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Abstract We propose a novel modeling method for circuits containing arbi-
trary nonlinear 3-terminal devices, which operates in the Wave Digital (WD)
domain. This approach leads to the definition of a general and flexible WD
model for 3-terminal devices, whose number of ports varies from 1 to 6. The
generality of the method is confirmed by the fact that the WD models of 3-
terminal devices already discussed in the literature can be seen as particular
cases of the model that we present here. As examples of applications of our
method, we develop WD models of the three most widespread types of tran-
sistors in audio circuitry, i.e., the MOSFET, the JFET and the BJT. These
models are here designed to be used in Virtual Analog audio applications,
therefore their derivation is aimed at minimizing computational complexity
while avoiding implicit relations between port variables, as far as possible.
Proposed MOSFET and JFET models are characterized by third-order poly-
nomial equations, hence explicit closed-form wave scattering relations are ob-
tained. On the other hand, the Ebers-Moll model describing the BJT results in
transcendental equations in the WD domain that cannot be solved analytically.
In order to cope with this problem, we propose a modified Newton-Raphson
(NR) method for solving the implicit Ebers-Moll equations in the WD domain.
Such iterative method exhibits a significantly higher robustness and conver-
gence rate with respect to a traditional NR method, without compromising
its efficiency. Finally, WD implementations of some audio circuits containing
transistors are discussed.
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1 Introduction

Wave Digital (WD) Filter (WDF) theory [20] was introduced in the early
70s by Fettweis as a methodology for designing digital filters based on the
discretization of passive analog filters. WDFs are designed starting from a
port-wise consideration of the reference analog circuit that involves a linear
transformation of each pair of port variables (port voltages and port cur-
rents) into a pair of wave variables (incident waves and reflected waves) with
the introduction of a free parameter per port called port resistance. In the
WD domain, the reference analog circuit is modeled as a structure made of
input-output blocks; the topological connections are described using multi-
port scattering junctions called adaptors, while the circuit elements become
one-port or multi-port blocks characterized by scalar or vectorial scattering re-
lations. Discrete-time implementations of circuits in the WD domain preserve
the energetic properties of their analog counterpart, since the trapezoidal rule
is typically employed for discretizing the time derivatives of dynamic (energy-
storing) elements, e.g., capacitors and inductors [20]. For these reasons, in the
more recent years, WDFs proved to be suitable for Sound Synthesis through
physical modeling [31] and Virtual Analog modeling [5, 17]. While the litera-
ture on linear WDFs is well established, different methods are under study for
modeling nonlinear WDFs in an unified fashion [1–4, 6, 7, 26–28, 32–34,39]. In
particular, different ad-hoc approaches exist for modeling nonlinear 3-terminal
devices of audio gear (e.g., vacuum tubes or transistors) in the WD domain.
One common approach is to model 3-terminal devices as 3-port elements,
whose port terminals are the 3 terminals of the device (e.g., Grid, Cathode
and Anode for triodes [15, 24, 29, 30] or Gate, Source and Drain for Junction
gate Field-effect Transistors (JFETs) [23]) and ground as terminal in common
to the 3 ports. Such WD models, however, are not usable when the reference
circuit exhibits feedback between the terminals of the device. For this rea-
son, in [9] a modified Ebers-Moll model, called Extended Ebers-Moll Model,
is proposed for implementing the Bipolar Junction Transistor (BJT) in more
complicated topologies. A different approach is used in [27, 39, 40], where the
neither series nor parallel topological connections of the reference circuit are
implemented using WD multi-port scattering junctions, called R-type adap-
tors. In such cases, nonlinear 3-terminal devices are modeled with simple 2-port
WD elements, since all the topological complexity is managed by the WD junc-
tions. R-type adaptors [10,22,25,36–39] are extremely powerful, as they allow
us to derive WD models of circuits with arbitrary topologies and multi-port
elements in a systematic fashion. However, the fact that R-type adaptors are
often characterized by significantly big scattering matrices could negatively af-
fect the computational cost of the resulting WD structures. Moreover, when a
multi-port nonlinear element is connected to an R-type adaptor through mul-
tiple ports delay-free loops are unavoidable. For these reasons, in some cases,
WD models of 3-terminal devices with more than 2 ports can still be useful to
reduce the complexity/dimensionality of R-type adaptors. Such models should
be built while honoring as much as possible the properties of modularity and
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reusability of traditional WDFs, where the circuit elements and the topological
connections are modeled in a rather independent fashion [20].

This paper offers a unified modeling strategy for the WD implementation
of nonlinear 3-terminal devices in different topological configurations. The de-
scribed modeling strategy is then applied to the derivation of WD models of
the most common transistors in audio circuitry. Such models are developed
to be used in Virtual Analog applications, where the digital models of non-
linear analog devices should be characterized by good accuracy, but also light
computational weight. The paper is organized as follows. Section 2 proposes a
general WD 6-port model applicable to arbitrary 3-terminal devices. We will
show how the proposed 6-port model can be easily reduced to all the WD
models of 3-terminal devices presented in the literature. The nonlinear part
of the model is confined to the 2-dimensional nonlinear mapping character-
izing the actual device, even when the number of ports of the chosen WD
model is greater than 2. The rest of the paper provides a discussion on the
WD realization of the three most widespread transistors in audio circuitry;
the MOSFET, the JFET and the BJT. In particular, in Section 3, we derive
explicit analytical WD models for MOSFET and JFET transistors. To the
best of our knowledge, models of the MOSFET are not yet discussed in any
publication on WDFs; while, the proposed JFET model is characterized by
higher accuracy than the one already presented in the literature [23]. Con-
versely, numerous approaches for implementing the exponential Ebers-Moll
model of the BJT in the WD domain are already discussed in the literature.
In [9] approximations of the Ebers-Moll model are employed for deriving ana-
lytical WD scattering relations based on the Lambert Function; however, they
might be inaccurate when both diodes are conducting at the same time. In-
stead, in [39] tabulations of the Ebers-Moll equations are performed; while
in [27] the Newton-Raphson (NR) method is adopted. The iterative method
in [27] is fast and accurate; however, convergence is not guaranteed. In Sec-
tion 4 of this paper, we propose an improved NR method for implementing
the Ebers-Moll model in the WD domain; the method, in fact, is characterized
by higher robustness and efficiency with respect to the ones presented in the
literature. Section 5 presents some examples of applications of the proposed
models. We describe WD implementations of an overdrive guitar effect with
three MOSFETs, a guitar preamplifier circuit with two JFETs and a common
emitter amplifier with one BJT. Section 6 provides a final discussion on the
presented results and concludes this paper.

2 A General Wave Digital Model for 3-terminal Devices

A generic 3-terminal device can be represented as in Fig. 1(a). As outlined
in [14], the most general description of a 3-terminal nonlinear resistor is im-
plicit and its characteristic is a 2-dimensional surface in a four-dimensional
space. However, practical nonlinear memoryless models of the most widespread
3-terminal devices (e.g., transistors and vacuum tubes) are expressed in ex-
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plicit form using 2-dimensional nonlinear functions with two scalar indepen-
dent input variables [14]. In this Section we provide general formulas that
describe nonlinear models of the sort in the WD domain. In the literature

iC

A

B

C

iA
3-Terminal
   Device

O iB

(a)

RCO

bCO aCO

R AB

b AB
a AB

R
BO

b
BO

a
BO

RCA
bCAaCA

R AO
b AO

a AO
R

BC
b

BC

a
BC

Wave Digital
6-Port
Model

(b)

Fig. 1 A generic 3-terminal device (a) and a corresponding 6-port WD model (b).

on WDFs, some different WD models of nonlinear 3-terminal transistors and
vacuum tubes with different port configurations have already been proposed
[9,15,23,24,29,39]. In the following, we present a 6-port WD model, which is
applicable to general nonlinear 3-terminal devices and includes all the n-port
configurations presented in the literature as particular cases, with 1 ≤ n ≤ 6.
The model will include the 3 terminals of the device and the ground node. In
principle, it would be possible to include other nodes of the circuit and define
n-port models with n > 6. This, however, would significantly undermine the
modularity property typical of traditional WDFs, according to which all the
elements of the circuit are modeled separately and independently from topo-
logical junctions called adaptors. We believe that the 6-port model presented
in the following is a good compromise between modularity and generality, as
it comprises only a potentially external node, i.e., the ground node, which is
defined for the analysis of any circuit.

