC and MPC laws
into a single feedback scheme. In particular, in [16], integral
SMC provides robustness to an explicit MPC controller, which
aims at stabilizing the nominal system. In [17], a multirate
scheme is proposed, consisting of a DSMC law which reduces
the magnitude of the disturbance terms to be handled by a
robust nonlinear MPC controller. The work in [18] introduces
an integral SMC term into an MPC law, to compensate matched
disturbances, thus maintaining the state inside a boundary layer
of S throughout the entire response; the same idea is extended
to unmatched disturbances in [19]. Finally, [20] compares
different approaches for combining SMC and MPC.

In this paper, we present a DSMC law for (possibly multi-
input) nonlinear systems with unknown but bounded additive
disturbances, and inequality constraints on inputs and states.
The general case of mixed input-state constraints is considered:
this includes the case of separate constraints on inputs and
states, considered in the cited works, as a particular case.
First, an underlying DSMC law for nonlinear systems with
additive disturbances, which does not take the presence of
constraints into account, is defined based on the general multi-
input formulation described in [1]. A nonlinear MPC law is
thus defined to “imitate” the underlying DSMC law while
enforcing input and state constraints: the resulting control law,
though based on the solution of a nonlinear MPC problem, is
proven to be still a DSMC law. Indeed, it guarantees finite-time
convergence of the state into an a-priori determined boundary
layer of S (in case of persistent disturbances), or onto S itself
(whenever the disturbance terms vanish).

The approach presented in [13] was based on the linear MPC
approach of [21], that can be applied for linear system dynamics
and linear inequality constraints. Instead, given the need to
satisfy arbitrary nonlinear inequality constraints for nonlinear
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dynamical systems in the presence of disturbances, in this
work constraint satisfaction is achieved based on a tightening
approach, relying on Lipschitz continuity. This approach is
inspired by the idea proposed in the fundamental work for
robust nonlinear MPC described in [22], which is recast into
the SMC framework, giving rise to an original constrained
DSMC approach. Indeed, while the MPC law of [22] consisted
of a sequence of open-loop control moves, on the other hand
imitating a DSMC law requires using state-feedback control
policies. As a consequence, several results on the formulation
of tightened constraints have to be redefined, as the results
of [22] cannot be applied in the considered setting. Finally,
the convergence results are obtained by generalizing the ideas
defined for linear MPC in [21] and in its extension to mixed
input-state constraints [23].

Apart from the listed technical challenges, the main contribu-
tion of this work consists of defining a DSMC law for uncertain
and possibly multi-input nonlinear systems, directly based on
the nonlinear dynamics, that guarantees the satisfaction of both
input and state constraints in a general form. Such a result, to
the best of our knowledge, is not available in the literature, as
the cited papers either deal with linear systems [8], [10], [11],
[13]–[15] or linear systems approximations [9], or generate an
overall control law that is not a DSMC law [12], or finally use
a DSMC controller to enhance the robustness properties of a
separate MPC controller [16]–[20]. Notice that, when the state
constraints are defined directly on the components of the sliding
variable, one could design a sliding mode controller without the
need for receding-horizon approaches, so as to force the state to
slide on the boundary of the admissible region (i.e., the region
of the state space in which all state constraints are satisfied),
whenever this boundary is reached, thus satisfying the imposed
constraints (see, e.g., [24] for continuous-time SMC). On the
other hand, when the inequality constraints are also defined on
components of the state vector that cannot be mapped onto the
components of the sliding variable (which is the case of this
paper), once the boundaries of the constraint set are reached,
it will be impossible, in general, to avoid constraint violation:
this is why a prediction of the state trajectory (and thus, a
receding-horizon control law) is used in this work to define a
DSMC controller.

II. NOTATION

Let N≥0 denote the set of non-negative integers. Given two
integer values ai ≤ af , let N[ai,af ] , {ai, ai + 1, ..., af}. The
interior of a set Q ⊆ Rn is denoted as int(Q). Q is said to be
compact if it is closed and bounded. Given a vector v ∈ Rn,
‖v‖2 is its Euclidean norm, while ‖v‖ can denote any p-norm.
However, once a specific norm (e.g., 1-norm) is chosen, it
is used throughout the whole development described in the
paper whenever the notation ‖v‖ is present. Given a matrix
M ∈ Rn×n, ‖M‖ is the induced matrix norm corresponding to
‖v‖. The Minkowski sum of two sets Q1,Q2 ∈ Rn is defined
as Q1⊕Q2 , {x+y : x ∈ Q1, y ∈ Q2}, and their Pontryagin
difference as Q1	Q2 , {x ∈ Rn : x+y ∈ Q1, ∀y ∈ Q2}. A
function γ : R≥0→R≥0 is a K-function if it is continuous and
strictly increasing, and γ(0) = 0. A function γ : R≥0→R≥0 is

a K∞-function if it is a K-function and limy→+∞ γ(y) = +∞.
A function β : R≥0 ×Z≥0 → R≥0 is a KL-function if, for any
fixed t ≥ 0, β(·, t) is a K-function, and for any fixed y ≥ 0,
β(y, ·) is decreasing and limt→∞ β(y, t) = 0. To simplify
notation, time dependence is omitted when not relevant.

III. THE UNCONSTRAINED DSMC LAW

Consider the discrete-time nonlinear system

xt+1 = f(xt, ut) + wt (1)

where x ∈ Rn is the state vector fully available for feedback,
u ∈ Rm (with n ≥ m) is the control vector, f(·, ·) : Rn+m →
Rn is a smooth vector field, and w ∈ Rn is an unknown but
bounded disturbance, potentially including both matched and
unmatched terms, and satisfying

wt ∈ W, t ∈ N≥0, (2)

whereW ⊂ Rn is a compact set that includes the origin. Given
the compactness of W , it is always possible to define

w̄ , max
w∈W

‖w‖. (3)

Without loss of generality, we assume that the initial condition
is defined at t = 0 as x0. We define the sliding variable as

s = h(x) (4)

with h(·) : Rn → Rm being a smooth nonlinear function
determined by the designer of the control system, associated
with the sliding manifold S , {x ∈ Rn : s = h(x) = 0}.

