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Abstract—Path planning algorithms for steerable needles in
medical applications must guarantee the anatomical obstacle
avoidance, reduce the insertion length and ensure the compliance
with the needle kinematics. The majority of the solutions from
the literature focus either on fast computation or on path
optimality, the former at the expense of sub-optimal paths, the
latter by making unbearable the computation in case of a high
dimensional workspace. We implemented a 3D path planner
for neurosurgical applications which keeps the computational
cost consistent with standard pre-operative planning algorithms
and fine-tunes the estimated pathways in accordance to multiple
optimization objectives. From a user-defined entry point, our
method confines a sample-based path search within a subsection
of the original workspace considering the degree of curvature
admitted by the needle. An evolutionary optimization procedure
is used to maximize the obstacle avoidance and reduce the
insertion length. The pool of optimized solutions is examined
through a cost function to determine the best path. Simulations
on one dataset showed the ability of the planner to save time
and overcome the state of the art in terms of obstacle avoidance,
insertion length and probability of failure, proving this algorithm
as a valid planning method for complex environments.

Index Terms—Surgical Robotics: Planning, Surgical Robotics:
Steerable Catheters/Needles, Flexible Robots, Motion and Path
Planning.

I. INTRODUCTION

Flexible, small-scale catheters allow reaching deep regions
inside the human body. Continuous robots represent a category
of robotic tools that provides the required level of dexterity
and reliability to perform delicate surgical procedures [1].
As they are flexible and can be built in small-scale, they
can be useful in neurosurgery for situations where the access
to anatomical structures is particularly challenging due to a
cluttered anatomical workspace.

In [2–4], the steering of a flexible robotic probe is achieved
using a bevel-tip needle with a fixed shape which rotates
according to a duty-cycle that determines the bending of the
needle toward the desired direction. Glozman and Shoham in
[5] used an external base to which the needle was anchored
to drive the insertion and to follow a desired trajectory. Pre-
bent concentric elastic tubes [6] use an axial rotation and
translation at the base to make the entire needle shape varies.
A bio-inspired, multi-segment programmable bevel-tip needle
(PBN) is currently under development as core technology of
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the EDEN2020* project [7]. The PBN consists of a continuous
robot manufactured with four axially-interlocked sections.
These segments are robotically actuated so that, sliding over
each other, they can generate an offset on the needle tip and
determine a curvature in the 3D space. The kinematics of the
probe is still under investigation but a PBN control strategy is
proposed in [8].

The benefits in maneuverability exhibited by flexible ma-
nipulators give rise to an increased number of possible needle
pathways that can be correctly handled only by an automatic
planner. Such a planner can be designed to fine-tune the
path according to specific optimality criteria. Essert et al.
[9] and Patil et al. [10] formalized the implicit and explicit
principles used by neurosurgeons for the definition of optimal
trajectories. The minimization of the surgical path length and
the maximization of the clearance from anatomical obstacles
can be considered as general axioms aiming at limiting the
tissue damage while providing a proper safety margin in case
deviations from the planned path occur.

In our previous work [11], we presented a neurosurgical
planner for the PBN. The algorithm solves a single-query
planning task, i.e. it connects an entry point to a target,
guaranteeing the clearance from anatomical obstacles and
complying with the PBN’s kinematic limits.

The present work aims at describing a novel approach
that improves the performance of our previous method on
different aspects. Tailored to the PBN, the algorithm focuses
the research using a smart redefinition of the search space so
that the desired target point can be reached guaranteeing the
compliance with the maximum degree of curvature admitted
by the needle. This approach permits to save time by examin-
ing only the part of the workspace where feasible solutions can
lie, reducing the computational cost correlated to the initial
search phase. The method uses an innovative evolutionary
procedure to perform a path optimization. Optimality criteria
provide for the path length minimization, the reduction of
the magnitude and variability of the path curvature and the
maximization of the obstacle avoidance. A cost function is
designed to provide an optimality index for each solution and
ultimately define the best one.

The paper is structured as follows. In Section II, an overview
of the path planning approaches proposed in the literature is
presented. Section III outlines our planning method, focusing
on the redefinition of the search space and on the evolutionary
optimization. Section IV describes the experimental protocol.
Section V presents the comparison between the presented
solution and other methods from the literature. Discussion and
Conclusions are reported in Sections VI and VII, respectively.



II. RELATED WORKS

In the context of path planning, a variety of approaches has
been proposed in the literature.

In Schulman et at. [12], the non-convex path optimiza-
tion problem is subdivided in convex sub-problems, solved
via sequential convex optimization. The method is feasible
for underactuated non-holonomic systems as flexible medical
needles. Although the method does not guarantee to find a
solution if it exists, it can provide locally optimal collision-
free paths.

Duindam et al. [13] proposed a solution for estimating
catheter pathways totally described in geometric terms and
inspired by the Paden-Kahan subproblem, an explicit solution
to inverse kinematics used as alternative to the implicit ex-
pression provided by the Denavit-Hartenberg parameters. The
method was tested in a simplified environment and showed a
high speed in the path computation but with limited obstacle
avoidance capabilities.

Potential field methods, based on the idea originally intro-
duced by Khatib [14], compute a potential field similar to
the one generated by electrical charges. The potential field
results from the interaction between the attractive effect of
the target contrasted by the repulsive action of the obstacles.
This approach has the drawback of generating local minima.
To address this problem, Li et al. [15] proposed an artificial
potential field method for applications in brachytherapy where
a conjugate gradient algorithm was exploited. The clearance
from anatomical obstacles was achieved but, as such, the
method does not comply with other requirements as the
optimization of the total path length or the compliance with
catheter’s kinematics.