2.1 Definition of Wave Signals

The WD model is based on the following port-wise definition of wave signals

a = v +Ri , b = v −Ri (1)

where v is the port voltage, i is the port current, a is the incident wave, b is
the reflected wave, R is a free parameter called port resistance. From (1) we
can derive the following relations for computing the reflected waves

b = 2v − a , (2)

b = a− 2Ri . (3)
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2.2 Kirchhoff representation of the 6-port Wave Digital Model

In [9] and [37, 39], it is shown how the WD scattering mapping of a one-
or multi-port circuit element (e.g., a nonlinear device or a connection net-
work) can be derived connecting instantaneous Thévenin equivalents to each
port and solving the resulting circuit in the Kirchhoff domain. In particu-
lar, the voltage source and the series resistance of the Thévenin equivalent
at each port are set equal to the incident wave and the port resistance, re-
spectively; then, once a solution for port currents and/or port voltages is
found equations in the form (2) or (3) are used for computing the reflected
waves. The Kirchhoff representation of the proposed 6-port WD model of
a general 3-terminal device with connected instantaneous Thévenin equiva-
lents is shown in Fig. 2. Nodes are indicated with capital letters; A, B and
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Fig. 2 Kirchhoff representation of the WD 6-port model of a generic 3-terminal device.

C indicate the nodes corresponding to the 3 terminals of the general device,
while O indicates the ground node. Ports are identified by pairs of nodes,
e.g., port AB is characterized by a port voltage vAB , which is defined as
vAB = vA− vB , where vA and vB are the potentials at node A and B, respec-
tively, a port current iAB , whose polarity is indicated in Fig. 2, an incident
wave aAB , a reflected wave bAB and a port resistance RAB . Currents iA,
iB and iC are the currents flowing out from the 3 terminals of the device.
According to this notation, we define the column vectors iX = [iA, iB , iC ]

T
,

iXY = [iAB , iBC , iCA]
T

, iXO = [iAO, iBO, iCO]
T

, vXY = [vAB , vBC , vCA]
T

,

vXO = [vAO, vBO, vCO]
T

, aXY = [aAB , aBC , aCA]
T

, aXO = [aAO, aBO, aCO]
T

,

bXY = [bAB , bBC , bCA]
T

and bXO = [bAO, bBO, bCO]
T

, where the superscript
T indicates the transposition operator. Such vectors and the diagonal matri-
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ces RXY = diag[RAB , RBC , RCA] and RXO = diag[RAO, RBO, RCO] will be
used in the derivation of the scattering relations characterizing the WD 6-port
model of a generic 3-terminal device, represented in Fig. 1(b).

2.3 Definition of the Nonlinear Functions

The behavior of the 3-terminal device is described by the following equations

vXY = fv(ϕ) , iX = fi(ϕ) , (4)

where fv(ϕ), fi(ϕ) are two, generally nonlinear, functions and, with an abuse
of notation, the vector ϕ = [ϕ1, ϕ2]T indicates a pair of independent input
variables ϕ1 and ϕ2 (e.g., currents, voltages or dimensionless quantities). It is
worth noticing that, according to Kirchhoff laws vAB+vBC+vCA = 0 and iA+
iB+iC = 0, one of the three entries of the vector vXY can always be computed
using a known linear combination of the other two and the same holds for the
vector iXY . Functions fi(ϕ) and fv(ϕ) vary according to the actual 3-terminal
device to be implemented. In most cases, it is possible to express iX as a
nonlinear function fi(ϕ) such that fv(ϕ) reduces to a simple linear function
(i.e., a matrix-by-vector multiplication); or, viceversa, it is possible to express
fv(ϕ) as a nonlinear function, such that fi(ϕ) results to be linear.

2.4 Derivation of the Wave Scattering Relations

The analysis of the circuit in Fig. 2 leads to the formulation of the following
mesh equations and node equations in matrix form

vXO = RXOiXO + aXO (5)

vXY = RXY iXY + aXY (6)

vXY = HvXO (7)

iX = iXO + HT iXY (8)

where

H =

 1 −1 0
0 1 −1
−1 0 1

 .

Combining matrix equations (5), (6), (7), (8) and (4) we get the following
matrix expression involving only incident waves, port resistances and the pair
of independent variables ϕ

R−1XO
(
HRXOfi(ϕ)− (I + HRXOH

TR−1XY )fv(ϕ)+

+H(aXO + RXOH
TR−1XY aXY )

)
= 0 (9)

where 0 is a 3× 1 zero vector. It is worth noticing that, according to the con-
siderations made in the previous Subsection, one of the three scalar equations
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of the nonlinear system (9) is linearly dependent to the other two. For the sake
of compactness, let us define function g(ϕ) as

g (ϕ) = Pfi(ϕ) + Kfv(ϕ) + ã , (10)

where

P =

P11 P12 P13

P21 P22 P23

P31 P32 P33

 = R−1XOHRXO , (11)

K =

K11 K12 K13

K21 K22 K23

K31 K32 K33

 = −R−1XO(I + HRXOH
TR−1XY ) , (12)

ã = [ã1, ã2, ã3]T = R−1XOH(aXO + RXOH
TR−1XY aXY ) , (13)

such that we can rewrite (9) simply as

g (ϕ) = 0 . (14)

Function g (ϕ) depends on the incident waves, the port resistances and the
vector parameter ϕ; however, only ϕ is indicated as input variable for the sake
of brevity. How the nonlinear system (14) is solved strongly depends on the
kind of nonlinearities fi and/or fv. As it will be shown in the next Sections,
in some cases, closed-form solutions can be found; while, in some other cases,
iterative solvers need to be used.

Solved (14) for ϕ, the reflected waves can be computed using the following
closed form scattering relations, derived according to (2), (3) and (4)

bXO = aXO + 2RXO

[
iX + HTR−1XY (aXY − vXY )

]
, (15)

bXY = 2vXY − aXY . (16)

2.5 Derivation of Wave Digital n-port Models

Starting from (9), (15) and (16), which will be referred to as the 6-port model,
general WD n-port models with 1 ≤ n ≤ 6 can be derived. In fact, all models
with 1 ≤ n < 6 can be considered as particular cases of the 6-port model, where
open-circuits and/or short-circuits are connected to pairs of terminals of some
ports. In particular, considering each instantaneous Thévenin equivalent in
Fig. 2, under open-circuit conditions the Thévenin resistance (i.e., the port
resistance of the WD model) is infinity, while, under short-circuit conditions,
the Thévenin resistance and the Thévenin source (i.e., the incident wave in the
WD model) are zero. In the light of this, the 6-port model, characterized by
the vector equation g(ϕ) = 0, is turned into a n-port model with no “open-
circuited ports” and ns “short-circuited ports”, such that n + no + ns = 6,
0 ≤ no < 6 and 0 ≤ ns < 6, by performing the following steps:
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– take the limit of the vector function g(ϕ) as no port resistances go to
infinity and ns pairs of port resistances and incident waves go to zero and
define the result as ĝ(ϕ);

– equate the expression ĝ(ϕ) resulting from the previous step to the zero
vector 0, obtaining a nonlinear system of 3 equations, ĝ(ϕ) = 0, which
will be solved for ϕ;

– eventually discard one equation of the derived nonlinear system, ĝ(ϕ) = 0,
since it always provides redundant information;

– derive the formulas for computing the reflected waves, as a simplified ver-
sion of equations (15) and (16); performing the further following steps:
– take the limit of the right side of equation (15) as no port resistances

go to infinity and ns pairs of port resistances and incident waves go to
zero and define the result as b̂XO;

– equate the expression resulting from the previous step to bXO, i.e.,
bXO = b̂XO;

– select the scalar scattering relations for computing the needed reflected
waves from the vector equations bXO = b̂XO and (16).

