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Abstract— The increasing complexity of modern surgery
rooms brings many challenges. Human activity recognition
(HAR) plays a significant part in healthcare, telemedicine,
long-term treatment, and even surgery by using wearable
inertial sensors or depth cameras. Although the development
of artificial intelligence techniques provide various machine
learning (ML) methods to identify activities, it is a time-
consuming implementation and high work burden to collect and
label the large data set. To fascinate efficient data collection
and labeling, we propose a novel depth vision-guided HAR
architecture to obtain the labels of the collected raw data from
the inertial measurement unit (IMU) sensors using depth data
automatically. Experimental results show that the novel depth
vision-guided interface can be utilized for identifying activities
without labeling the data in advance.

I. INTRODUCTION

During complex surgical procedures, the captured sensor
data from the operating room (OR) includes multiple infor-
mation that can be applied for modeling, processing, and pre-
dicting surgical workflow. Human activity recognition (HAR)
is the most popular technique to observe patients’ anatomical
structure [1]. In a surgery procedure, monitoring the doctor’s
behavior provide practical guidance. Consequently, there is a
growing interest in the medical community to build a HAR
recognized system that provides clinical support from merely
presenting the related information to help surgeons make
surgical decisions in the complex surgical procedures [2],
[3]. To support the demands for the intraoperative, the wear-
able multisensor system, intelligent presentation of various
information sources, and context-specific support of surgeons
are widely mentioned for future system application [4]. It
provides much useful operating guidance by monitoring the
movement of a doctor in real-time during a surgery proce-
dure [5]. Nowadays, by carrying wearable and portable smart
devices can identify human activities with a high recognition
rate [6]. However, several complex transfer activities are
challenging to be identified, such as from sitting to standing.
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Using a signal type of sensor cannot provide more effective
information to enhance the recognition rate [7]. As an active
and comfortable research field, wearable or portable smart
devices for HAR are widespread used [8].

In the past decade, many studies have achieved to monitor
human activities using wearable sensors or depth cameras.
Most of these techniques tried to explore different methods
of sensing technologies and extracting features to improve
the identification ability of HAR using smartphones. A
better hybrid filter and wrapper (HFW) method is proposed
in [9] to extract features from accelerometer and gyroscope
sensors by comparing with Principal Component Analysis
(PCA) [10], Fast Correlation-based Filter (FCBF) [10], Fast
Correlation-based Filter (FCBF) [11], and sequential for-
ward selection (Wrapper) [12] methods. Khan et al. [13]
proposed Kernel Discriminant Analysis (KDA) to recognize
five human activities sampled from the smartphone on five
body positions, which obtains a higher classification accuracy
than Signal Magnitude Area (SMA) and Linear Discriminant
Analysis (LDA). Three motion sensors (linear accelerometer,
accelerometer, and gyroscope) at both wrist and pocket posi-
tions are applied to recognize less-repetitive human activities,
for instance, drinking coffee, eating, and smoking in [14].
The phase trajectory matrix has been constructed, and the
PCA algorithm has been applied by extracting features in the
first period to split the time series online [15]. The recogni-
tion ability is compared in [16] on different extracted features
sets, for instance, frequency domain (wavelet transform),
time-domain (statistical and mathematical parameters), and
discrete domain (symbolic representations). Although several
chosen IMU sensors and feature extraction methods provide
important information to identify activities, they ignore the
affection of artificial movement and changes of direction and
position of the smartphone.