Other approaches fall back into two main categories:

A. Graph-based methods

Graph-search methods are based on the discrete approxima-
tion of the planning problem. They are “resolution complete”
as they can determine in a finite time whether a solution exists,
and “resolution optimal” as they can estimate the best path
given a specific resolution.

Likhachev et al. [16] proposed the incremental A* solution
for 2D applications, which extended the original A* planning
method so that to reuse previous information and drive the
path towards optimality.

These methodologies show high computational time as
the discretization of the environment becomes finer. For this
reason, they are not suitable for neurosurgical applications as
high-resolution 3D datasets (∼ 107 points) are normally used.

Leibrandt et al. [17] reported a multinode computational
framework for fast path planning for concentric tube robots.
The method builds an undirected graph of possible transition
of needle configurations and queries the graph using A* search
to extract the shortest path between the current and the desired
tip pose. To address the high computational effort required by
the graph search and achieve an interactive rate, a parallel
computation is used and the search is confined in a subset of
needle configurations close the current one.

B. Sampling-based methods
Sampling-based methods are built on the random sampling

of the workspace.
Rapidly-exploring Random Trees (RRT) and RRT-Connect

[18] are able to cope better with dense workspace than graph-
based approaches. RRT* [19] and bidirectional-RRT [20] are
“probabilistically complete”: as the number of samples tends
to infinity, the probability of finding a solution (provided that
it exists) tends to one. Moreover, they are also “asymptoti-
cally optimal” as they can refine the initially-estimated raw
path when new points are sampled and compute the shortest
pathway to connect the start and target points as the number
of iterations tends to infinity.

A combination of RRT and a reachability-guided sampling
heuristic (RG-RRT) was used in the work of Patil et al. [21]
to compute motion plans for steerable needles in complex
3D environments by constructing the tree via a sequential
connection of arcs with bounded curvature. These solutions
can be used in real-time applications, but performance have
been assessed only in simplified workspaces. A neurosurgical
2D implementation of RG-RRT was proposed by Caborni et
al. in [22].

Patil et al. [10] proposed a solution for duty-cycling steer-
able needles able to plan and control the needle motion in
a closed loop fashion, guaranteeing obstacles avoidance and
uncertainties compensation. Confining the search on the subset
of points in the workspace that meet the kinematic constraints
of the needle allows a replanning of the path suitable for online
procedures, ensuring a clinically acceptable error.

The planning approach proposed in [10] has been used also
by Kuntz et al. [23] for motion planning of a multi-lumen
system for lung biopsy. The system consisted in a concentric
tube robot with a beveled tip steerable needle. Simulations
demonstrated the ability to quickly computes plans with high
clearance from obstacles.

Parallel path computation is used in the Adaptive Fractal
Tree (AFT) method [24], which exploits fractal theory and
parallelization to separately process the subspaces and build a
tree composed of arcs with bounded curvature. This method
was designed for real time, computer-assisted minimally in-
vasive surgical applications and requires a high performance
Graphics Processing Unit to cope with the domain discretiza-
tion. The AFT concept was the basis for the Adaptive Hermite
Fractal Tree proposed in [25], where the fractal structure was
combined with geometric Hermite curves to optimize the path
for its smoothness and account for the target heading (i.e. the
orientation) at both the start and the target points.

Gammell at al. [26] proposed the Batch Informed Tree
(BIT*) algorithm. BIT* confines the search within an ellip-
soidal region whose size relates to the cost of the current so-
lution in a way that, any time a shorter path is found, the search
occurs within a subspace progressively smaller in size. In our
previous work [11], a similar approach has been implemented
for developing a path planner for steerable needles where the
criterion used to shape the search region accounts only for
the length of the current best path and includes parts of the
workspace that cannot be reached by the catheter due to its
kinematic limits, representing a waste in term of computational



time. Additionally, the path optimization was hindered by the
intrinsically limited flexibility of cardinal splines used for the
path interpolation.

Evolutionary algorithms [27] are a popular approach well
known for their simplicity, flexibility and robustness, that
simulate the natural evolution to solve complex optimization
problems. This optimization is performed according to specific
parameters, which can be fixed or can vary during the opti-
mization process [28]. A review of the different evolutionary
approaches is reported in [29].

In the present work, we propose a new path planning
solution where the heuristic path search is confined within
the region of the workspace that can be actually reached
by the needle, exploiting the capability of a sampling-based
planner in dealing with dense workspaces. Additionally, an
evolutionary procedure based on a different path interpolation
method with respect to [11] and supported by a bespoke
cost function is proposed to perform a multi-objective path
optimization.

III. METHODS

Our 3D path planner method consists in three main steps:
the path planning (Section III-B, where a set of piece-wise
linear paths is computed for the planning query), the path
approximation and optimization (Section III-C, where the
Evolutionary Optimization Procedure generates smooth paths,
reduces their length and maximizes the obstacle avoidance)
and the exhaustive search for the best path (Section III-D,
where an exhaustive search is performed over the set of paths
for determining the best planning solution). The workflow of
our solution is reported in Fig. 1.

A. Surgeon’s input and patient’s data elaboration

In this section, the user input and how it is interpreted by
the algorithm is described.

As first step, the surgeon is asked to select the desired target
point (TP) within the brain and the entry point (EP0) on the
brain cortex. The system delineates an entry area around EP0

excluding the sulci (due to the presence of blood vessels, as in
[30]). A mesh decimation is performed on the entry area and
a pool of feasible entry points EPi, i ∈ 1, ..., N is defined, as
in [31]. The total number entry points (N ) depends upon the
radius of the entry area and the decimation level.