The above procedure for deriving n-port models can be performed, even using
symbolic mathematical software, both before or after substituting the actual
expressions of the nonlinear functions fi(ϕ) and fv(ϕ).

As an example, let us consider the circuit in Fig. 3(a). There are at least
two different possible implementations of this circuit in the WD domain. These
implementations are shown in Fig. 3(b) and Fig. 3(c). In Fig. 3(b), the 3-
terminal device is modeled as a 4-port element, while, in Fig. 3(c), the same
3-terminal device is modeled as a 2-port element connected to a 6-port R-
type junction. Both the 4-port and the 2-port WD models for the 3-terminal
device can be obtained as simplifications of the 6-port model characterized by
eq. (14), following the previously described procedure.

The 4-port model is derived starting from the system of equations

ĝ(ϕ) = 0 where ĝ(ϕ) = lim
(RBC ,RCA)→(∞,∞)

g(ϕ) , (17)

and removing one redundant equation, obtaining

[
0 −RBO RCO

RAO 0 −RCO

]
fi(ϕ) +

−RBO

RAB
1 0

−RBO

RAB
0 1

 fv(ϕ) +

0 −1 1 RBO

RAB

1 0 −1 RAO

RAB



aAO
aBO
aCO
aAB

 = 0 .

(18)
Solved (18) for ϕ, the 4 reflected waves are computed using eq. (15) and a
simplified version of eq. (16), i.e., bAB = 2vAB − aAB .

Similarly, the 2-port model is derived, starting from the system of equations

ĝ(ϕ) = 0 where ĝ(ϕ) = lim
(RAO,RBO,RCO,RBC)→(∞,∞,∞,∞)

g(ϕ) , (19)
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and removing one redundant equation, obtaining[
0 1 −1
−1 0 1

]
fi(ϕ) +

 1
RAB

0 1
RCA

1
RAB

0 −2
RCA

 fv(ϕ) +

 −1RAB

−1
RCA

−1
RAB

2
RCA

[aAB
aCA

]
= 0 . (20)

Solved (20) for ϕ, the 2 reflected waves are computed using bAB = 2vAB−aAB
and bCA = 2vCA − aCA.
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Fig. 3 Simple circuit with a generic nonlinear 3-terminal device (a). WD realization using
a 4-port model of the 3-terminal device (b). WD realization using a 2-port model of the
3-terminal device and an R-type adaptor (c).

3 Wave Digital Models of FET Transistors

In this Section, a method for implementing both MOSFET and JFET tran-
sistors in the WD domain is presented. A FET transistor is usually modeled
considering the device in different possible operating regions (i.e., cut-off re-
gion, linear or ohmic region, saturation region) and describing its behavior in a
case-by-case fashion. The derived WD models will be characterized by a linear
equation describing the ohmic region and by third-order polynomial equations
describing the other two operating regions. Closed-form formulas [13] will be
adopted for solving the resulting system of equations (9). As examples of ap-
plications of the models discussed in this Section, WD realizations of audio
circuits containing FET transistors will be presented in Section 5.

3.1 MOSFET Transistors

Fig. 4(a) shows a generic n-type MOSFET, whose three terminals are called
gate (node A), source (node B) and drain (node C). A n-type MOSFET
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model suitable for Virtual Analog applications is represented by the equivalent
circuit in Fig. 4(b); the model is composed of an open circuit at the gate
terminal and a current generator between drain and source. The current source
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Fig. 4 Symbol of a n-type MOSFET (a) and corresponding macromodel (b). Symbol of a
p-type MOSFET (c) and corresponding macromodel (d).

is characterized by the following three equations describing its behavior in the
cut-off, ohmic and saturation operating regions, respectively,

Id = 0 , if Vov < 0 (21)

Id = µnCox
W

L
(VovvCB −

v2CB
2

)(1 + λvCB) , if Vov > 0 ∧ vCB < Vov (22)

Id =
1

2
µnCox

W

L
V 2
ov(1 + λvCB) , if Vov > 0 ∧ vCB > Vov (23)

where the symbol ∧ is the logical AND, Vov = (vAB − Vth), vAB is the gate-to-
source voltage, Vth is the threshold voltage, vCB = −vBC is the drain-to-source
voltage, Id is the current from drain to source, µn is the charge-carrier effective
mobility, W is the gate width, L is the gate length, Cox is the gate oxide
capacitance per unit area and λ is the channel-length modulation parameter.
Vth, µn, W , L, Cox and λ depend on the actual considered MOSFET device
and are assumed to be fixed and time-invariant.

Fig. 4(c), instead, shows a generic p-type MOSFET transistor, whose equiv-
alent circuit model is represented in Fig. 4(d). The current source of the equiv-
alent circuit is characterized by the following three equations describing its
behavior in the cut-off, ohmic and saturation operating regions, respectively,

Id = 0 , if Vov < 0 (24)

Id = µpCox
W

L
(VovvBC −

v2BC
2

)(1 + λvBC) , if Vov > 0 ∧ vBC < Vov (25)

Id =
1

2
µpCox

W

L
V 2
ov(1 + λvBC) , if Vov > 0 ∧ vBC > Vov (26)

where the symbol ∧ is the logical AND, Vov = (vBA − Vth), vBA = −vAB is the
source-to-gate voltage, Vth is the threshold voltage, vBC is the source-to-drain
voltage, Id is the current from source to drain, µp is the charge-carrier effective
mobility, W is the gate width, L is the gate length, Cox is the gate oxide
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capacitance per unit area and λ is the channel-length modulation parameter.
Vth, µp, W , L, Cox and λ depend on the actual considered MOSFET device
and are assumed to be fixed and time-invariant.

In the following part of this subsection, we will derive the WD model of
the n-type MOSFET; however, practically the same modeling procedure can
be performed also for the p-type MOSFET.

In order to derive the desired WD n-type MOSFET model, different pa-
rameterizations are usable. We choose to set ϕ1 = Vov and ϕ2 = vCB , so that
(21), (22) and (23) can be rewritten as follows

Id = 0 , if ϕ1 < 0 (27)

Id = µnCox
W

L
(ϕ1ϕ2 −

ϕ2
2

2
)(1 + λϕ2) , if ϕ1 > 0 ∧ ϕ2 < ϕ1 (28)

Id =
1

2
µnCox

W

L
ϕ2
1(1 + λϕ2) , if ϕ1 > 0 ∧ ϕ2 > ϕ1 (29)

According to (27), (28) and (29), we can express (4) as

fi(ϕ) = iX =

 0
1
−1

 Id (ϕ1, ϕ2) (30)

fv(ϕ) = vXY =

 1 0
0 −1
−1 1

[ϕ1

ϕ2

]
+

 1
0
−1

Vt (31)

where the dependence of Id from ϕ1 and ϕ2 is made explicit, expressing it as
Id (ϕ1, ϕ2). Substituting (30) and (31) in (9), we obtain the following equation

P

 0
1
−1

 Id(ϕ1, ϕ2) + K


 1 0

0 −1
−1 1

[ϕ1

ϕ2

]
+

 1
0
−1

Vt
+ ã = 0 . (32)

(32) will be solved in a different way according to the considered operating
region. In the following, a detailed analysis of the solution procedure for the
cut-off, ohmic and saturation operating regions is provided.