Moreover, the artificial intelligence technique provides
more methods based on machine learning (ML) or deep
learning (DL) to identify more complex activities and in-
crease the classification accuracy [17]. A k-Nearest Neighbor
(k-NN) method is proved to have a higher recognition rate
than Näive Bayes (NB) in predicting four types of motions
(stand, sit, walk and run) [18]. A mixture-of-experts model
is designed in [19] to process incomplete and uncertain
data. Reyes-Ortiz et al. [20] proposed a Transition-Aware
(TA) HAR system using the Support Vector Machine (SVM)
algorithm to classify less than 33 activities while wearing a
smartphone or wearable devices in real-time. A Hierarchical
Hidden Markov Model (HHMM) method is presented in [21]
to recognize human activities(go stairs, standing, walking,



running, and moving arms) as well as some daily activities
(taking a bus and shopping). The HHMM method can obtain
higher accuracy than the Artificial Neural Network (ANN)
and the Hidden Markov Model (HMM). Afterward, a new
two-stage continuous HMM algorithm is present to decrease
the number of feature subsets for decomposing the complex
human activities into some more straightforward activities.
The ConfAdaBoost.M1 ensemble algorithm is applied in [22]
to obtain a higher prediction precision on recognizing six
human activities, while the algorithm needs to extract 561
features. An adaptive slide window approach is presented
to classify human activities by calculating the probability of
signals, including an adjustable window length. Nevertheless,
the long signal segment is brought more misclassification
due to the possibility of having multiple human activities.
In our previous works, an FR-DCNN method is proposed to
recognize 12 complex activities by carrying a smartphone on
the waist [23]. Compared with other DL algorithms, such as
Bi-LSTM, LSTM, and CNN, the designed FR-DCNN model
outperformed by 1% on average. This contribution not only
achieves fast computation but also propose a new data com-
pressing method for solving the problem of time-consuming.
Subsequently, we present a multisensor based HAR model
by using both respiratory and acceleration sensors [24].
However, several types of interference (i.e., object occlusion
and artifact) caused by exercise or unstable movement always
decrease classification accuracy. Furthermore, using a single
sensor, e.g., depth camera or gyroscope, is challenging to
label complex activities.

In this paper, we proposed a novel depth vision-guided
HAR system using wearable multisensor to monitor the
doctor’s activities in a surgery room. It includes an automatic
labeling method by clustering the depth data, and a recogni-
tion approach of processing inertial measurement unit (IMU)
signals measured by carrying an IMU sensor on the waist.
The depth data are used to identify activities and provide
labels of the IMU segments by designing a hierarchical k-
medoids (Hk-medoids) clustering algorithm. A multiple layer
neural network (MNN) classifier is trained to identify five
possible activities in SR, namely sitting, standing, walking,
bend over forward, and several transfer motions (e.g., from
lying left to the right side). The innovation of this paper is
as below:

1) A novel autonomous learning framework is presented
to integrate the benefits of both depth vision and IMU
signals.

2) An MNN classifier is utilized to improve accuracy with
the practical application during the surgery procedure.

3) The designed signal processing approaches based on
IMU signals avoid the disturbances from the changes
in position and orientation

This paper is organized as follows. Section II introduces the
proposed methodology and the designed hardware system.
The performance of Hk-medoids and MNN classifier is an-
alyzed in Section III. Section IV discusses the achievements
and delineates avenues for further work on this topic.

II. METHODOLOGY

A. Depth Vision based Labeling

The captured depth data from the Kinect V2 device is
used to a label by the designed three layers Hk-medoids
algorithm automatically. It aims to divide the mentioned five
complex activities layer by layer by using the 3D joints
depth data. All of the 25 nodes data are used to label
the activities, which can be expressed as V ∈ R75. After
removing the noises by the wavelet denoising approach, the
sliding windows strategy is adopted to split the raw data
into N segments, namely V = {vi}, i = 1, 2, . . . , N , with
a fixed detection length Ld and overlap Lo. To enhance the
accuracy of clustering the dynamic and static activities, we
calculate average (v̄i), standard deviation (σ(vi)), maximum
(max(vi)), and minimum (min(vi)) of the depth data to label
the five activities based on the Hk-medoids approach.