The anatomical obstacles are segmented in the patient’s
dataset images and a distance map is computed [32].

B. Path planning

In the following, we describe our approach of minimizing
the search space to achieve a fast path planning. Geometrical
properties derived from the needle kinematics are considered
to design the search space.

The original workspace consists in the volume represented
by the patient’s brain. This volume is sampled with a resolution
of 1 mm3 so that an uniformly-distributed set of 3D points is
obtained.

For each EPi, i ∈ 1, ..., N , a Kinematics Search Volume
(KSVi ∈ R3) is defined, representing the “smart redefinition
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Fig. 1: Schematic representation of the workflow. The surgeon is asked to
define the entry point (EP0) and the target point (TP) on the patient’s dataset.
The entry area is then computed and the set of possible entry points EPi, i ∈
1, ..., N is defined (Section III-A). Subsequently, for each EPi, the algorithm
performs the path planning (Section III-B) and the Evolutionary Optimization
Procedure, EOP (Section III-C). A number of feasible solutions ind

i
j are

generated. For each EPi, the best path ind
i

is computed and eventually
provided to the surgeon by running a cost function over the set of solutions
generated by the EOP (Section III-D).

of the search space” for the path planning. The representation
in 2D of the KSV as a projection on the xy-plane is reported
in Fig. 2a, b while a 3D rendering of the KSV is provided in
Fig. 2c.

The reason for defining the KSV is to identify a space
where, considering the maximum curvature of the PBN
(kPBN ), the needle tip can be oriented at any θ ∈ [−π2 ,

π
2 ]

without preventing the possibility to reach the TP (see Fig.
2a, b). The remaining workspace would imply a curvature
greater than kPBN to connect the EPi to the TP. The case of
θ 6∈ [−π2 ,

π
2 ] is not considered as far-fetched for the intended

application. The KSV is defined considering the EPi, the TP
and the maximum curvature of the PBN (kPBN ). To reduce
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Fig. 2: A 2D projection of the Kinematics Search Volume (KSV) over the
xy-plane. The insertion happens at the entry point (EPi) along a direction
perpendicular to the skull surface. In a) and b) the geometric relationships
that allow the definition of the upper and lower boundary are represented,
respectively. The KSV projection is highlighted in light red. In c), the 3D
representation of the KSV is reported as a point cloud of samples. The
projections of the KSV on the xz and xy planes are also shown. A color-
code, function of the z coordinate, is used to depict the samples to help
the understanding of the KSV as a 3D object. In d), the areas where the
projection of TP on the xy and xz planes should lie in order for the method
to be applicable are reported, depicted respectively in dark and light gray.

the risk of slipping during the skull drilling, an entry direction
orthogonal to the skull surface is employed. This represents
the direction of the x-axis for the local frame having as origin
EPi [33]. In the local frame, by projecting TP on the xy-
plane (TPxy), a 2D representation of the KSV is obtained
(see Fig. 2a, b) where the y axis symbolizes the skull surface.
The geometrical definition of the upper boundary of the KSV
projection is shown in Fig. 2a and defined hereinafter.

A circle A centered in A(xA = 0, yA = r ), where r =
1

kPBN
is defined as:

A : x2 + (y − yA)2 = (2r)2

the point B is defined as the intersection point between A and
T with the lower y value, being T a circle centered in TPxy:

T : (x− xTPxy
)2 + (y − yTPxy

)2 = r2

A point C is defined as the tangent point between a circle C
defined as:

C : x2 + (y − yA)2 = r2

and the circle B centered in B :

B : (x− xB)2 + (y − yB)2 = r2

The upper boundary of the KSV projection is defined as a
third order polynomial passing though the points EPi, C and
TPxy .

As reported in Fig. 2b , the lower boundary of the KSV
projection can be defined by considering a point A (xA = 0,
yA = −r ) and as point B the intersection point between A
and T having the higher y value.

With similar considerations it is possible to define the
boundaries of the KSV projection in the xz-plane.

In 3D, starting from the local frame at EPi, the KSV can
be thus defined as the volume enclosing all the uniformly-
sampled points of the workspace confined within the lower
and the upper boundaries of the KSV projections in the xy
and xz planes (see Fig. 2c). These points are considered as
feasible for computing kinematically acceptable solutions for
the planning problem. This method is applicable when the
projections of TP on the xy and xz planes are within the areas
depicted in Fig. 2d. This implies a maximum insertion length
that, considering the radius of curvature of the PBN, is equal
to r(1 +

√
3) = 19, 5 cm for a pure straight insertion and

2r = 14, 2 cm for a pure curvilinear insertion which, in the
present case, is able to cover the entire working volume.

The planning is performed similarly to [11]: in a random
fashion, the samples included in the KSVi are sequentially
provided to the planner. This represents a deviation from the
way sampling-based planners are normally used, which entails
a sampling of the workspace which do not results from any
uniform distribution. Nonetheless, the fine resolution of 1 mm3

of the uniformly discretized workspace matches the resolution
of the obstacles and, in thus, is considered as a reasonable
approximation of a pure random sampling.