Definition 1: A discrete-time sliding mode is said to take
place on S if there exists a finite t1 ∈ N≥0, such that st = 0,
∀t ≥ t1 (adapted from [1, Def. 9.1]). �
Following the basic idea proposed in [1], [4], we define a
nonlinear DSMC law usm(x) by solving h(f(x, usm(x))) = 0,
assuming that a solution to this system of nonlinear equations
can be found analytically ∀x ∈ Rn. This control law ensures
the attainment of a discrete-time sliding mode in one time step
when W = {0}.

Remark 1: In case of control-affine dynamics, i.e., f(x, u) =
f ′(x) + g(x)u with f ′ : Rn → Rn and g : Rn → Rn×m
smooth vector functions, one can find an expression for usm(x),
if the sliding variable is chosen as a linear function of the
state, namely h(x) = Cx, C ∈ Rm×n. Then, usm(x) =
− (Cg(x))

−1
Cf ′(x), which has solution ∀x ∈ Rn, assuming

invertibility of Cg(x) ∈ Rm×m, ∀x ∈ Rn. �
The closed-loop dynamics, now depending only on the initial

conditions and on the time evolution of the disturbance term,
can be written as

xt+1 = f(xt, u
sm(xt)) + wt = φ(xt) + wt (5)

where φ(xt) , f(xt, u
sm(xt)) represents the nominal closed-

loop system dynamics.
The presence of a non-zero disturbance term (both matched

and unmatched) prevents the ideal attainment of a discrete-time
sliding mode as described in Definition 1. Instead, one can
obtain a practical sliding motion, defined in the following.
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Definition 2: A practical sliding motion is said to take place
on S if there exists a finite t1 ∈ N≥0 and a K-function ε(·)
such that ‖st‖ ≤ ε(w̄), ∀t ≥ t1. �
In other words, during a practical sliding motion, the state is
confined in a boundary layer of S whose thickness decreases
with the size of W; if W = {0}, the practical sliding motion
turns into an ideal sliding motion according to Definition 1.

The convergence of the state to (a boundary layer of) S does
not necessarily guarantee any stability property for system (5).
In the practice of sliding mode controllers design (see, e.g.,
[1]), it is always required that the state of system (5) converges
to the origin when W = {0}, or to a neighborhood of the
origin when disturbance terms are present, which is obtained
by a careful definition of the sliding variable during the control
design phase. We formally state this property by referring to
the concept of input-to-state-stability [25].

Assumption 1: System (5) is globally input-to-state-stable
(ISS), i.e., there exist a KL-function β(·, ·) and a K-function
γ(·) such that, for x0 ∈ Rn and wt ∈ W ,

‖xt‖2 ≤ β (‖x0‖2, t) + γ(ŵt), (6)

for t ∈ N≥0, where ŵt , maxk∈[0,t−1] ‖wk‖2. �
A way to prove that (5) is ISS is to find an ISS Lyapunov
function [25, Lem. 3.5]. A standard formulation for it, based
on [25, Def. 3.2], is the following.

Definition 3: A continuous function V : Rn → R≥0 is an ISS
Lyapunov function for system (5) if there exist K∞-functions
α1(·) and α2(·) such that

α1(‖x‖2) ≤ V (x) ≤ α2(‖x‖2), ∀x ∈ Rn (7)

and also there exist a K∞-function α3(·) and a K-function
σ(·), such that

V (φ(x))− V (x) ≤ −α3(‖x‖2) + σ(‖w‖2) (8)

∀x ∈ Rn and ∀w ∈ W , with t ∈ N≥0. �
By the concept of asymptotic gain [25, Sec. 3.2], the existence
of an ISS Lyapunov function V (x) implies that xt, given
dynamics (5), asymptotically converges to a bounded set

Θf ,

{
x ∈ Rn : ‖x‖2 ≤ γa

(
lim sup
t→∞

‖wt‖2
)}

, (9)

where γa(·) is a K-function defined based on the functions
introduced in Definition 3 (we refer the reader interested in
the details of the calculation of γa(·) to [25, Sec. 3]).

Remark 2: As the application of usm(x) can require a large
control action, saturation bounds are typically imposed on the
components of the control vector when an approach such as
that of [1] is followed. As a result the convergence of x to S
is in general attained only after a finite number of steps [1]. �

IV. NOMINAL AND PERTURBED DYNAMICS

In this paper, mixed inequality constraints are imposed on
the discrete-time evolution of control inputs and states, as

z ∈ Z, (10)

with Z compact set including the origin in its interior, and

z ,
[
x> u>

]> ∈ Rn+m. (11)

Since usm(x) is not designed taking condition (10) into account,
its direct application might lead to constraints violation, even
in the absence of disturbance terms.

To define a control strategy to cope with these constraints in
the presence of disturbances, one has to bound the discrepancy
between nominal (i.e., for wt = 0) and perturbed (i.e., with
wt ∈ W) dynamics. This can be obtained by introducing sets
Xz and Uz , defined as the projections of Z onto the state space
and the input space, repectively [26].