3.1.1 Cut-Off Operating Region

The cut-off operating region is characterized by Id = 0; therefore, substituting
(27) in (32) a linear equation is obtained. It follows that, defined the vector u
and the matrix M as

u =

u1u2
u3

 = K

 Vt
0
−Vt

+ ã , (33)

M =

M11 M12

M21 M22

M31 M32

 = −K

 1 0
0 −1
−1 1

 , (34)
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the independent parameters ϕ1 and ϕ2 are given by[
ϕ1

ϕ2

]
=

1

M11M22 −M12M21

[
M22 −M12

−M21 M11

] [
u1
u2

]
. (35)

It can be verified that, as long as the port resistances are positive real, the
denominator term M11M22 −M12M21 is always strictly negative.

3.1.2 Ohmic Operating Region

According to (22), the ohmic operating region is characterized by a nonlinear
equation. Substituting (28) in (32) and defining the matrix E as

E =

E11 E12

E21 E22

E31 E32

 = µnCox
W

L
P

 0 0
1 −0.5
−1 0.5

 (36)

we get

u =
[
M−

(
ϕ2 + λϕ2

2

)
E
] [ϕ1

ϕ2

]
(37)

where u and M have already been defined in (53) and (55), respectively. (37)
is a nonlinear system with three scalar equations in two variables, ϕ1 and ϕ2.
As each of such three equations is a linear combination of the other two, we
just focus on the first and the second ones, which can be rewritten as

λE12ϕ
3
2 + E12ϕ

2
2 −M12ϕ2 + u1 = ϕ1

(
λE11ϕ

2
2 + E11ϕ2 −M11

)
, (38)

λE22ϕ
3
2 + E21ϕ

2
2 −M22ϕ2 + u2 = ϕ1

(
λE21ϕ

2
2 + E21ϕ2 −M21

)
. (39)

Equation (38) can be also expressed as

ϕ1 =
λE12ϕ

3
2 + E12ϕ

2
2 −M12ϕ2 + u1

λE11ϕ2
2 + E11ϕ2 −M11

(40)

where the denominator is different from zero. Substituting (40) in (39), we
obtain the following third order polynomial equation

ξϕ3
2 + δϕ2

2 + νϕ2 + ρ = 0 , (41)

where

ξ = λ (M12E21 +M21E12 −M11E22 −M22E11)
δ = M12E21 +M21E12 −M11E22 −M22E11 + λ(u2E11 − u1E21)
ν = u2E11 − u1E21 +M11M22 −M12M21

ρ = u1M21 − u2M11 .

Possible formulas [13] for expressing the roots of third order polynomials like
(41) in closed-form are revised in Appendix A.



Title Suppressed Due to Excessive Length 13

3.1.3 Saturation Operating Region

According to (23), the saturation operating region is also characterized by a
nonlinear equation. Substituting (29) in (32) and defining the vector w as

w =

w1

w2

w3

 = −1

2
µnCox

W

L
P

 0
1
−1

 (42)

we get

u = M

[
ϕ1

ϕ2

]
− ϕ2

1(1 + λϕ2)w (43)

where u and M have already been defined in (53) and (55), respectively. (43)
is a nonlinear system with three scalar equations in two variables, i.e., ϕ1 and
ϕ2. However, one of those three equation is a known linear combination of the
other two; therefore, applying similar algebra to the one used for the ohmic
case, we obtain

ϕ2 = −w1ϕ
2
1 −M11ϕ1 + u1
λw1ϕ2

1 −M12

where the denominator is different from zero. Then, similarly to what done in
the ohmic case, the following third order polynomial equation is obtained

ξϕ3
1 + δϕ2

1 + νϕ1 + ρ = 0 , (44)

where
ξ = λ(M11w2 −M21w1)
δ = λ(u2w1 − u1w2) +M22w1 −M12w2

ν = M12M21 −M11M22

ρ = M22u1 −M12u2 ,

which, again, can be solved in closed form using the formulas in Appendix A.

3.1.4 Implementation Discussion

Now that closed-form formulas for computing ϕ in each operating region have
been presented, we will discuss how to exploit them in an actual implementa-
tion of the WD MOSFET model. The task is, given the input variables of the
WD model, i.e., the incident waves, finding ϕ at each sampling step, such that
the output variables, i.e., the reflected waves, can be computed by applying
(15) and (16). Assuming the current operating region of the modeled device is
known at any time instant, the task becomes simple; in fact, in the cut-off case
equation (35) is used to directly compute ϕ, while in the ohmic case and in
the saturation case the third order polynomial equations (41) and (44), respec-
tively, need to be solved. In the two latter cases up to three candidate solutions
for ϕ are computed, until the only valid solution, which matches the conditions
on ϕ1 and ϕ2 in (27), (28) or (29), is found. In most practical applications,
however, the current operating region of the device is not known a-priori. For
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this reason, up to seven candidate solutions for ϕ are computed (one for the
cut-off operating region, three for the ohmic operating region and three for the
saturation operating region), until the solution that matches the conditions on
ϕ1 and ϕ2 in (27), (28) or (29) is found. It is worth noticing that the case in
which seven candidate solutions need to be checked to be valid is very unlucky
since, especially dealing with periodic signals, predictors based on past visited
operating regions can be used to select the order of the calculations of candi-
date solutions in a computationally convenient fashion. However, as we deal
with closed-form formulas, the computation time required for computing ϕ
in the worst case, i.e., the case with seven tries, can be estimated a-priori. In
Virtual Analog applications, this is a considerable advantage of the proposed
method based on closed-form formulas over other usable methods based on
iterative solvers, whose computational load in the worst case is more difficult
to be estimated a-priori.

3.2 JFET Transistors

Fig. 5(a) shows a generic n-type JFET transistor, whose three terminals are
again called gate (node A), source (node B) and drain (node C). Only n-
type JFET transistors are considered in this paper; however, applying the WD
modeling approach described in this subsection also to p-type JFET transistors
would be straightforward. A simplified, though suitable and fairly accurate,
JFET model for Virtual Analog applications, is represented by the equivalent
circuit in Fig. 5(b), which is composed of a large resistor Rgate between gate
and ground and a current generator between drain and source, whose current
Id depends on the operating region. The presence of the large resistor Rgate in
such a model is justified by the fact that the gate current Ig is very low and
practically negligible with respect to Id. A similar modeling approach in the
contest of audio applications was applied to the JFET in [23].

Source

Drain
iC

B

C

iBGate
A iA

(a)

Id
Rgate

Drain

Source

Gate

B

C
A

(b)

Fig. 5 Symbol of a n-type JFET (a) and corresponding macromodel (b).