The planner builds a tree, composed by vertexes (P) corre-
sponding to samples in the free space of KSVi. Linear edges
are used to connect adjacent vertexes. When a new sample
is probed, the vertex that features the shortest path to EPi



is identified and, as the obstacle clearance of the new edge is
verified, the connection is made. The collision check is carried
out considering a minimum distance from obstacles equal to
half the PBN diameter for guaranteeing the practicability of
the edge. The tree keeps evolving following an RRT* approach
until a piece-wise linear pathway able to connect the EPi to
the TP is found. A first raw path, soli1, is thus defined as a
sequence of vertexes:

{soli1} = {Pi1,k ∈ R3, k = 1, ..., N i
1,P}

where Pi1,1 = EPi and Pi1,Ni
1,P

= TP. The length (l
solij
pw ) is

considered as an index of goodness for a generic piece-wise
linear solution solij :

l
solij
pw =

Ni
1,P−1∑
k=1

||Pij,k+1 − Pij,k||

It represents the sum of the distances between consecutive Pij,k
in the sequence from the EPi and the TP.

Every time a new sample is provided to the planning
algorithm, the planner verifies whether the new sample allows
to define solif 6=j featuring a shorter length. If so, the minimum

path length is updated with l
solif
pw and, although featuring a

longer path, solution solij is not discarded but stored for the
next steps.

This process ends when a pre-set maximum number of
iterations is reached (Nmax

RRT∗ ) or the number of computed solij
reaches a predefined threshold (Nmax

sol ).

C. Path approximation and optimization

The objective of this step is to generate smooth paths
based on the previously computed waypoints. We employed
an Evolutionary Optimization Procedure (EOP) to fine-tune
the weights of Non-Uniform Rational Beta Splines (NURBS),
used to represent smooth trajectories.

Each solij defined in the previous section needs to:
1) be smoothed, to comply with the C2 continuity required

by the PBN;
2) be checked for the obstacle clearance;
3) have minimum length.

Additionally, they have to comply with the maximum curva-
ture achievable by the needle (kPBN ). The EOP, run for each
solij and used for tuning the NURBS parameters, has demon-
strated to be able to efficiently generate a smooth, obstacle
avoiding and curvature-constrained path for non-holonomic
robot, featuring minimal length and minimal variations of
curvature [34].

A scheme of the EOP is reported in Fig. 3.
1) Population initialization: a general pth-degree NURBS

for solij is defined in parametric form as:

C(u)ij =

∑Ni
j,P

k=1 Bk,p(u)wij,kPij,k∑Ni
j,P

k=1 Bk,p(u)wij,k

where Pij,k are the control points, wij,k are the weights linked
to each Pij,k and Bk,p(u) are the pth-degree B-spline basis

EOP  initialization

Parent selection

fittest individual

Piece-wise linear solution

  

...

Mutation

Yes

No

Offspring

...

Crossover

Parent 1

Parent 2

cp

cp

... ...

Fig. 3: In the diagram, the steps composing the EOP are depicted. The
initial piece-wise linear solution (solij ) is provided to the EOP, and the initial
population of individuals is generated by providing random values to wi

j,k,t.
Fobj is then run and the parent selection is carried out es explained in Sec.
III-C3. Then the crossover (Sec. III-C4) and the mutation (Sec. III-C5) happen,
according to each specific probability. The population of individuals is then
updated. The process continues until a predefined number of iteration (N iter

max)
is achieved and the fittest individual (ind

i
j ) is returned as output.

functions defined on u ∈ [0, 1] . If the weight wij,k coupled
to a control point Pij,k is moved, this affects only a portion of
C(u)ij , allowing the local shape control: increasing (decreas-
ing) the magnitude of wij,k pulls (pushes) the curve closer to
(away from) Pij,k. For further details about NURBS, the reader
is referred to [35].

The EOP generates a primitive population of NURBS from
solij. Each NURBS is referred as “individual” (ind) and has the
vertexes Pij,k ∈ solij as control points. By randomly initializing
the weights wij,k associated to Pk ∈ solj , the individuals in
the population of NURBS are obtained:

{indij,t} = {Pij,k ∈ R3, wij,k,t ∈ R}

with k = 1, ..., N i
j,P and t = 1, ..., Nt, where Nt represents a

constant, pre-set number of individuals in the population.
2) Objective function: the variable u ∈ [0, 1] used to define

each indij,t in parametric form undergoes a discretization, as
explained in Appendix A.

An objective function Fobj is defined, which is used by the
EOP to rank the performance of each indij,t, as in [34]:

Fobj(indij,t) = α · l(indij,t) + β ·#Po + γ ·#Pc + δ · SD



which minimizes:
• the length l: the integral of the derivative of indij,t over

its length, calculated as in [35]:

l(indij,t) =

∫ TP

EPi

‖ind′
i
j,t(u)‖du

• #Po: the number of points ∈ indij,t intersecting an
obstacle:

{Po} : {indij,t ∩ Ωobs}

where {Ωobs} ⊂ KSVi is the set of 3D points represent-
ing the obstacle space.

• #Pc: the number of points ∈ indij,t to which a curvature
(as the second derivative of indij,t) larger than kPNB is
associated:

{Pc} = {ind′′
i
j,t > kPBN}

• SD: the standard deviation of the curvature of indij,t:

SD =

√√√√ 1

Nsamp

Nsamp∑
(ind′′ij,t − µind′′ij,t

)2

where µind′′ij,t
and Nsamp are the mean value and the

number of samples of ind′′
i
j,t that depend upon the

discretization of u ∈ [0, 1]. This parameter is considered
as a quantity to minimize in order to reduce the variation
of the curvature and, consequently, the control effort, as
in [34].