Assumption 2: Function f(·, ·) is a Lipschitz function of its
first argument, i.e., there exists Lfx ∈ R≥0 such that

‖f(x1, u)− f(x2, u)‖ ≤ Lfx‖x1 − x2‖, (12)

∀(x1, x2) ∈ Xz , and ∀u ∈ Uz . �
Assumption 3: Function f(·, ·) is a Lipschitz function of its

second argument, i.e., there exists Lfu ∈ R≥0 such that

‖f(x, u1)− f(x, u2)‖ ≤ Lfu‖u1 − u2‖ (13)

∀x ∈ Xz and ∀(u1, u2) ∈ Uz . �
Assumption 4: Given x ∈ Xz , usm(x) is a Lipschitz function,

i.e., there exists Lu ∈ R≥0 such that

‖usm(x1)− usm(x2)‖ ≤ Lu‖x1 − x2‖ (14)

∀(x1, x2) ∈ Xz . �
The following result analyzes the discrepancy between nom-

inal evolutions of the system, from different initial conditions.
Lemma 1: Suppose Assumptions 2-4 hold. Consider an initial

condition x̂t, and define a sequence of control policies

ût+k = usm(x̂t+k) + ∆ut+k, k ∈ R≥0, (15)

where ∆ut+k are fixed additive control moves. Starting at
x̂t, this control sequence generates the nominal state values
given by x̂t+k+1 = f(x̂t+k, ût+k), for k ∈ R≥0. The notation
x̂t+k simply refers to a specific (nominal) time evolution of x.
Introduce another nominal sequence of states x̄t+k, defined by

ūt+k = usm(x̄t+k) + ∆ut+k, (16)

given ∆ut+k as above, and initial condition x̄t = x̂t + ∆x,
with ∆x ∈ W . This generates the sequence of states x̄t+k
determined by x̄t+k+1 = f(x̄t+k, ūt+k), for k ∈ R≥0. The
notation x̄t+k, similarly to x̂t+k, also refers to a specific
(nominal) time evolution of the state x. Assume

ẑt+k =

[
x̂t+k
ût+k

]
∈ Z, z̄t+k =

[
x̄t+k
ūt+k

]
∈ Z, (17)

∀k ∈ N≥0. Then, given Lx , LfuLu + Lfx,

‖x̄t+k − x̂t+k‖ ≤ Lkxw̄, ∀k ∈ N≥0. (18)

Proof: For k = 0, we have that ‖x̄t − x̂t‖ ≤ w̄. For k = 1,
‖x̄t+1 − x̂t+1‖ = ‖f(x̄t, ūt) − f(x̂t, ût)‖. By adding and
subtracting f(x̄t, ût) = f(x̄t, u

sm(x̂t) + ∆ut), we obtain
‖x̄t+1−x̂t+1‖ = ‖f(x̄t, ūt)−f(x̂t, ût)+f(x̄t, ût)−f(x̄t, ût)‖.
Thus, by applying the triangular inequality together with
Assumptions 2 and 3 and then Assumption 4, noticing that
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the terms ∆ut are common to both control policies and can
therefore be simplified, we obtain

‖x̄t+1 − x̂t+1‖ ≤ ‖f(x̄t, ūt)− f(x̄t, ût)‖+
+‖f(x̂t, ût)− f(x̄t, ût)‖ ≤ Lfu‖ūt − ût‖+ Lfx‖x̄t − x̂t‖
= Lfu‖usm(x̄t)− usm(x̂t)‖+ Lfx‖x̄t − x̂t‖
≤ (LfuLu + Lfx)w̄.

(19)
Analogously, for k = 2 we obtain ‖x̄t+2− x̂t+2‖ ≤ (LfuLu +
Lfx)2w̄, and iterating for any step k, ‖x̄t+k − x̂t+k‖ ≤
(LfuLu + Lfx)kw̄ = Lkxw̄, which concludes the proof. �

Remark 3: Notice that Assumptions 2-3 had to be defined
with respect to Xz and Uz , rather than directly to Z , to prove
Lemma 1. Indeed, despite the validity of (17), it is not guar-
anteed that

[
x̄>t+k û>t+k

]> ∈ Z . However, (17) guarantees
that x̄t+k ∈ Xz and ût+k ∈ Uz , which permits the application
of Assumptions 2-3 to claim that ‖f(x̄t, ūt) − f(x̄t, ût)‖ ≤
Lfu‖ūt−ût‖ and ‖f(x̂t, û)−f(x̄t, ût) ≤ Lfx‖x̄t−x̂t‖. These
results are used to obtain (19). �

Given Lemma 1, we can prove the next result, which analyzes
the discrepancy between nominal and perturbed evolutions of
the system, starting from the same initial conditions. The same
rationale of [22, Lemma 1] is still valid; the fundamental
difference is that the control law applied in [22] consisted of
an “open-loop” sequence of control moves, while in our case
it is a sequence of state-feedback control policies.

Lemma 2: Suppose Assumptions 2-4 hold. Consider an initial
condition x̂t, together with the sequence of control policies
ût+k and corresponding state evolution x̂t+k, with k ∈ R≥0, as
defined in Lemma 1. Also, introduce a perturbed evolution xt+k,
obtained applying ut+k = usm(xt+k) + ∆ut+k to the system
dynamics (1)-(2), given the same initial condition xt = x̂t, and
the same fixed additive control moves ∆ut+k. Assume also
that, ∀k ∈ N≥0,

ẑt+k =

[
x̂t+k
ût+k

]
∈ Z, zt+k =

[
xt+k
ut+k

]
∈ Z. (20)

Then, this result holds for k ∈ N≥0:

‖xt+k − x̂t+k‖ ≤ ηkw̄. (21)

with

ηk =

{
Lk

x−1
Lx−1 , Lx 6= 1,

k, Lx = 1.
(22)