The k-medoids model is to find clusters (labels) by choos-
ing a set of ik members of V as ”medoids.” Then, the
unselected member of V is assigned to its closest medoid.
The partitioning properties of a valid k-medoids clustering
in V are:

• vi 6= ∅, 1 ≤ i ≤ k;
• ∪ki=1vi = X;
• vi ∩ xj = ∅, i 6= j, 1 ≤ i, j ≤ k.
It needs to distinguish similar and dissimilar objects quan-

titatively. The whole procedure of the k-medoids clustering
with a given k can be written as follows:

1) Set a k value as the number of medoids and compute
the Euclidean distance to find the nearest medoid

2) A common criterion is adopted by swapping the
medoid and un-medoid in each step, which is called
the sum of intra-cluster variation (SICV) expressed in
Eq. 1

3) The lowest error is selected as the best configuration
4) Repeat the first three steps until there are no more

changes

SICV =

N∑
i=1

k∑
j=1

d2(vi, cj) (1)

The cluster centres is contained as C = {cj}, j =
1, 2, . . . , k. cj denotes the ith cluster centre, and d2(vi, cj)
is the Eucledean distance of vi and cj .

Algorithm 1 describes the details of the Hk-medoids
method. The first layer aims to divide dynamic and static
activities by using standard deviation and extrema, namely
F c1 = {σ(vi),max(vi),min(vi)}. The second layer can
separate sitting and standing by comparing average F c2 = v̄i.
The last layer aims to divide the rest three dynamic activities
based on feature F c3 = {σ(vi),max(vi),min(vi), v̄i}.

B. Multisensor based classifier for HAR

The proposed multisensor based HAR method aims to
train a classifier using the MNN approach. The inputs are
IMU signals, while the outputs are the acquired labels y∗ by
the Hk-medoids method.



Fig. 1. The flow chart of self-labeling using the designed Hk-medoids clustering method.

Fig. 2. The data stream procedure of signal processing and modeling for HAR.

Algorithm 1 Hierarchical k-medoids Clustering.
Input: the segments vi and the features sets F ;
Output: the labels of segments y∗i , i = 1, 2, . . . , N ;

1: Layer 1: divide segments v∗ into dynamic v∗D and static
v∗S classes based on F c1 ;

2: Layer 2: separate the two static activities by F c2 ;
3: Layer 3: divide three dynamic motions based on features

set F c3 ;

Fig. 2 describes the procedure of signal processing and
modeling. The IMU signals are collected from the user
who wears the IMU sensor on the waist. To remove some
turbulence (e.g., movement artifact and magnetic fields) for
accuracy enhancement, we combine a set of signal processing
methods as follows.

Firstly, the raw IMU sensors (accelerometer Sα, gyroscope
Sβ , and magnetometer Sγ) are transferred into two derived
sensors, namely, linear accelerometer and gravity. We use
the linear L1-norm accelerometer |Sα| to fix the tri-axes of
acceleration as follows.

||Sα|| =
Ld∑
i=1

|sαi | (2)

To acquire the gravity |Sα|g and the linear acceleration
(|Sα|l) vectors, we implement third-order zero phase Low-
Pass Elliptical Filter (LPEF) [25] to decompose |Sα|.

Secondly, the orientation axes S	 is computed based on
the attitude and heading reference system algorithm (AHRS
filter) [26] to improve the identification ability of static
activities. It adopts the in-direct Kalman filter models the

error process, x, with a recursive update as

xt =


S	t

Sαt

Sβt

Sγt

 = Ft


S	t−1

Sαt−1

Sβt−1

Sγt−1

+ ωt (3)

xt is the output at time t which consists of the raw three
types of IMU sensors and the new orientation composition
S	t

. ωt is 12-by-1 additive noise vector and Ft is the state
transition model. Thirdly, we use the sum of angular velocity
(
∑
Sβ = Sβx

+ Sβy
+ Sβz

) to identify dynamical motions.
Fig. 2 shows the processed IMU signals from the inputs

to output. We only adopt YZ-axis orientation, tri-axial linear
L1-norm acceleration, the L1-norm accelerometer and the
sum of gyroscope signals to establish the MNN classifier.
As it is discussed above, the selected inputs can improve
clustering and classification accuracy.