α, β, γ and δ values are reported in Table I.
3) Parent selection method: the linear Rank-based Roulette

Wheel method [36] is used for parent selection. This selection
strategy prevents from the risk to fall into a local minimum
during the EOP. At any new generation, it assigns to each
indij,t in the population a probability p to be selected as a
parent:

p(indij,t) =
rank(indij,t)∑Nt

t=1 rank(indij,t)

where rank is defined as:

rank(indij,t) = 2− SP +
2(SP − 1)(posij,t − 1)

Nt − 1

where posij,t is the hierarchical position of indij,t in the
population according to Fobj and SP represents the “selective
pressure”, a favorable bias given to individuals having low
Fobj . With SP = 1, all the individuals of the population have
the same rank and thus the same probability to be chosen. If
SP = 2, high-performing parents (the ones with low Fobj)
have a high rank and thus a higher probability to be selected
with respect to less-performing ones.

4) Crossover: crossover consists in switching part of the
weights between two parent individuals. In this work, a single-
point crossover is used, with a cutting point (cp) randomly
selected at each iteration. The crossover can happen according
to a predefined probability pcross. Due to its random nature,
crossover can lead to offsprings that do not meet the condition
{Po} ∧ {Pc} = ∅. This possibility is envisaged by the
algorithm, and regardless if such a situation happens or not,
the offspring are stored.

obs

Pj,k Pj,k

ba

ii

Fig. 4: Mutation algorithm. In a), part of the curve results too close to an
obstacle (red points), i.e {Po} 6= ∅, so the weight of Pi

j,k controlling that
part of the curve is decreased until the obstacle avoidance is obtained (green
line). In b), the weight Pi

j,k is decreased for smoothing the curve.

5) Mutation: mutation can happen at each iteration of the
EOP according to a predefined probability pmut. To avoid the
definition of an unfeasible path, we implemented a controlled
mutation method similar to [34], using a supervised adjustment
of the weights in the new individual of the offspring as
presented in Appendix B and shown in Fig. 4. If part of
the curve results too close to an obstacle, i.e {Po} 6= ∅, the
weight of Pij,k that controls that part of indij,t is increased until
the condition {Po} = ∅ is achieved (Fig. 4a). If part of the
curve shows {Pc} 6= ∅, the weight is decreased until all the
curve points meet the curvature limit. Additionally, whenever
possible, the weights of Pij,k that controls that part of indij,t
is decreased in order to smooth the curve but without voiding
the condition {Po} 6= ∅ (Fig. 4b). When, as the result of the
mutation, the new individual shows a higher value of objective
function than the original one, the new individual is rejected
and the original one restored.

The EOP stops when the number of generations (N iter)
reaches a predefined threshold (N iter

max). For each solij , the
individual of the NURBS population that features the lower
Fobj while guaranteeing the condition {Po} ∧ {Pc} = ∅ is
stored as ind

i

j :

ind
i

j = argminFobj(indij,t) t = 1, ..., Nt

If no individual meets the condition {Po} ∧ {Pc} = ∅, the
algorithm returns no solution for the specific solij .

D. Exhaustive search for the best path

In this section, the cost function used to perform an exhaus-
tive study of the paths discovered in the previous section is
presented.

In order to define the best path for the specific EPi, the
algorithm performs an evaluation over ind

i

j ,∀j through a cost
function Fcost defined as:

Fcost(ind
i

j) = a
1

dmin + d̄
+ b

l − lmin
lmin

+ c
kmax
kPBN

where dmin represents the closest distance from an obstacle
calculated over the whole length l of ind

i

j , d̄ is the mean
value of the distance from the obstacles and lmin the Euclidean
distance between the EPi and the TP. The maximum curvature
achieved along the path is kmax = max(ind′′

i

j(u)). This value



is taken into consideration in computing the overall cost for
the path ind

i

j as it has been shown experimentally that larger
control errors are associated to a high degree of curvature [37].

With ind
i

we refer to the best curvilinear path corresponding
to the one among all the ind

i

j that has the lower value of Fcost.
A representation of the EOP and the exhaustive search for the
best path is reported in Fig. 5.

As the EOP and the exhaustive search is performed for all
the EPi belonging to the entry area, a number of best pathways
(that, if the planning does not fail, correspond to the number of
EPi, N) are provided to the surgeon as output of the algorithm.
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Fig. 5: In the uppermost figure, the EOP is presented. Three piece-wise linear
solutions are depicted in black (soli1,...,3), along with multiple curvilinear
approximations (indi

j,t) in red. The best solution for each solj is reported in

green as ind
i
j . In the picture underneath, referred as “Exhaustive search for

the best path”, the cost function described in Section III-D is implemented to

define, among the three ind
i
1,...,3, the best one: ind

i
.

IV. EXPERIMENTAL PROTOCOL

A. Input dataset

The dataset used for the experimental trials consists in
one brain reconstructed from Magnetic Resonance Imaging
acquisitions performed at the Excellence Centre for High Field
MR (CERMAC), Vita-Salute San Raffaele University, Milano,
Italy.

The anatomical obstacles were identified and segmented in
the patient’s dataset using 3D Slicer c© (www.slicer.org) [38]
and consist in blood vessels, ventricles, thalamus and globus
pallidus. The curvature of the brain cortex was computed using
Freesurfer [39].

Ten entry areas of 10mm-radius (a dimension consistent
with the one employed in [40]), were defined on the cortical
surface resembling possible entry areas in clinical practice, 5
on the left and 5 on the right hemisphere (Fig. 6a). Ten TPs
were set (each one associated to one entry area) in different
locations within the brain volume. For each entry area, the EPs
are defined according to Section III-A, and this resulted in a
total of 172 EPs (17.2 for each entry area, on average). The
mean Euclidean distance between EP and TP is calculated as
equal to 78.02mm.