Proof: For k = 0, xt = x̂t by definition, which satisfies (21).
For k = 1, ‖xt+1 − x̂t+1‖ = ‖wt‖ ≤ w̄, which also satisfies
(21). For k = 2, applying equation (19) in Lemma 1, together
with the triangular inequality, we obtain ‖xt+2 − x̂t+2‖ ≤
Lx‖xt+1 − x̂t+1‖+ ‖wt+1‖ ≤ (Lx + 1)w̄, for which (21) is
again satisfied. Generalizing to k ∈ N≥1, ‖xt+k − x̂t+k‖ ≤
Lx‖xt+k−1− x̂t+k−1‖+‖wt+k−1‖ ≤

∑k−1
i=0 L

i
xw̄. Indeed, by

explicitly writing the expression of the given geometric series,
we obtain

k−1∑
i=0

Lixw̄ =

{
Lk

x−1
Lx−1 w̄, Lx 6= 1,

kw̄, Lx = 1,

which, given the definition of ηk in (22), is equivalent to
inequality (21). �

The discrepancy (in p-norm) between nominal and perturbed
evolutions of system (1) for k ∈ N≥0 therefore belongs to the
set

Bkx , {ξ ∈ Rn : ‖ξ‖ ≤ ηkw̄} . (23)

Given the mixed-constraints formulation (10), results anal-
ogous to those in Lemmas 1 and 2, respectively, have to be
carried out to extend our analysis from the evolution of xt to
that of zt.

Lemma 3: Given system (5) satisfying Assumptions 2-4,
consider the state-input evolutions ẑt+k ∈ Z and z̄t+k ∈ Z
defined within Lemma 1 in (17), for k ∈ N≥0. After defining

w̄z ,
∥∥[1 Lu

]∥∥ · w̄, (24)

we obtain
‖z̄t+k − ẑt+k‖ ≤ Lkxw̄z. (25)

Proof: This lemma can be proven by extending the results in
Lemma 1: the proof is omitted due to space limitation. �

Lemma 4: Given system (5) satisfying Assumptions 2-4,
consider the nominal evolution ẑt+k ∈ Z and perturbed
evolution zt+k ∈ Z , for k ∈ N≥0, as defined within Lemma 2
in (20). Recalling the definition of w̄z in (24), we obtain

‖zt+k − ẑt+k‖ ≤ ηkw̄z. (26)

Proof: This lemma can be proven by extending the results in
Lemma 2: the proof is omitted due to space limitation. �

Similarly to (23), we define

Bkz ,
{
ζ ∈ Rn+m : ‖ζ‖ ≤ ηkw̄z

}
. (27)

Having in mind the idea to design a control algorithm to
take into account the uncertain terms, in order to guarantee that
the constraint z ∈ Z is satisfied for any feasible realization of
the disturbance, let Zk be a tightened set defined as

Zk = Z 	 Bkz . (28)

From the definition of Bkz in (27) and the result of Lemma 4,
one can see that

ẑt+k ∈ Zk ⇒ zt+k ∈ Z, wt+k ∈ W, k ∈ N≥0. (29)

V. PROPERTIES OF THE UNCONSTRAINED DSMC LAW

In Section IV, we determined how to relate nominal and
perturbed dynamics, and system constraints. These results are
now used to introduce further properties of the control law
usm(x), and to define new sets useful for the definition of our
constrained DSMC law.

According to Assumption 1, in absence of constraints, system
(5) is ISS and therefore admits an ISS Lyapunov function V (x)
as in Definition 3. Given V (x) and a constant αΘ ∈ R>0, we
introduce the invariant set in nominal conditions

Θ , {x ∈ Rn : V (x) ≤ αΘ} , (30)

defined such that, given the set Θf introduced in (9), one has

Θf ⊂ int(Θ), x ∈ Θ⇒
[

x
usm(x)

]
∈ Z. (31)
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Another set is defined as

Ω , {x ∈ Rn : V (x) ≤ αΩ}, (32)

with αΩ ∈ [0, αΘ], which is required to satisfy

x ∈ Θ⇒ φ(x) ∈ Ω. (33)

Assumption 5: In addition to being positive definite (see,
e.g., [25]), V (·) is a Lipschitz function in A , Θ ∪ (Ω⊕W).
More precisely, there exists LV ∈ R≥0 such that

|V (x1)− V (x2)| ≤ LV ‖x1 − x2‖ (34)

∀x1, x2 ∈ A. �
Remark 4: Notice that the common choice, when possible, of

using a quadratic ISS Lyapunov function would automatically
satisfy Assumption 5 on any bounded set. However, the
Lipschitz continuity is required to hold in A only. It is in
our interest not to consider a region larger than needed, in
order to obtain a value of LV that is as low as possible.

Assumption 6: The following holds:

w̄ ≤ αΘ − αΩ

LV L̄x
, (35)

where L̄x ≥ 1. �
Notice that, as the size of Θf and the value of w̄ depend
(in case of persistent disturbances) on how large set W is,
condition (35) can be satisfied as long as the disturbance terms
are small enough.

Lemma 5: Under Assumptions 5-6, Θ is a robust positively
invariant (RPI) set [26] for the closed-loop system (5), i.e.,
x ∈ Θ⇒ φ(x) + w ∈ Θ, ∀w ∈ W .
Proof: The definition of Ω in (32) ensures that x ∈ Θ ⇒
φ(x) ∈ Ω. As x ∈ Θ ⊆ A and φ(x) + w ∈ Ω ⊕ W ⊆ A,
by virtue of Assumptions 5 and 6, and taking into account
the definition of L̄x, |V (φ(x) + w) − V (φ(x))| ≤ LV w̄ ≤
αΘ−αΩ

L̄x
≤ αΘ − αΩ. Starting from this last inequality, we

distinguish two cases: (a) If V (φ(x)+w)−V (φ(x)) ≥ 0, then
one can claim that V (φ(x)+w)−V (φ(x)) ≤ αΘ−αΩ, which
implies V (φ(x) + w) − αΘ ≤ V (φ(x)) − αΩ ≤ 0, leading
to V (φ(x) + w) ≤ αΘ, and thus, by the definition of Θ in
(30), φ(x) +w ∈ Θ. (b) On the other hand, if V (φ(x) +w)−
V (φ(x)) < 0, i.e., V (φ(x) +w) < V (φ(x)), then φ(x) +w ∈
Ω ⊆ Θ follows from the definition of Ω in (32). �

We now detail how practical sliding motion can be achieved
by the perturbed system in the presence of constraints by
applying usm(x) for initial conditions xt ∈ Θ.