Several obvious features are extracted to train the MNN
classifier as follows:

1) Extrema means the maximum and minimum of the
signal segment, namely max(s∗i ) and min(s∗i ).

2) Standard deviation is the amount of variation can
find the range and level of the activity, namely σ =√

1
N−1

∑N
i=1 (s∗i − s̄i)

2

3) Average s̄∗i is the mean of the processed IMU signals,
which provide the reference information of the average
level of human activity.

4) Principal component analysis (PCA) is the most pop-
ular tool for evaluating the visualized genetic distance
and relatedness between different activities.

Although the capability of single layer ANN approaches
has proved to establish any complex model between high



dimensions inputs and classes, they have many drawbacks
of overfitting to limit the classification performance.

Fig. 3. The schematic diagram of designed two layers feed-forward neural
network (FFNN) for classification.

In this article, a two layers MNN structure is designed with
30 and 50 nodes in each layer, respectively. It consists of two
feed-forward layers and a competitive layer (see Fig. 3). The
mapping networks in the feed-forward layer can be defined
as:

ŷ = bo + ωo

K∑
k=1

Φk

(
N∑
n=1

M∑
m=1

ωn,mk
γmk
t + bmk

)
(4)

Where Φk is the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) quasi-newton activation function. All of the ω and
b are the weights and bias in the network, and γmk

t is the
outputs of jth neuron. The competitive layer t classifies the
input vectors into a given number of classes by the similarity
between vectors.

C. Autonomous Learning Framework

Fig. 4 illustrates the proposed autonomous learning frame-
work. In the surgery room, 9D raw IMU signals and 45D
depth vision data are synchronously captured from the IMU
sensor and Kinect V2 camera. Then, they will be saved
into the computing unit. After splitting the depth data V
into N segments, i.e., vi, i = 1, 2, · · · , N , the Hk-medoids
clustering approach can label these segments hierarchically.
Even if the obtained classes y∗i , i = 1, 2, · · · , N may not
match the true activities y, they can be considered as the
ground truth labels. The following experiments can prove
this conclusion. Similarly, the acquired IMU signals S will be
divided into N segment with the same detection length Ld,
namely si, i = 1, 2, · · · , N . The approaches described above
will calculate the features space Fs∗i . The designed two layers
neural network model can be trained by combining the inputs
F s

∗
i and labels y∗, namely ŷ = f(F s

∗
i , ω, b). In the real-time

demonstration, this system can predict four activities only by
adopting IMU signals.

D. Hardware Description

Fig. 5 shows the schematic diagram of a hardware system,
including the data capture module and multiple computer
units. The former two computers aim to collect depth vision
and IMU signals from the doctor in the surgery room, while
the latter is utilized to make acquisitions and process the
data.

The sensors of the proposed HAR system are listed as
follows:

• Kinect V2 sensor (Microsoft, USA) is composed of
two cameras, an infrared (512x424 pixels) and an RGB
camera (1920x1080 pixels). The framerate of the acqui-
sition can be up to 30 Hz. And it has the feature for
depth sensing of 70 degrees horizontally and 60 degrees
vertically.

• The wearable 9D IMU sensor (WIT, China) consists
of a tri-axis accelerometer, a tri-axis gyroscope, and a
tri-axis magnetometer.

Two computers are used to obtain the data. One is
equipped with i9-8950HK (2.9GHz) CPU and 16 GB
RAM to perform depth image processing, while the other
is with i7-4720HQ CPU (2.60GHz) processor and 8 GB
RAM to obtain and process the IMU signals. Ultimately,
a computer server(i9-9900K processor (3.6 GHz), 64 GB
RAM and Quadro M5000 GPU) is used for data processing
and HAR.