The entire workflow described in Fig. 1 was run over all the
entry areas. All the relevant parameters used in the simulations
for the presented method are reported in Table I. Path planner
parameters (Nmax

RRT∗ , N
max
sol ) were empirically defined as the

ones that, on average, allow to discover the shortest path in
bounded computational time (see Section III-B). For the EOP,
the number of individuals (Nt), the number of generations
(N iter

max) as well as the crossover and mutation probabilities
(pcross, pmut) were adapted to values close to the ones used
in [34].

B. Simulations and data analysis

A first test involved the comparison of the proposed solution
with two other sample-based planning methods: the previous
version of the planner [11] referred as “ellipsoidal”, and the
RG-RRT proposed by Patil at al. [21]. The latter consists in
a combination of the RRT-based search and a reachability-
guided sampling heuristic.

The comparison between the different algorithms was car-
ried out in terms of mean distance from anatomical obstacles
(d̄), the normalized path length (l̂) as the percentage the path
length exceeds the Euclidean distance between the EPi and
the TP, the minimum distance along the entire path from the
closest anatomical obstacle (dmin) and the value of Fcost.
The maximum curvature (kmax) was also checked as a critical
parameter which relates to a higher risk of inaccuracies in the
control of the PBN during the trajectory tracking. Additionally,
the failure rate (FR) was evaluated, defined considering the
number of best solution computed by the planning algorithm
(#{ind}) and the number of original EPs defined over the
entry area (#{EPi}), such that:

FR =
#{ind}
#{EPi}

As maximum curvature value, kPBN was used in the simu-
lation and the nominal catheter thickness was considered for
assessing obstacles avoidance, as reported in Table I. For all
the three algorithms, the research was biased by providing
the TP as new sample with a probability of 10%. When
analyzing a new sample, the maximum Euclidean distance
between the sample and the closest vertex in the tree was
40mm for the KSV and the ellipsoidal method. No maximum
Euclidean distance was considered for arc reachability in the
RG-RRT. The three methods used the same original workspace
with the same density of samples. The KSV approach and the
ellipsoidal method had the same pre-set maximum number of
iterations (Nmax

RRT∗ ) and solutions Nmax
sol , the same number of



(a) (b) (c)

Fig. 6: In a) a picture of the 10 entry areas defined on the brain cortex for the scope of the test (5 on the left and 5 on the right hemisphere) is presented.
In b), the anatomical obstacles considered in the planning phase are depicted in different colors: ventricles (blue), thalamus (yellow), globus pallidus (green)
and blood vessels (red). In c), an example of a planned curvilinear path is proposed (sharp yellow). The entry and target points are labelled respectively as
EP and TP. The entry area is also shown in sharp green around the EP.

TABLE I: Parameters used in the experimental setup. From the left to the right, the PBN diameter and maximum degree of curvature are reported, followed
by a the pre-set maximum number of raw path (Nmax

sol ) allowed at each iteration of Section III-B. The EOP is defined by the initial population size Nt. The
number of offspring (N iter

max), the cross-over and mutation probabilities (Pcross and Pmut) as well as the value assigned to the selective pressure (SP) are
also reported. Lastly, the values of the weight used in the Objective and the Cost functions are shown.

PBN Parameters Path planning EOP settings Objective Function Cost Function

Diameter [mm] kPBN [mm−1] Nmax
RRT∗ Nmax

sol Nt N iter
max pcross pmut SP α β γ δ a [mm] b c

2.5 0.014 200 5 20 50 0.5 0.1 1.8 100 1 1 100 0.01 0.5 0.5

maximum iteration Nmax
RRT∗ was used also for the RG-RRT. In

case the algorithms reached the maximum number of iterations
without finding a solution for the planning query, the search
stopped and an error was returned. As foci for the ellipsoidal
method, the EP and TP were considered. Variation in the
ellipsoidal shape happend every Nv new vertexes were added
to the tree without reaching the TP, where Nv = 5∗q∗Nreshape
with Nreshape representing the current number of reshape
iterations and q = 1.5 an increasing factor. Ellipsoidal shape
variation is carried out by enlarging the minor axis by a factor
q, starting from a value of 10mm. An upper limit of 1000
samples is considered for all algorithms before quitting the
search. The results were analysed through a Friedman non-
parametric statistical test (p < 0.05), followed by a post-
hoc Wilcoxon matched pairs test (p < 0.016, Bonferroni
correction).

The performance of the three algorithms were compared
also in terms of computational time. Beside the overall time
required for the entire path computation, also the one required
to find the initial set of piece-wise linear raw paths (solij)
was measured for the KSV and the ellipsoidal method. This
additional analysis aimed at assessing the time improvements
associated to confining the path planning within a subset of
the original workspace where kinematically-feasible solutions
can lie, and was not performed for the RG-RRT as this
method does not require an initial piece-wise linear raw
paths computation. A pairwise comparison was performed on
the obtained time results via Wilcoxon matched pairs tests
(p < 0.05).

Fourthly, a test was conducted to compare the performance
of the proposed method with respect to an optimal planner. For
this scope, an A* optimal planner was implemented, having
the following heuristic function:

h(n) = wh1

(
lTP (n)

lmin

)
+ wh2

(
dmax − d(n)

dmax

)
where lTP (n) and lmin are the Euclidean distances between
the node n and TP, and between EP and TP, respectively.
The parameter dmax represents the larger value measured
in the distance map and d(n) the distance between n and
the closer obstacle. The two coefficients wh1,2 were defined
empirically as equal to 1 and 0.2, respectively. This test was
performed on one EP, corresponding to the centre of entry area
n.1 in Fig. 6 and five repetitions of the KSV-based planning
solution were run. As minimum distance from the obstacles,
the nominal catheter thickness is considered. As terms of
comparison between the A* and the KSV-based planner, the
normalized path length, the minimum and mean distance from
obstacles and the computational time were considered. The
maximum curvature was overlooked in the comparison as A*
provides piece-wise linear paths.