Assumption 7: Function h(·) in (4) is defined such that

‖h(x1)− h(x2)‖ ≤ Lh(‖x1 − x2‖) (36)

∀(x1, x2) ∈ Θ, where Lh ∈ R≥0 is the corresponding Lipschitz
constant. �

Lemma 6: Consider system (5) (i.e., the closed-loop system
obtained by applying the underlying DSMC law), with initial
condition xt ∈ Θ. If Assumptions 5-7 hold, a practical sliding
motion takes place as described in Definition 2, with ε(w̄) =
Lhw̄, and zk+t ∈ Z (constraints satisfaction) for t ∈ N≥0.
Proof: The definition of usm(xt) implies that h(φ(xt)) = 0.
When introducing the disturbance term, we obtain the following
by adding and subtracting h(φ(xt)): ‖h(φ(xt) + wt)‖ =

‖h(φ(xt) +wt)− h(φ(xt)) + h(φ(xt))‖. Then, being xt ∈ Θ,
thanks to Assumption 7 we obtain ‖h(φ(xt) + wt)‖ ≤
‖h(φ(xt)+wt)−h(φ(xt))‖+‖h(φ(xt))‖ ≤ Lh(‖φ(xt) +wt−
φ(xt)‖) ≤ Lhw̄. Given the robust invariance of Θ with respect
to system (5), guaranteed by Assumptions 5-6, the same results
will hold not only at t, but for t+ k, k ∈ N≥0. This implies
on the one hand that a practical sliding motion is taking place,
with ε(w̄) = Lhw̄, and on the other hand (given the second
condition in (31)) that zk+t ∈ Z for t ∈ N≥0. �

VI. THE RECEDING-HORIZON CONTROL LAW

The scope of this section is to enlarge (beyond Θ) the set
of initial states from which constraint satisfaction is ensured
and a practical sliding motion takes place. In order to do it,
we define N ∈ N≥1 as the prediction horizon of the MPC
problem, and extend the requirements of the unconstrained
DSMC law as follows.

Assumption 8: Let Assumption 5 hold in A , Θ∪(Ω⊕W)∪
(Ω⊕ BL), where BL ,

{
ξ ∈ Rn : ‖ξ‖ ≤ LN−1

x w̄
}

. More-
over, x ∈ Θ implies

[
x usm(x)

]> ∈ ZN−1, with ZN−1 as
in (28) for k = N − 1. Finally, Assumption 6 is valid for
L̄x = max{1, LN−1

x }. �
The new proposed control law consists of a modification of
usm(x) given by

urh(xt) = usm(xt) + c∗t (37)

where c∗t ∈ Rm is an additive term aimed at ensuring
constraints satisfaction. This term is obtained by formulating
and solving a finite-horizon optimal control problem (FHOCP)
at each time instant t. As the FHOCP is based on predictions,
for a given initial state xt, we refer to predictions at subsequent
time instants t+k given time t: for instance, x̂t+k|t is the state
predicted at t + k starting at t using the nominal dynamics.
A general sequence of terms ct+k|t ∈ Rm, k = N[0,N−1],

is defined as ct ,
[
c>t|t c>t+1|t . . . c>t+N−1|t

]>
∈ RNm,

where N is the prediction horizon. The optimal value of the

sequence, namely c∗t ,
[
c∗>t|t c∗>t+1|t . . . c∗>t+N−1|t

]>
, is

obtained at each time instant t by solving the above-mentioned
FHOCP. Following the so-called receding-horizon approach,
the first element of the sequence is applied to the system as
c∗t = c∗t|t, and a new sequence c∗t+1 is determined at the next
time instant.

After defining a constant matrix Ψ ∈ Rm×m, Ψ = Ψ> � 0,
the FHOCP is introduced as follows:

c∗t = arg min
ct

N−1∑
k=0

c>t+k|tΨct+k|t (38a)

subj. to
x̂t|t = xt, (38b)
x̂t+k+1|t=f(x̂t+k|t, u

sm(x̂t+k|t) + ct+k|t), k ∈ N[0,N−1],
(38c)[

x̂t+k|t
usm(x̂t+k|t) + ct+k|t

]
∈ Zk, k ∈ N[0,N−1], (38d)

x̂t+N ∈ Ω. (38e)
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In (38b)-(38c), the system dynamics is initialized at the
measured state xt, and predicted using the nominal dynamics.
Each c∗t|t+k ∈ Rm is associated with a corresponding optimal
control policy

u∗(x̂t+k|t) , u
sm(x̂t+k|t) + c∗t+k|t, (39)

with k ∈ N[0,N−1], defined based on the nominal dynamics. It
is implicitly assumed that Zk 6= ∅ for k ∈ N[0,N−1]: indeed,
if this condition is not satisfied, the FHOCP (38) is always
infeasible. Finally, the constraint (38e) is defined with respect
to the compact set Ω ⊂ Rn, already introduced in (32). The
following result on the receding-horizon control law analyzes
constraint satisfaction, based on the possibility of finding a
feasible solution of the FHOCP, when a feasible solution was
available at the previous time instant (recursive feasibility).
Notice that this result and all the considered assumptions are
instrumental to prove the main result of this work, which will
be presented in Theorem 2.