In the cut-off operating region the condition vAB < Vp holds, where Vp is
the so-called “pinch-off voltage”, which plays a role similar to the threshold
voltage Vth in MOSFET transistors, but unlike Vth, is negative and, usually,
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in the range [−10,−0.3] V. In the cut-off operating region Id is given by

Id = 0 . (45)

In the ohmic operating region the conditions vAB > Vp and vCB < vAB − Vp
hold and Id is given by

Id =
2IS0
V 2
p

(
(vAB − Vp)vCB −

v2CB
2

)
(1 + λvCB) , (46)

where IS0 is the saturation current at zero gate-source voltage.
In the saturation operating region the conditions vAB > Vp and vCB > vAB−Vp
hold and Id is given by

Id = IS0

(
1− vAB

Vp

)2

(1 + λvCB) . (47)

Set ϕ1 = vAB − Vp and ϕ2 = vCB , we can rewrite (45), (46) and (47) as

Id = 0 , if ϕ1 < 0 (48)

Id =
2IS0
V 2
p

(
ϕ1ϕ2 −

ϕ2
2

2

)
(1 + λϕ2), if ϕ1 > 0 ∧ ϕ2 < ϕ1 (49)

Id = IS0

(
−ϕ1

Vp

)2

(1 + λϕ2), if ϕ1 > 0 ∧ ϕ2 > ϕ1 . (50)

According to (48), (49) and (50), we express (4) as

fi(ϕ) = iX =

 0
1
−1

 Id (ϕ1, ϕ2) (51)

fv(ϕ) = vXY =

 1 0
0 −1
−1 1

[ϕ1

ϕ2

]
+

 1
0
−1

Vp (52)

where, again, the dependence of Id from ϕ1 and ϕ2 is made explicit, expressing
it as Id (ϕ1, ϕ2). Substituting (51) and (52) in (9) an equation similar to (32)
is easily obtained. The solution of such an equation can be performed using
the same formulas (35), (41) and (44), provided that the vectors u and w and
the matrices M and E are, this time, defined as

u =

u1u2
u3

 = K

 Vp
0
−Vp

+ ã , (53)

w =

w1

w2

w3

 = −IS0
V 2
p

P

 0
1
−1

 , (54)
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M =

M11 M12

M21 M22

M31 M32

 = K

 1 0
0 −1
−1 1

 , (55)

E =

E11 E12

E21 E22

E31 E32

 =
2IS0
V 2
p

P

 0 0
1 −0.5
−1 0.5

 . (56)

4 Wave Digital Modeling of BJT Transistors

Fig. 6(a) shows a generic BJT transistor, whose three terminals are called
base (node A), emitter (node B) and collector (node C). The most widespread
large-signal model of the BJT is the Ebers-Moll Model (EMM) described in [19]
and represented by the equivalent circuit in Fig. 6(b). The EMM is a good
compromise between accuracy and simplicity; therefore, it is usually suitable
for Virtual Analog audio applications [8, 9, 27]. The EMM is mathematically
described by the following system of equations


iA + iB + iC = 0
iB = Is1

(
evAB/(η1Vt) − 1

)
− αrIs2

(
evAC/(η2Vt) − 1

)
iC = Is2

(
evAC/(η2Vt) − 1

)
− αfIs1

(
evAB/(η1Vt) − 1

) (57)

where iA is the current flowing out of the base, iB is the current flowing out
of the emitter, iC is the current flowing out of the collector, αf is the forward
common-base current gain, αr is the reverse common-based current gain, vAB
is the base-to-emitter voltage, vAC = −vCA is the base-to-collector voltage,
Vt is the thermal voltage, Is1 is the saturation current of the base-emitter p-n
junction, Is2 is the saturation current of the base-collector p-n junction, η1 is
the ideality factor of the base-emitter p-n junction and η2 is the ideality factor
of the base-collector p-n junction.

Base

Emitter

Collector
iC

B

C

iB

A iA

(a)

A

B C

Base

Emitter Collector
ifαfirαr

if ir

(b)

Fig. 6 Symbol of a BJT (a) and corresponding Ebers-Moll model (b).
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Setting ϕ1 = vAB and ϕ2 = vAC , we can express (4) as

fi(ϕ) = iX =

αf − 1 αr − 1
1 −αr
−αf 1

[Is1 (eϕ1/(η1Vt) − 1
)

Is2
(
eϕ2/(η2Vt) − 1

)] , (58)

fv(ϕ) = vXY =

 1 0
−1 1

0 −1

[ϕ1

ϕ2

]
. (59)

After substituting (58) and (59) into (10), let us consider the following 2-
dimensional nonlinear system,

gnr (ϕ) = 0 , (60)

obtained removing one redundant equation from the 3-dimensional system
(14). Because of the exponentials in (58), the nonlinear system (60) is com-
posed of two coupled transcendental implicit equations, therefore iterative
solvers or tabulation methods are needed in order to solve (60) for ϕ.

According to the considerations in Subsection (2.4), the nonlinear system
(60) varies depending on the number of ports n of the WD model. For instance,
when we design a 2-port model with ports AB and CA, (60) reduces to (20).

In the following, we show how to solve (60) using iterative solvers based on
the Newton-Raphson (NR) method that are arbitrarily accurate and generally
more efficient than tabulation methods. The main drawback of such iterative
methods is that convergence is not ensured. In this regard, we will propose a
modification of the standard NR method exhibiting higher convergence rate
and equal, or even higher, efficiency.

4.1 Newton-Raphson Method

The NR method applied to (60) is based on the following update equation

ϕ(k+1) = ϕ(k) −
[
J
(
ϕ(k)

)]−1
gnr

(
ϕ(k)

)
, (61)

where ϕ(k) = [ϕ
(k)
1 , ϕ

(k)
2 ]T and ϕ(k+1) = [ϕ

(k+1)
1 , ϕ

(k+1)
2 ]T indicate the values

of ϕ evaluated at iterations k and k+1, respectively, [J
(
ϕ(k)

)
]−1 is the inverse

matrix of the Jacobian of the vector function gnr evaluated at ϕ(k). Solving
(60) using the NR method consists of:

– taking a suitable initial guess ϕ(0);
– repeating (61) up to convergence, i.e., up to the case in which ‖ϕ(k+1) −

ϕ(k)‖ < εϕ and ‖gnr

(
ϕ(k+1)

)
‖ < εg, where εϕ and εg are small positive

scalar thresholds.

NR method convergence depends on the chosen initial guess ϕ(0). Moreover,
when we deal with small or big numbers, numerical issues due to finite word-
length representation might arise. In the following, a modification of the NR
method applied to (60) that highly mitigates such problems is proposed.
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4.2 Modified Newton-Raphson Method

The idea behind the proposed Modified NR (MNR) method is to control vari-
ables ϕk1 and ϕk2 iteration by iteration, forcing them to stay reasonably close
to the desired solution. Hence, the update equation (61) is modified as follows

ϕ̃(k+1) = ϕ(k) −
[
J
(
ϕ(k)

)]−1
gnr

(
ϕ(k)

)
, (62)

where ϕ̃(k+1) = [ϕ̃
(k+1)
1 , ϕ̃

(k+1)
2 ]T , ϕ(k) = [ϕ

(k)
1 , ϕ

(k)
2 ]T , and the two compo-

nents of the vector ϕ(k+1) are given by

ϕ
(k+1)
1 = φ1

(
ϕ̃(k+1)

)
, ϕ

(k+1)
2 = φ2

(
ϕ̃(k+1)

)
, (63)

where φ1 and φ2 are compensation functions to be designed.
The role of compensation functions φ1 and φ2 is preventing overshoot-

ing. They could be designed in different ways and, in the most general case,

they would both depend on ϕ̃
(k+1)
1 and ϕ̃

(k+1)
2 , since the EMM describes

a 2-dimensional nonlinearity. However, here we propose an effective design
approach, which relies on the common lumped description of the EMM in
Fig. 6(b), where the two exponential contributions of the two p-n junctions
of the BJT are represented by two separated diodes. As a matter of fact, the
EMM is a linear combination of two distinct exponential functions, which are
two Shockley diode models. This fact is exploited in the proposed design ap-

proach, locally controlling the values of ϕ̃
(k+1)
1 and ϕ̃

(k+1)
2 , which are the two

voltages across the two diodes, in a decoupled fashion. It follows that compen-

sation functions are built in such a way that φ1 does not depend on ϕ̃
(k+1)
2

and φ2 does not depend on ϕ̃
(k+1)
1 . In particular, φ1 is given by

φ1

(
ϕ̃(k+1)