All tests were performed using MATLAB R© R2019a, on a
MacBook Pro (MacOS 10.14.6, 2,7 GHz Intel Core i5, 8 GB
of RAM) and the same parameterization was used in all the
tests.

V. RESULTS

Results from the comparison between the method herein
presented with the RG-RRT and the ellipsoidal solution are



presented in Fig. 7 and Table II. In Fig. 7a, the highest value
of curvature reached along the path (kmax) shows respectively
a median value of 0.01 mm−1 (radius of curvature r=100 mm),
6.2× 10−3 mm−1 ( r= 161.3 mm) and 6× 10−4 mm−1 (r=
1667 mm) for the RG-RRT, ellipsoidal and KSV algorithm,
respectively (p < 0.01).

The minimum distance from anatomical obstacles (dmin)
resulted in a median value of 0.63 mm for the RG-RRT,
0.34 mm for the ellipsoidal method and 1.9 mm for the KSV
(Fig. 7b) while the mean distance (d̄) showed a median value
of 6.06 mm for the RG-RRT, 7.26 mm for the ellipsoidal
method and 9.1 mm for the KSV (p < 0.01) (Fig. 7c).

With regards to the normalized path length (̂l), its median
values were equal to 2.92 %, 2.35 % and 1.19 % for the RG-
RRT, ellipsoidal method and KSV, respectively (p < 0.01)
(Fig. 7d).

For the RG-RRT, Fcost demonstrates a median value of
0.35 , while a value of 0.215 was found for the ellipsoidal
method and of 0.017 for the KSV (p < 0.01) (Fig. 7e).

For the failure rate FR, its median value for the RG-RRT
was 33.7 % while for the ellipsoidal method was 21.1 % and
for the KSV was 5.2 % (p < 0.05) (Fig. 7f).

Results in terms of computational time are shown in Table
II, where the difference between the KSV and the other
two algorithms (RG-RRT and ellipsoidal) is reported. In the
estimation of the initial raw paths, the ellipsoidal approach
showed a median value of 96.75 sec while the KSV resulted
in a median computational time of 4.3 sec (p < 0.01). The
entire planning process results faster for the RG-RRT, which
was able to compute a path in less than 30 sec, on average.
The less performing one was the ellipsoidal method (up to
243 sec), while the time required by the KSV was lower than
a minute.

Results from the comparison of the presented solutions with
the A* are presented in Table III, where the difference in terms
of normalized path length, minimum and mean distance from
obstacles and computational time are reported.

TABLE II: Results in terms of computational time are shown for the proposed
solution, the ellipsoidal method and the RG-RRT as 25th, 50th and 75th

percentiles. The computational cost of the initial piece-wise linear path
computation for the KSV and the ellipsoidal method is reported (not applicable
for the RG-RRT). The total computational cost for the estimation of the best
path is also reported. Statistical significance effect of the type of search space
has been found through a Wilcoxon matched pairs test (p < 0.05).

Computational time

Piece-wise planning Total computation time

25th 50th 75th 25th 50th 75th

RG-RRT [sec] na na na 7.1 8.4 24.3
ellipsoidal [sec] 89.6 96.7 107.9 102.4 140.4 243.0

KSV [sec] 4.2 4.3 5.3 16.5 17.6 44.7

VI. DISCUSSION

This work presents a planning solution for computing
pathways suitable for being performed by a flexible catheter
in neurosurgical applications and used in combination with
bespoke control and actuating systems so that they can be
used as surgical trajectories.

TABLE III: Performance test between A* approach and the presented solution
in term of normalized path length, minimum and mean distance from obstacles
and computational time as 25th, 50th and 75th percentiles.

A* - KSV performance comparison

A* KSV

25th 50th 75th

l̂ [%] 10.6 0.1 0.2 0.3
dmin [mm] 1.32 0.03 0.25 0.39
d̄ [mm] 7.92 5.43 5.94 6.17
comp. time [sec] 270.6 34.0 45.2 55.5

A smart redefinition of the search space, i.e. the Kinematic
Search Volume (KSV), considers the curvature limit of the
PBN and ignores those part of the working domain that will
give rise to unfeasible paths. This allows the algorithm to save
time. By looking at Table II, where the KSV is compared to
the ellipsoidal search used in [11], a significant decrease of
the computational time (∼ 20 times) can be noticed in the
computation of the initial piece-wise linear solutions. Although
slower than the RG-RRT, our solution results faster than
the ellipsoidal method also in the overall path computation.
Furthermore, a new approximation method based on the use
of NURBS provides the C2 continuity required by the PBN
and the local control of the path. This, through a bespoke
Evolutionary Optimization Procedure (EOP), allows to fine-
tune each solution according to multiple optimization objec-
tives. The combination of the KSV and the EOP provides a
high level of flexibility allowing the variation of the weights
associated to the control points in a way to privilege some
aspects (e.g. the distance from obstacles) more than others
and at a level that was not achievable by other approaches
like those based on inverse kinematics [13] or potential fields
methods [15] that have, on the other hand, the benefit of
allowing a quasi-real-time path computation. The sampling-
based planning performed within the KSV, followed by the
path optimization performed by the EOP, even if it can not be
expected assuredly to find the global optimum to the planning
problem, can generate an excellent quasi-optimal solution [36].