Theorem 1: Define DN as the set of initial states x0 for which
problem (38) is feasible. If Assumptions 2-6 and 8 are satisfied,
then DN is an RPI set for the closed-loop system obtained
by applying ut = urh(xt) introduced in (37) to system (1).
Moreover, the satisfaction of the mixed input-state constraints
defined in (10) is guaranteed for t ∈ N≥0.
Proof: Given xt−1 ∈ DN and the corresponding FHOCP
solution, we assume to apply urh(xt−1) to system (1), thus
obtaining xt = f(xt−1, u

rh(xt−1)) + wt−1. At the next time
instant t, we explicitly define the predicted state sequence

x̄t+k|t =


xt, k = 0

f(x̄t+k−1|t, u
sm(x̄t+k|t) + c∗t+k|t−1),

k = N[1,N−1]

f(x̄t+N−1|t, u
sm(x̄t+N−1|t−1)), k = N,

(40)
obtained with the suboptimal control sequence

ūt+k|t =

{
usm(x̄t+k|t) + c∗t+k|t−1, k = N[0,N−2]

usm(x̄t+N−1|t−1), k = N − 1.
(41)

Our aim is to show that (40)-(41) constitutes a feasible solution
of (38), which implies that an optimal solution at time t can
also be found: we do that by verifying that all inequality
constraints in (38), i.e., (38d) and (38e), are satisfied, as the
equality constraints are satisfied by construction.

To prove that (38d) holds for k ∈ N[0,N−2], we start defining

ẑ∗t+k|t−1 ,

[
x̂∗t+k|t−1

u∗(x̂∗t+k|t−1)

]
, z̄t+k|t ,

[
x̄t+k|t
ūt+k|t

]
, (42)

in which x̂∗t+k|t−1 represents the (optimal) nominal state
evolution predicted at t− 1, and u∗(x̂∗t+k|t−1) the correspond-
ing optimal control policies. For k ∈ N[0,N−2], ūt+k|t =
usm(x̄t+k|t) + c∗t+k|t−1, and that by virtue of Lemma 1,
‖x̄t+k|t − x̂∗t+k|t−1‖ ≤ Lkxw̄. Notice that, mutatis mutandis
(i.e., considering predictions rather than actual time evolutions
of the system, substituting ∆ut+k with c∗t+k|t−1, and ∆x with
wt−1), and given that x̄t|t = x̂t|t−1 + wt−1, all assumptions
needed for applying Lemma 3 hold. Applying Lemma 3 yields

‖z̄t+k|t − ẑ∗t+k|t−1‖ ≤ L
k
xw̄z. (43)

In order the new input sequence to be feasible, we need to
prove that z̄t+k|t ∈ Zk for k ∈ N0,N−1. In order to do so, we
introduce disturbance terms ζk ∈ Bkz , with the aim to prove,
by using (43), that z̄t+k|t + ζk ∈ Z for k ∈ N[0,N−2] and all
ζk ∈ Bkz , which would imply z̄t+k|t ∈ Zk for k ∈ N[0,N−2].
We start by defining a variable δk ∈ Rn, as

δk = z̄t+k|t − ẑ∗t+k|t−1 + ζk. (44)

From (43) and from the definition of w̄z in Lemma 3, it follows
that ‖δk‖ ≤ ‖z̄t+k|t − ẑ∗t+k|t−1‖ + ‖ζk‖ ≤ Lkxw̄z + ηkw̄z =

ηk+1w̄z , which implies δk ∈ Bk+1
z (this result generalizes the

idea of [22, Lemma 2] to the case of mixed constraints). By
feasibility of (38) at time t−1, we know that ẑ∗t+k|t−1 ∈ Zk+1,
for k ∈ N[0,N−2]. As a consequence, ẑ∗t+k|t−1 + δk ∈ Z , but
by means of (44) we also get z̄t+k|t+ζk ∈ Z for k ∈ N[0,N−2]

and all ζk ∈ Bkz . Hence, z̄t+k|t ∈ Zk for k ∈ N[0,N−2].
In order to prove that (38d) is also satisfied in the prediction

at time t+N − 1, we apply Lemma 1, obtaining

‖x̄t+N−1|t − x̂∗t+N−1|t−1‖ ≤ L
N−1
x w̄. (45)

Assumption 5 modified as in Assumption 8 can be applied for
x̄t+N−1|t and x̂∗t+N−1|t−1, as x̂∗t+N−1|t−1 ∈ Ω ⊆ Θ ⊆ A, and
(45) implies that x̄t+N−1|t ∈ Ω⊕BL ⊆ A. Thus, applying (45)
and recalling (34), we get |V (x̄t+N−1|t)−V (x̂∗t+N−1|t−1)| ≤
LV ‖x̄t+N−1|t − x̂∗t+N−1|t−1‖ ≤ LV L

N−1
x w̄. We consider

two cases: if V (x̄t+N−1|t) ≥ V (x̂∗t+N−1|t−1), then, by
means of Assumption 6 modified as in Assumption 8, one
has V (x̄t+N−1|t) ≤ V (x̂∗t+N−1|t−1) + LV L

N−1
x w̄ ≤ αΩ +

LV L
N−1
x w̄ ≤ αΘ, while, if V (x̄t+N−1|t) ≤ V (x̂∗t+N−1|t−1),

one has V (x̄t+N−1|t) ≤ V (x̂∗t+N−1|t−1) ≤ αΩ ≤ αΘ. In
both cases, it is ensured that x̄t+N−1|t ∈ Θ. By definition of
ūt+N−1|t, from the second condition in (31) we obtain that
z̄t+N−1|t ∈ ZN−1. Constraint (38d) is therefore satisfied for
k ∈ N[0,N−1].