)
=


ϕ̃
(k+1)
1 , if ϕ̃

(k+1)
1 ≤ ϕ1thr

η1Vt ln

(
1 +

ρ1
(
ϕ̃

(k+1)
1

)
Is1

)
, if ϕ̃

(k+1)
1 > ϕ1thr ,

(64)
where ϕ1thr is a positive threshold, greater than the desired solution ϕ1, and
function ρ1 is defined as

ρ1

(
ϕ̃
(k+1)
1

)
=
Is1
(
eϕ1thr/(η1Vt) − eϕ0/(η1Vt)

)
ϕ1thr − ϕ0

(
ϕ̃
(k+1)
1 − ϕ0

)
+Is1

(
eϕ0/(η1Vt) − 1

)
(65)

where ϕ0 is a fixed coordinate such that ϕ0 < ϕ1thr, e.g., ϕ0 = 0 V. Ap-

plying function ρ1 to the input ϕ̃
(k+1)
1 , we project the point (ϕ̃

(k+1)
1 , 0) onto

the straight line passing through the two points (ϕ0, Is1
(
eϕ0/(η1Vt) − 1

)
) and

(ϕ1thr, Is1
(
eϕ1thr/(η1Vt) − 1

)
) and we select the y-coordinate of the projection

(i.e., a diode current value), which is returned as the output of ρ1. Then, the
inverse of the exponential Shockley diode function, involving a natural loga-
rithm, is applied to such an output, in order to compensate the nonlinearity
effect that may cause divergence or numerical problems.
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Choosing ϕ0 = 0, we get an expression simpler than (64), as follows

φ1

(
ϕ̃(k+1)

)
=

ϕ̃
(k+1)
1 , if ϕ̃

(k+1)
1 ≤ ϕ1thr

η1Vt ln

(
1 +

ϕ̃
(k+1)
1

ϕ1thr

(
eϕ1thr/(η1Vt) − 1

))
, if ϕ̃

(k+1)
1 > ϕ1thr .

(66)
Similarly, φ2 is given by

φ2

(
ϕ̃(k+1)

)
=

ϕ̃
(k+1)
2 , if ϕ̃

(k+1)
2 ≤ ϕ2thr

η2Vt ln

(
1 +

ϕ̃
(k+1)
2

ϕ2thr

(
eϕ2thr/(η2Vt) − 1

))
, if ϕ̃

(k+1)
2 > ϕ2thr ,

(67)
where ϕ2thr is a positive threshold, similar to ϕ1thr.

4.3 NR method and MNR method: a performance comparison

In this subsection, we provide a performance comparison between the tradi-
tional NR method and the MNR method used for implementing the EMM
in the WD domain. The parameters of the EMM are set as follows: Is1 =
1.005×10−14 A, Is2 = 1.333×10−14 A, αf = 0.995, αr = 0.75, Vt = 25.7 mV,
η1 = 1 and η2 = 1. Without loss of generality, let us assume that the BJT is
modeled in the WD domain as a 2-port. The two ports of the WD model are
AB and CA, as in equations (19) and (20).

Before comparing the performance of traditional NR and MNR, we need a
strategy for checking whether, given a pair of incident waves aAB and aCA and
a pair of port resistances RAB and RCA, the pair of reflected waves bAB and
bCA (returned when one of the two considered methods converges) is correct.
In order to do so, let us set the voltages across the two diodes of the EMM,
i.e., vAB and vAC , to certain values (which are inside specific ranges that we
will define later). Then, we are able to find the corresponding currents of the
EMM iB and iC , using (57). Such data are sufficient for deriving the Kirchhoff
port variables of the 2-port model, i.e., vAB , iAB = −iB , vCA = −vAC and
iCA = iC . The corresponding WD port variables can easily be computed as
aAB = vAB + RABiAB , bAB = vAB − RABiAB , aCA = vCA + RCAiCA and
bCA = vCA − RCAiCA. It follows that we have all the ingredients for testing
the accuracy of the two iterative methods; given aAB , aCA, RAB and RCA,
we can verify whether the returned reflected waves are equal to bAB and bCA.

Let us now choose the ranges of values for the main variables involved
in the WD model, such that we can test all the combinations of such values
and evaluate both the accuracy and the convergence rate of the two methods.
The ranges are a rough estimate of the possible values that variables can
assume during a generic simulation of an audio circuit containing the modeled
BJT. The chosen ranges are exaggerated in order to test the two methods
also in borderline cases. The considered variables are: the initial guesses of
the iterative methods ϕ0

1 and ϕ0
2, the parameters ϕ1 = vAB and ϕ2 = vAC
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Table 1 Comparison between NR Method and MNR Method

NR Method MNR Method

Convergence Rate 74.26 % 100 %

Average Number of Iterations
when there is convergence

8.92 7.26

from which Kirchhoff and WD port variables can be derived according to the
aforementioned procedure, and the reference port resistances RAB and RCA.
Values of variables are chosen as follows:

– {ϕ0
1, ϕ

0
2, ϕ1, ϕ2} ∈ [−20 V, 0.8 V]; for each variable ϕ0

1, ϕ0
2, ϕ1 and ϕ2 we

pick 4 uniformly distributed points in the sub-range [−20 V, 0.3 V] and 6
uniformly distributed points in the sub-range (0.3 V, 0.8 V];

– {RAB , RCA} ∈ [10−1Ω, 106Ω]; for both RAB and RCA variables we pick 8
logarithmically spaced points.

It follows that both the NR algorithm and the MNR algorithm are executed
(4 + 6)4 × 82 = 640000 times, always with different combinations of values.
εϕ = εg = 10−8 V, ϕ1thr is set such that Is1

(
eϕ1thr/(η1Vt) − 1

)
= 1 A, i.e.,

ϕ1thr = 0.8283 V, while ϕ2thr is set such that Is2
(
eϕ2thr/(η2Vt) − 1

)
= 1 A, i.e.,

ϕ2thr = 0.8211 V. If the number of iterations of a simulation exceeds 1000,
we deduce the algorithm is diverging. Table 1 shows the obtained results. It
is worth noticing that the proposed MNR method always converges to the
correct solution, unlike the NR method. Moreover, the MNR method needs a
lower average number of iterations to converge with respect to the NR method.

5 Examples of Applications

5.0.1 Example of Application of the Wave Digital MOSFET Model

Let us consider the schematics of the overdrive guitar effect presented in [16].
The schematics are redrawn in Fig. 7. The overdrive guitar effect circuit is
constituted of three MOSFET amplification stages and a tone stack. The pa-
rameters of each of the three p-type MOSFET elements, called T1, T2 and
T3, are the following: µpCox

W
L = 1.6 mA/V2, Vth = 1 V and λ = 0 V−1.

The other circuit parameters are set as: Rin = 1 kΩ, VDD = −9 V, R1 = 1.5
MΩ, R2 = 3.3 MΩ, R3 = 1.5 MΩ, R4 = 10 kΩ, R5 = 3.3 MΩ, R6 = 1.5
MΩ, R7 = 10 kΩ, R8 = 3.3 MΩ, R9 = 1.5 MΩ, R10 = 33 kΩ, R11 = 1
MΩ, RD1 = 3.9 kΩ, RD2 = 3.9 kΩ, RD3 = 3.9 kΩ, RS1 = 1 kΩ, RS2 = 1
kΩ, RS3 = 1 kΩ, C1 = 0.1 µF, C2 = 0.1 µF, C3 = 0.1 µF, C4 = 0.1 µF,
C5 = 3.3 nF, C6 = 0.01 µF, CS1 = 4.7 µF, CS2 = 4.7 µF, CS3 = 4.7 µF
and Cin = 0.1 µF. Potentiometers Rgain, Rtone and Rvolume are simply mod-
eled using pairs of resistors such that Rgain = Rgain1 + Rgain2 = 100 kΩ,
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Rtone = Rtone1 + Rtone2 = 100 kΩ and Rvolume = Rvolume1 + Rvolume2 = 100
kΩ. Discretization is performed using a sampling frequency Fs = 1/Ts = 96
kHz, where Ts is the sampling step in seconds.