When compared with two other sample-based planning
solutions [11], [21], our method was able to outperform them
in two relevant parameters: the distance from anatomical
obstacles and the normalized path length, as shown in Fig. 7.
The obtained path was also smoother, which represents a good
starting point in the view of reducing the possible control error
in the trajectory tracking. Additionally, the obtained overall
cost resulted consistently lower in our solution with respect
to the other two algorithms with a lower risk of failure in the
path search: the KSV algorithm failed respectively 4 and 6
times less frequently than [11] and [21].

On the other hand, the method herein proposed is limited
to pre-operative applications as its computational time does
not permit re-computing a path in real-time in case errors
occur during the needle insertion. Two possible approaches
can be implemented for increasing the responsiveness of the
algorithm: at first, the introduction of a bidirectional-RRT
search [20] would speed up the search for the raw path (solij)
by letting the tree evolving from the EPi and the TP at the
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Fig. 7: Results from the comparison between the presented solution (KSV) and other two methods from the literature: the ellipsoidal planner (“Ellips.”) and
the RG-RRT. The maximum curvature (kmax), the minimum and mean distance from anatomical obstacles (dmin and d̄), the normalized path length (l̂), the
overall cost (Fcost) and the failure rate (FR) are reported respectively in a,b,c,d,e and f. Statistical significance between different algorithms is highlighted
(∗, p < 0.05).

same time, furthermore the EOP may be further boosted by
reducing the computational cost due to the mutation of the
individuals. We aim at exploring also the use of reinforcement
learning for the computation of the raw path.

From the comparison with an optimal planner, it was
evidenced that the A* algorithm was able to provide paths
that are safer in terms of minimum and mean distance from
obstacles at the expense of an increased path length and a
longer computational time, as expected from a graph-based
planning method in 3D scenarios. However, it has to be noted
that, differently from the planner herein presented, the A*
algorithm computes piece-wise linear paths. These paths are
less complex to elaborate as they do not meet the needle
curvature constraint nor the C2 continuity and this aspect
makes the comparison less meaningful.

The quasi-optimal path estimated by the proposed solution
assumes a kinematic model of motion for the PBN during
insertion and a proper control system exist. In [8], an adaptive
controller combined with a kinematic model of the PBN needle
in Parallel Transport Frame are proposed. Test performed
in-vitro demonstrated the ability of the controller method
to perform curvilinear paths, provided that they meet the
PBN curvature limit. The tests were performed over multiple
curvilinear paths comparable to the one estimated in this work
in terms of insertion length and curvature. This implies that
the present solution can be considered as a feasible path

planner for such a control method. Further in-vitro tests will
be conducted using paths estimated by the present solution in
order to evaluate the system tracking error.

VII. CONCLUSIONS

The paper describes a solution for the definition of feasible
pathways for robotically-actuated flexible needles in a neu-
rosurgical scenario, which represents a typical example of a
dense environment characterized by narrow spaces.

A smart redefinition of the workspace based on the maxi-
mum curvature of a neurosurgical needle (in the present study,
the Programmable Bevel-Tip Needle [7]) is used to limit the
sample-based path search within a confined region, the so-
called Kinematic Search Volume, where feasible solutions lie.
This, combined to a path optimization based on a bespoke
evolutionary optimization procedure, results in providing a
significant improvement in the performance guaranteeing a
higher obstacle avoidance and a reduced path length, also
keeping the computational time consistent with standard pre-
operative planing algorithms. Our planning method can also
reduce the failure rate in finding a path for a specific query,
augmenting the pool of possible solutions where to look for the
best path. This lies the foundation for further enhancements
in the quality of the estimated paths and for a real-time path
computation through the reduction of the computational cost.



APPENDIX

A. Discretization of the independent variable u
The independent variable u ∈ [0, 1] used to define a NURBS

curve in parametric form is discretized in order to compute
the parameters of Section III-C2. This is done according to a
discretization parameter ρ determined empirically and linked
to the number N i

j,P of control points Pij,k ∈ solij , such that:

ρ =


0.1 if N i

j,P = 2

0.01 if N i
j,P = 3

0.001 if N i
j,P ≥ 4

B. Mutation algorithm
If {Po} 6= ∅ (Line 2, Figure 4b), the set of control

points {Pcritico } that control parts of indij,t where the con-
dition {Po} 6= ∅ happens is defined (Line 3). For each
Pij,k ∈ {Pcritico } (Line 4), the weight wij,k,t is increased
(Line 8) to push indij,t away from the obstacle until the
condition {Po,k} = ∅ is reached (i.e. obstacle avoidance is
achieved within the part of indij,t controlled by Pij,k, Line
7). If the weight modification leads to exceeding kPBN or
to approaching another obstacle located in the same section
controlled by Pij,k (#{Pc,k}new > #{Pc,k}, Line 11), the
weight variation (∆) is reduced according to a “divide and
conquer” approach, as in as [11], provided that the stop
condition ∆/2 < ∆thr is maintained (Lines 12-15). If indij,t
is feasible (i.e. {Po} = ∅ and {Pc} = ∅, Line 16, Figure 4a),
all wij,k,t with k = 2, ..., N i

j,P − 1 (i.e. all weights except the
ones associated to EPi and TP , Line 17) are decreased (Line
21) to smooth the curve and reduce its total length provided
that the weight reduction does not generate obstacle collision
and complies with a limit of flatness (kthr), which correspond
to stop conditions (Lines 20). In case of obstacle collision, a
“divide and conquer” approach is used (Lines 25-28 ).
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