Finally, the definition of Ω (in particular, (33)) guarantees
that, being x̄t+N−1|t ∈ Θ, using usm(x̄t+N−1|t) one has
φ(x̄t+N−1|t) = x̄t+N |t ∈ Ω, which satisfies (38e). This proves
recursive feasibility.

Regarding the satisfaction of constraint (10) for t ∈ N≥0,
given the result in (29), the satisfaction of constraint (38d) in
the FHOCP implies that any feasible perturbed state evolution
satisfies [

xt+k|t
usm(xt+k|t) + ct+k|t

]
∈ Z (46)

for k ∈ N0,N−1, and ∀wt+k|t ∈ W . This holds in particular for
k = 1, which represents the time instant at which the FHOCP
will be solved again based on the new state measurement. This
result, together with the recursive feasibility property, ensures
(by induction) that (10) will be satisfied for t ∈ N≥0. �

Remark 5: One can see that (35) plays a fundamental role
in guaranteeing recursive feasibility. If w̄ (which provides a
measure of the disturbance term) is too large, then constraint
satisfaction cannot be ensured. An increasingly large distur-
bance measure w̄ can be allowed for increasingly large values
of αΘ − αΩ (which reflects the ability of the sliding mode
control law to steer the state value close to the origin) and
increasingly small values of LV L̄x. �
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The following intermediate result will be useful to show that
the proposed MPC law is indeed a constrained DSMC law.

Corollary 1: Consider system (1), satisfying Assumptions
2-6 and 8. Then, x ∈ Θ⇒ urh(x) = usm(x).
Proof: It is immediate to see that the unconstrained global
minimizer of (38a) is obtained for c∗t|t+k = 0, k ∈ N[0,N−1].
The reason for it is that

∑N−1
k=0 c>t+k|tΨct+k|t ≥ 0, and for

c∗t|t+k = 0, k ∈ N[0,N−1], its value is equal to zero. We
prove now that this is a feasible solution of the FHOCP (38) if
x ∈ Θ. The equality constraints (38b) and (38c) are satisfied by
construction. Also, given the definition of Θ in (30), ẑ∗t+k ∈ Zk,
for k ∈ N[0,N−1]. This implies the satisfaction of (38d). Finally,
(38e) is implied by (32), given that ẑ∗N−1 ∈ ZN−1. Given
the feasibility of the unconstrained global minimizer, we get
c∗t|t = 0, and thus urh(x) = usm(x) for x ∈ Θ. �

The following theorem states the fundamental convergence
properties of the proposed constrained DSMC law.

Theorem 2: Consider the closed-loop system (1) with ut =
urh(xt) defined in (37), satisfying Assumptions 1-8. Then,
for all initial conditions x ∈ DN , limt→∞ xt ∈ Θf , and a
practical sliding motion is achieved in finite time, according to
Definition 2, with ε(w̄) = Lhw̄. In case there exists t1 such
that wt = 0 for t ≥ t1, then limt→∞ xt = 0, and an ideal
sliding motion (see Definition 1) is achieved in finite time.
Proof: Given xt−1 ∈ DN , consider the optimal value of the
cost function of the FHOCP (38) at time t−1, namely J∗t−1 ,∑N−1
k=0 c∗>t+k−1|t−1Ψc∗t+k−1|t−1. By recursive feasibility, Theo-

rem 1 guarantees the existence of J∗t ,
∑N−1
k=0 c∗>t+k|tΨc

∗
t+k|t,

but its explicit value cannot be determined before solving the
FHOCP (38) at time t. By following the idea first introduced
in [21] for linear robust MPC, the suboptimal sequence of
control moves c̄t+k|t used in Theorem 1 is explicitly defined
as c̄t+k|t = c∗t+k|t−1 for k = 0, . . . , N − 2, and as c̄t+k|t = 0
for k = N −1. This control sequence generates the suboptimal
value of the cost function J̄t ,

∑N−1
k=0 c̄>t+k|tΨc̄t+k|t =∑N−2

k=0 c∗>t+k|t−1Ψc∗t+k|t−1 = J∗t−1 − c∗>t−1Ψc∗t−1, in which we
recall that c∗t−1 , c

∗
t−1|t−1. The cost function J̄t is associated

with the suboptimal control terms ūt+k|t, k ∈ N[0,N−1], defined
in (41), which constitutes a feasible solution of (38), according
to Theorem 1. As J∗t ≤ J̄t, from the definition of J̄t it
follows that J∗t−1 − J∗t ≥ c∗>t−1Ψc∗t−1 ≥ 0, as Ψ � 0. As
a consequence, the sequence of optimal cost functions {J∗t }
is a non-increasing and non-negative sequence, which, as
t → ∞, necessarily converges to a finite value, namely J∗∞.
Therefore, considering to solve problem (38) starting at time
t = 0 with x0 ∈ DN , as J∗t−1 − J∗t ≥ 0, one has that
∞ >

∑∞
t=0 J

∗
t −J∗t+1 = J∗0 −J∗∞ ≥

∑∞
t=0 c

∗>
t Ψc∗t ≥ 0. This

implies limt→∞ c∗>t Ψc∗t = 0. As Ψ � 0, one also has that
limt→∞ c∗t = 0. This in turn implies that limt→∞ urh

t = usm
t ,

and thus, by definition of Θf , limt→∞ xt ∈ Θf . Being
Θf ⊂ int(Θ) by assumption, then xt converges to Θ in a
finite time t̄ ∈ N≥0. Once xt ∈ Θ, Lemma 5 and Corollary 1
guarantee that urh(xt) = usm(xt) for t ≥ t̄. This implies,
thanks to Lemma 6, that a practical sliding motion takes
place for t ≥ t̄ + 1. Finally, if wt = 0 for t ≥ t1,
Assumption 1 implies that an ideal sliding motion takes place
for t ≥ max(t̄+ 1, t1 + 1), and limt→∞ xt = 0. �

VII. ILLUSTRATIVE EXAMPLE

Consider the discrete-time, two-dimensional oscillator, ob-
tained by forward difference approximation of the Duffing
equation with sampling time Ts =0.1 s:

xt+1 =
[

1 Ts

−Ts (1− 0.6Ts)

]
xt +

[
0 0
−Ts 0

]
x3
t +

[
0
Ts

]
(ut + dt).