Rin

Cin

Vin
R3

R2
RD1

RS1

CS1R1

C1

Rgain
C2 R4

R6

R5 RD2

RS2
CS2

C3

R7

R9

R8

RD3

RS3 CS3

C4

C5

C6

Rtone

Rvolume

R11

R10

VDD VDD

Vout
T1 T2 T3

VDD VDD VDD VDD

Fig. 7 Obsidian overdrive guitar effect circuit presented in [16].

Since MOSFET devices are modeled using an open-circuit, as described
in Subsection 3.1 and highlighted in Fig. 4(b), the schematics in Fig. 7 can
also be described as the cascade of three separated subcircuits, which will be
called stages. The input signal of the second stage is controlled by the output
signal of the first stage and, similarly, the input signal of the third stage is
controlled by the output signal of the second stage. The WD realization of the
schematics in Fig. 7 is characterized by three WD structures, one per stage,
and each WD structure contains one nonlinear MOSFET element modeled as
a 3-port. According to the conventions of Section 2, the 3 used ports are AO,
BO and CO. It follows that separated connection trees are connected to each
port of MOSFET elements. Fig. 8(a), Fig. 8(b) and Fig. 8(c) represent the
WD implementation of first, second and third stages, respectively. All linear
elements are adapted according to traditional WDF theory [20]. For the WD
realization of the first and second stages, interconnections of traditional series
and parallel adaptors [21] are used. For the WD realization of the third stage,
instead, also a 8-port R-type adaptor is employed. The R-type adaptor is
characterized by the following scattering matrix [25]

S = 2QT
(
QR−1R QT

)−1
QR−1R − I , (68)

where I is the 8× 8 identity matrix and

Q =


1 0 0 0 0 1 1 1
0 1 0 0 −1 0 −1 −1
0 0 1 0 1 −1 0 0
0 0 0 1 −1 0 0 −1

 . (69)

Since all linear elements of the WD structure are adapted, the diagonal matrix
of port resistances is given by

RR = diag[Radapt, R10, Ts/(2C5), Rtone1, Rtone2, R11, Ts/(2C6), Rvolume] ,
(70)
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Fig. 8 WD realization of the circuit represented in Fig. 7. WD structures implementing
the first, the second and the third amplification stages of the overdrive guitar effect are
represented in (a), (b) and (c), respectively.
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Fig. 9 Overdrive guitar effect circuit. Comparison between Vout signals by WD structure
and Spice obtained from two simulations with different settings of parameters. Simulation
parameters in (a) are: V0 = 100 mV, fp = 1/tp = 500 Hz, Rgain2 = 0.75×Rgain, Rtone2 =
0.5×Rtone and Rvolume2 = 0.5×Rvolume. Simulation parameters in (b) are: V0 = 500 mV,
fp = 1/tp = 2 kHz, Rgain2 = 0.5×Rgain, Rtone2 = 0.5×Rtone and Rvolume2 = 0.5×Rvolume.

where the port resistance Radapt is set in such a way that the first diagonal
entry of S goes to zero, i.e., the port of the R-type adaptor on the left (see
Fig. 8(c)) is made reflection-free.

The link of the first stage to the second stage is modeled as a Thévenin
equivalent with voltage source Vin2 and series resistance Rin2, as shown in
Fig. 8(b). The correct value of the voltage source can be easily set, imposing
Vin2 equal to the voltage across resistor R6. The value of the series resistance
Rin2, instead, can be set arbitrarily (e.g., Rin2 = 1 kΩ), because no current
flows through the gate of the MOSFET T2 with terminals A, B and C, as
defined in Subsection 3.1. This means that, according to the models in Fig. 4(b)
and in Fig. 1(a), iA = 0 A and, as a consequence, in this case, iAO = iA = 0
A. It follows that the value of Rin2 does not affect the behavior of the second
stage. Similar considerations hold for the link of the second stage to the third
stage, modeled as a Thévenin equivalent with voltage source Vin3 and series
resistance Rin3, as shown in Fig. 8(b). Vin3 is set equal to the voltage across
R9, while Rin3 can be set to an arbitrary resistance value (e.g., Rin3 = 1 kΩ).

The schematics in Fig. 7 are simulated with Spice using the Schichman-
Hodges model [35] also described in [12, p. 206], for the three MOSFET tran-
sistors. We define the input signal as a sinusoid Vin(t) = V0 sin(2πfpt), where
V0 is the amplitude gain and fp is the fundamental frequency. The output
signal Vout obtained with Spice is compared to the same signal obtained with
the described WD implementation. Fig. 9(a) shows one of such comparisons,
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when V0 = 100 mV, fp = 500 Hz, Rgain2 = 0.75×Rgain, Rtone2 = 0.5×Rtone

and Rvolume2 = 0.5× Rvolume. Results in Fig. 9(b), instead, are obtained set-
ting V0 = 500 mV, fp = 2 kHz, Rgain2 = 0.5 × Rgain, Rtone2 = 0.5 × Rtone

and Rvolume2 = 0.5×Rvolume. Both Fig. 9(a) and Fig. 9(b) show a very good
matching between Spice and the WD implementation.

5.0.2 Example of Application of the Wave Digital JFET Model

Let us consider the guitar preamplifier circuit shown in Fig. 10 also discussed
in [23]. Model parameters of JFET transistors T1 and T2, are IS0 = 0.6 mA,
Vp = −0.8 V, λ = 0 V−1 and Rgate = 1 GΩ. The other circuit parameters are
set as: VDD = 9 V, Rin = 1 Ω, RG1 = 1 MΩ, RI1 = 64 kΩ, RD1 = 15 kΩ,
RS1 = 1.5 kΩ, R1 = 47 kΩ, Rgain = 500 kΩ, RI2 = 64 kΩ, RD2 = 15 kΩ,
RS2 = 1.5 kΩ, R2 = 100 kΩ, Rtone = 1 MΩ, Rvolume = 500 kΩ, Cin = 1 µF,
C1 = 0.1 nF, C2 = 1 µF, C3 = 1 µF, C4 = 0.16 nF, CS1 = 1 µF and CS2 = 1
µF. We define the input signal as a sinusoid Vin(t) = V0 sin(2πfpt), where V0
is the amplitude gain and fp is the fundamental frequency. Discretization is
performed using a sampling frequency Fs = 1/Ts = 48 kHz.
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RG1 RS1
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RD2

RI2

C3

CS2

Rtone

VDD
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C4
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Rvolume

Vout

Vin

T1 T2

Fig. 10 Guitar preamplifier circuit discussed in [23].

The proposed WD realization of the circuit in Fig. 10 is shown in Fig. 11.
JFET devices are implemented as 3-port WD elements according to the model
presented in Subsection 3.2. Following the conventions of Section 2, the 3 used
ports are called AO, BO and CO. As shown in Fig. 5(b), resistance Rgate is a
linear subpart of the JFET model, separable from the rest. As a consequence,
port AO of the 3-port WD JFET element can be made reflection free, prop-
erly setting RAO = Rgate. Such a property is exploited in the proposed WD
implementation in Fig. 11, where port AO of T2 is adapted. It follows that,
in this very particular case, contrary to what usually happens, we are able to
accommodate two nonlinear 3-port JFET elements in the same WD structure
without creating any delay-free loop, i.e., implicit equation.