III. EXPERIMENTS AND RESULTS

The two main procedures of the proposed framework could
be evaluated separately. We adopted the supervised learning
strategy to test the accuracy of the Hk-medoids clustering
for automatic labeling and the classification accuracy of
multisensor based MNN classifier. Ten subjects (five females
and five males, between the ages of 20 and 35) were asked
to make the ten human activities with a fixed order from
1 to 10. They carried an IMU sensor on the waist, which
captured the IMU signals introduced in Section II-B. Each
activity took at least 3 minutes. Finally, it had about 45000
samples of both depth data and the IMU signals with the
same sampling frequency (50Hz).

Both overall accuracy (OA) and F1-measure (F1-score) are
adopted to evaluate the clustering approaches and classifica-
tion models. The F1-score can be calculated by considering
both precision (P) and recall (R). The former ratio of
correctly predicted positive observations to the total predicted
positive observations, while the latter is all observations in
the actual class.

F1 =
2× P ×R
P +R

=
2× TP

TP+FP ×
TP

TP+FN
TP

TP+FP + TP
TP+FN

(5)

Where TP, FP, and FN are real positive, false positive, and
false negative, respectively.

A. Clustering Analyzing

The leave-one-out strategy is adopted to calculate the
average of OA. Table I displays the comparison of OA
between hierarchical k-medoids (Hk-medoids) with the other
three popular clustering approaches, namely k-medoids, hi-
erarchical k-means (Hk-means), and k-means methods. The
Hk-means use the same three layers with the Hk-medoids
structure. Both k-means and k-medoids approach cluster the
depth data directly with a single layer. The Hk-medoids
approach obtains the highest average of overall accuracy for



Fig. 4. The pipeline of depth vision-guided HAR using wearable multisensor in a surgery room. The Kinect device provides 3D joints depth data to label
the five activities based on the designed Hk-medoids clustering method. The doctor carries the IMU sensor on the waist to afford multiple signals to train
the MNN classifier for HAR.

Fig. 5. The overview of hardware system structure.

labeling the five activities. However, it needs to select the
specific features in each layer.

TABLE I
THE COMPARISON OF OVERALL ACCURACY AMONG FOUR CLUSTERING

ALGORITHMS.

Algorithm OA (%) Feature Extraction
Hk-medoids 96.55± 0.04 yes
Hk-means 92.25± 0.10 yes
k-medoids 86.49± 0.06 no
k-means 58.38± 0.37 no

B. Performance of MNN classifier Evaluation

Table 2 shows the computed F1-score of each gesture for
further verification of the HSOM model’s ability. Although
the third gesture cannot be labeled well by HSOM, the
average 90.22 is higher than that acquired by other methods.

TABLE II
THE COMPARISON OF OVERALL ACCURACY AMONG MNN, SVM, LDA,

AND LINEAR METHOD CLASSIFIERS.

Classifier OA (%)
MNN 89.77± 2.89
SNN 84.36± 4.43
SVM 73.49± 3.44
LDA 68.01± 3.80

For further comparison of the different performance in
each activity classification, we compare the confusion ma-
trix between MNN and SNN classifiers. By observing the
confusion matrix of the MNN classifier shown in Fig. 6,
although the MNN classifier is better than the SNN method,
the mentioned five activities could be identified in the same
level.

Fig. 6. The confusion matrix obtained based on MNN and SNN classifier.

IV. CONCLUSION AND FUTURE WORK

A novel autonomous learning framework is proposed in
this paper for enhancing the multisensor based HAR in the
surgery room. It adopts the depth information to automati-
cally label the five human activities automatically captured
from the Kinect V2 sensor. For robustness and reducing
the interference of artifact, a series of signal processing
algorithms are designed to remove different types of noises.
The MNN method is used to build the classifier for accuracy
enhancement, which can acquire better accuracy than the
other method. The proposed framework can not only be
utilized for HAR using only IMU signals but also label the
data based on depth data.

Although the proposed framework automatically achieves
HAR, further research is needed to implement it in RAMIS
fully. In our future works, a 3D segmented preoperative
model will be used for AR navigation of surgeons, and hand
gestures will manipulate it. Finally, HAR-based teleoperation
of a surgical robot will be performed in the future.
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