(47)
This example was already used in [17] and [27] to test other
receding-horizon control algorithms, with a consistent selection
of the sampling time. The latter allows a suitable length of
the prediction horizon. The uncertain term dt ∈ D ⊂ R is
generated as a pseudo-random signal, bounded in the set D ,
[−1.34× 10−4, 1.34× 10−4]. Note that, in compliance with
system (1) we pose wt ,

[
0 Tsdt

]> ∈ [0 TsD
]>
, W ,

which implies w̄ = 1.34× 10−5, while the other terms are
included in vector field f(·, ·). The sliding variable in (4) is
instead defined as s = h(x) = cx1 + x2. Hence, by posing
wt = 0, and substituting into (47) the unconstrained DSMC
law satisfying equation h(f(x, usm(x))) = 0, that is

usm(x) =

[(
1− c

Ts

)
x1 −

(
1

Ts
− 0.6 + c

)
x2 + x3

1

]
,

(48)
one achieves the closed-loop system in form (5) defined by
φ(x) =

[
x1 + Tsx2 −cx1 − cTsx2

]>
. This specific choice

of the sliding variable has led to an LTI closed-loop system,
and so that the sliding manifold is properly designed if and
only if 0 < c < 2

Ts
. Therefore, the constant has been set as

c = 5, and the system in form (5) is

xt+1 =

[
1 Ts
−c −cTs

]
︸ ︷︷ ︸

A

xt + wt. (49)

One can set

V = x>Px, P =

[
35.6667 3.4667
3.4667 1.3467

]
,

where P � 0 is the solution of the associated discrete-
time Lyapunov equation A>PA − A = −Q, with Q being
fixed as a 2-by-2 identity matrix. From the results described
in [25, Ex. 3.4], one can claim that V (x) is an ISS Lya-
punov function: in particular, referring to Definition 3, we
have that α1(‖x‖2) = λmin(P )‖x‖22 = ‖x‖22, α2(‖x‖2) =
λmax(P )‖x‖22 = 36.01‖x‖22, α3(‖x‖2) = 1

2λmin(Q)‖x‖22 =
1
2‖x‖

2
2, and σ(‖w‖2) =

(
2‖A>P‖22
λmin(Q) + ‖P‖22

)
‖w‖22 = 1.99 ·

103‖w‖22, which implies that system (49) is ISS. The set Θf

in case of persistent disturbances can be calculated consid-
ering that, for system (49), one has γa (maxw∈W ‖w‖2) =
2.05 · maxw∈W ‖w‖2, and thus, given the definition of W
for our case study for which maxw∈W ‖w‖2 = 1.31 · 10−5,
Θf =

{
x ∈ Rn : ‖x‖2 ≤ 2.68 · 10−5

}
.

Introducing the augmented state z = [x1, x2, u]> ∈ R3, the
mixed input/state constraints Z in (10), for this example, are
such that |x1| ≤ 1, |x2| ≤ 4, |u| ≤ 80, |−5(x1 +x2)+u| ≤ 80,
and |5(x2−x1) +u)| ≤ 80. As for Assumptions 2-4, by using
the infinity norm and the INTLAB MATLAB-based toolbox
[28], the required parameters result as Lfx = 1.34, Lfu = 0.1,
Lu = 49, so that Lx = 6.24, and w̄z = 6.54× 10−4. In order
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Figure 1. From top left, clockwise. Time evolution of the states x1t , x2t
(left axis), and of the input ut = usm

t + c∗t (right axis). Time evolution of
the sliding variable st. State-space portrait: constraint set Z (solid black line),
the set DN (solid gray line), convergence set Θf (close-up, solid light gray
line), RPI set Θ (solid dark gray line), state trajectory (dotted black line)

to solve the FHOCP, the prediction horizon is set equal to
N = 5, while the (scalar) input weight is Ψ = 100. Set DN
has been instead computed numerically as a polytope using
the MPT3 MATLAB-based toolbox [29]. As for the sets Θ
and Ω, they are thus obtained as ellipsoidal sets defined as
described in (30) and (32), respectively, with αΘ = 14.34 and
αΩ = 13.35. Specifically, as for Θ, it is the largest ellipsoid
such that the tightened constraints (28) are satisfied. The latter
are computed by defining the set Bkz in (27) by exploiting the
infinity norm. Overall, Assumptions 5 and 6 are satisfied by
these values of the parameters, with LV = 48.92. With the
chosen sliding variable, the Lipschitz constant in Assumption 7
is instead Lh = 5. Finally, the amplitude of the boundary layer
around the sliding manifold was determined numerically to be
equal to ε = 6.6× 10−5. Figure 1 illustrates the behavior of
the system controlled via the proposed law (37), as well as
the state-space portrait. The state trajectory, differently from
the unconstrained classical case, never violates the constraints
defined by Z: the initial conditions x0 =

[
−0.9 0.1

]>
are

inside the FHOCP feasible set DN ; the state then enters Θ in
finite time, and finally converges to the bounded set Θf .

VIII. CONCLUSIONS

We developed a receding-horizon control approach to achieve
a DSMC law that guarantees the satisfaction of mixed input-
state constraints. All theoretical results were rigorously proven,
and the algorithm was successfully tested in the simulation of
a discretized Duffing equation.
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