Plots at the top of Fig. 12(a) and Fig. 12(b) show the comparison between
the signal Vout of the proposed WD realization and the one in [23]. Both WD
implementations are also compared with a ground-truth obtained by Spice
simulation where the JFET transistors are emulated using the model described
in [12, p. 176]. Plots at the bottom of Fig. 12(a) and Fig. 12(b) show the errors
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Fig. 11 WD realization of the guitar preamplifier circuit shown in Fig. 10.

of the two WD implementations with respect to Spice. We notice that the error
of the proposed WD implementation is generally lower. The main reason is
that WD JFET model presented in [23] makes use of a fictitious delay element
for solving computability issues. We can conclude that the proposed WD JFET
model, beside being an explicit model like the one presented in [23], it is more
accurate, at the cost of a slightly higher computational complexity.

5.0.3 Example of Application of the Wave Digital BJT Model

Let us consider the common emitter amplifier implemented in [27] and reported
in Fig. 13(a). The BJT transistor T1 is described using the EMM discussed in
Section 4; the EMM parameters are set as in Subsection 4.3, except for the
thermal voltage which is set to Vt = 25.868 mV. The other circuit parameters
are set as follows: B1 = 18 V, Rin = 1 kΩ, Cin = 50 µF, R1 = 27.35 kΩ, R2 =
2.65 kΩ, RE = 220 Ω, CE = 100 µF, RC = 1.78 kΩ, C2 = 10 µF and RL = 1
kΩ. We define the input signal as a sinusoid Vin(t) = V0 sin(2πfpt), where V0
is the amplitude gain and fp is the fundamental frequency. Discretization is
performed using a sampling frequency Fs = 1/Ts = 96 kHz.

In the WD realization of the common emitter amplifier presented in [27],
the BJT is implemented as a 2-port WD element and a 8-port R-type adaptor
is employed. In the WD realization of the same circuit shown in Fig. 13(b),
instead, the BJT T1 is implemented as a 3-port WD element, such that only
interconnections of series and parallel 3-port adaptors are employed and the
use of the 8-port R-type adaptor is avoided. The approach used for imple-
menting the WD structure in Fig. 13(b) is very similar to the one proposed
in [15], where a circuit containing one nonlinear vacuum tube triode, modeled
as a 3-port WD element, is considered. While in [15] a local iterative solver
based on the secant method is used for computing the waves reflected from the
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Fig. 12 Preamplifier circuit. Vout signals and relative errors between WD implementations
and Spice obtained from two simulations with different settings of parameters. Simulation
parameters in (a) are: V0 = 50 mV, fp = 1/tp = 300 Hz, Rgain2 = 0.5 × Rgain, Rtone1 =
0.5×Rtone and Rvolume2 = 0.99×Rvolume. Simulation parameters in (b) are: V0 = 500 mV,
fp = 1 kHz, Rgain2 = 0.5×Rgain, Rtone1 = 0.5×Rtone and Rvolume2 = 0.99×Rvolume.

WD nonlinear triode, in this case we use the local iterative solver based on the
MNR method described in Subsection 4.2 for solving the scattering relations
of the WD nonlinear BJT. Following the conventions of Section 2, the 3 ports
of the BJT in Fig. 13(b) are called AO, BO and CO.

Fig. 14 shows that the signal Vout of the WD implementation closely
matches the same signal resulting from a Spice simulation of the circuit in
Fig. 13(b). In this case fp = 1 KHz and V0 = 0.1 V. In Table 2 we show
the results of other simulations where different values of fp and V0 are tested,
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Fig. 13 Common emitter amplifier circuit (a) and its WD realization (b).
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along with a comparison (in terms of minimum, maximum and average number
of iterations) between WD implementations using the traditional NR method
described in Subsection 4.1 for solving the BJT scattering relations and WD
implementations based on the MNR method presented in Subsection 4.2. Pa-
rameters εϕ, εg, ϕ1thr and ϕ2thr are set as specified in Subsection 4.3. We
notice that the number of iterations needed by the MNR method to converge
is always lower or equal to the one required by the NR method. More impor-
tantly, the MNR method always converged, while the NR method diverged in
two cases, i.e., the ones in which the number of iterations is indicated with
“N/A”. Table 2 in this article resembles Table 3 in [27], where it is shown that
the NR solver used in [27] for the WD implementation of the same circuit does
not converge with certain input signals, i.e., the simulation in which fp = 1
kHz and V0 = 1 V and the simulation in which fp = 10 kHz and V0 = 1
V. It is worth pointing out that in [27] a Newton’s method with backtrack-
ing [18, pp. 111-154], [11] is proposed for attenuating problems of divergence
affecting the NR solver. Table 3 in [27] shows that divergence is prevented
using the Newton’s method with backtracking when fp = 1 kHz and V0 = 1
V, while even the Newton’s method with backtracking diverges when fp = 10
kHz and V0 = 1 V.
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Table 2 NR method vs. MNR method used in the WD structure in Fig. 13(b).

NR Method MNR Method
Number of Iterations Number of Iterations

fp [Hz] V0 [V] Min Max Avg Min Max Avg

100
0.01 1 2 1.83 1 2 1.83
0.1 2 3 2.44 2 3 2.44
1 2 19 2.36 2 15 2.35

1k
0.01 2 3 2.75 2 3 2.75
0.1 2 4 3.02 2 4 3.02
1 N/A N/A N/A 2 13 3.02

10k
0.01 3 3 3 3 3 3
0.1 3 5 4.33 3 5 4.33
1 N/A N/A N/A 2 17 5.96

6 Final Discussion, Conclusion and Future Work

In this article we proposed a general n-port (1 ≤ n ≤ 6) WD model for non-
linear 3-terminal devices. The 2-port WD models of 3-terminal devices are
perhaps the most practical ones in most situations. However, as we showed in
examples of applications, resorting to alternate port configurations can still be
advantageous, since sometimes the use of R-type adaptors can be avoided or
the number of their ports can be reduced.
In this regard, as an example, let us consider the two different WD imple-
mentations of the same circuit in Fig. 3(b) and Fig. 3(c) and assume that the
3-terminal device is a FET modeled as in Section 3. Since the considered WD
models of FET devices are explicit, the WD structure in Fig. 3(b), where the
FET is modeled as a 4-port WD element, does not exhibit delay-free loops
and it can be implemented without iterative solvers. The WD structure in
Fig. 3(c), instead, is characterized by delay-free loops involving waves at ports
CA and AB, because the 2-port nonlinear WD element is connected to the
R-type adaptor through a double port connection. Therefore, the use of itera-
tive methods, or other computationally costly strategies like multi-dimensional
look-up tables, is unavoidable for the implementation of the WDF in Fig. 3(c).

In this article, we also presented WD models of the three most widespread
transistors in audio circuitry: the MOSFET, the JFET and the BJT. Such WD
models have been designed to meet, as much as possible, both the accuracy
requirements and the computational cost requirements typical of Virtual Ana-
log applications. The proposed MOSFET and JFET models are characterized
by explicit scattering relations, while the BJT model employs a 2-dimensional
Modified Newton-Raphson solver, which is more robust and equally or more
efficient than NR solvers presented in the literature.

All considered WD models of 3-terminal devices are memoryless. As a fu-
ture work, it is worth developing multi-port models with memory effect.

Appendix A: Let us consider a 3rd grade equation in the canonical form

ξx3 + δx2 + νx+ ρ = 0
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where ξ 6= 0 and x is the unknown variable. The 3 solutions in closed form are

x1 = s+ t− δ
3ξ

x2 = − 1
2
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+
√
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2
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where j is the imaginary unit and
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,

q =
3ξν − δ2

3ξ2
, r =

9ξδν − 27ξ2ρ− 2δ3
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.
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