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Abstract

Domain walls, commonly occurring at the interface of different phases in solid-state materials, have
recently been harnessed at the structural scale to enable new modes of functionality. Here, we combine
experimental, numerical and theoretical tools to investigate the domain walls emerging upon uniaxial
compression in a mechanical metamaterial based on the rotating-squares mechanism. We first show that
these interfaces can be generated and controlled by carefully arranging a few phase-inducing defects. We
establish an analytical model to capture the evolution of the domain walls as a function of the applied
deformation. We then employ this model as a guideline to realize interfaces of complex shape. Finally,
we show that the engineered domain walls modify the global response of the metamaterial and can be
effectively exploited to tune its stiffness as well as to guide the propagation of elastic waves.
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The coexistence of two or more phases plays a central role in many ordered solid-state materials, including
ferroelectrics [T}, 2, [3], ferromagnets [4l [5], ferroelastics [0l [7], shape memory alloys [7, [§] and liquid crystals
[9). Despite being intrinsically different, these materials all share the emergence of domain walls - a type of
topological defect that separates regions of different phases [10]. Such interfaces are crucial for the control
of many material properties, including coercivity, resistance and/or fatigue [I1] and have also been exploited
to enable logic operations [12], racetrack memory [I3] and line scanners for reading optical memories [14].
Inspired by the recent advancements in domain walls control strategies at the atomistic scale, a variety of
non-linear mechanical structures have been designed to support these interfaces [15, [16] ', 18] 19 20, 2T,
22, 23, 24, 25]. Domain walls engineered at the structural scale have facilitated the control of elastic pulses
[16, 17, 19, 25], the encryption of information [23] and the realization of deployable structures [20] as well
as of phase transforming metamaterials [I5] [I8]. However, due to the structural complexity of mechanical
metamaterials, no analytical solution has been proposed that fully describes the physics of such domain
walls. This limits their systematic application in the design of smart structures and devices and hinders the
discovery of new functionalities.

Here, we use a combination of experiments and analyses to study the domain walls emerging in a mechan-
ical metamaterial based on the rotating-squares mechanism. We start by introducing defects into the system



to locally impose nucleation of one of the two supported buckling-induced rotated phases upon compression.
Importantly, when such defects lead to the coexistence of two phases within the specimen, domain walls form,
across which the angle of individual squares switch from one direction of rotation to the other. We establish
an analytical model that fully describes the emerging domain walls, including their profile and position as
a function of the applied deformation. Guided by our model, we then introduce pinning defects to reshape
the energy landscape of the system and, therefore, engineer domain walls along arbitrary complex paths.
Based on our findings we foresee the exploitation of domain walls in the realm of mechanical metamaterials
to realize novel functionalities, as we hereby demonstrate by achieving stiffness tuning and reconfigurable
elastic wave guiding.

Flexible mechanical metamaterial based on the rotating-squares
mechanism

We consider an elastomeric structure of thickness ¢ = 3 mm comprising an array of 21 x 21 squares with
center-to-center distance a = 10 mm, connected at their vertices by ligaments with width and length of 1
mm (Fig. and (SI Appendix, section 1 for fabrication details)). In all our tests we uniaxially compress the
structure by applying a vertical displacement Agage to the top edge (which results in a nominal longitudinal
strain sggphed = Agtage/(21a)), while using a transparent acrylic plate to prevent its out-of-plane deformation.
The deformation of the sample is captured with a camera (SONY, RX100), and the position and rotation
of the squares are tracked via image processing conducted in Matlab (SI Appendix, section 2 for testing
details).Under the applied compression, one of the beam-like ligaments in the sample buckles first, because
of immeasurable small imperfections introduced during fabrication. This provides a unique nucleation site
that leads to the formation of a uniform buckling pattern in which all squares alternately rotate in clockwise
and counterclockwise directions (Fig. and Movie S1). Note that to facilitate the analysis, we define the
positive direction of rotation alternately for neighboring squares. Specifically, we choose the square at the
bottom-left corner to be unit [1,1] and define a counter clockwise rotation of the [i, j]!" square (i.e. the
square located on the " row and j** column) positive if i + j is an even number and negative if i + j is
odd (Fig. ) Using these definitions, we find that in our sample, buckling induces a negative rotation of
all squares. On the other hand, if the ligament that acts as a nucleation site had buckled in the opposite
direction, all units would have experienced a positive rotation.

The non-linear behavior of our system can be captured using a discrete model comprising rigid squares
connected at their vertices by a combination of springs (Fig. ) [26, 27, 28], 29, [30]. Three degrees of freedom
are assigned to the [4, j]-th rigid square: (i) the displacement in z direction, ul*/l; (ii) the displacement in y
direction, v[*7!; and (ii) the rotation around the z-axis, Al"J]. As for the ligaments, their longitudinal and
shearing response is captured by linear springs with stiffness k; and ks respectively, whereas their bending
behavior is modeled by using a non-linear hardening rotational spring with linear and cubic terms that
exert a torque M = k(A0 + vAH?), where Af is the relative rotation between the connected squares, kg
is the bending stiffness and ~ is a dimensionless parameter (SI Appendix, section 3.1). Note that for the
structure considered in this study & = 1080 N/m, ks, = 239 N/m, ky = 1.62 x 10~* N-m and v = 0.5 (SI
Appendix, section 3.5). and that, to facilitate the analysis, we assume that the longitudinal and shearing
springs are always parallel either to  or y axis (an assumption which is valid only for small global rotations
of the system). When adopting such discrete model, the response of a structure comprising N, x N, units
can be obtained by numerically solving the 3V, IV, coupled non-linear equations derived by imposing force
equilibrium at each square. Further, a deeper insight can be achieved by deriving analytical solutions. To
this end, we assume small rotation of the squares and take the continuum limit of the discrete equilibrium
equations to obtain (SI Appendix, section 4)

k1Dt + kgt + k109,0 = 0, (1a)
k‘layyv + ksOrzv + k:leayﬁ =0, (1b)

— a?(ksa® — 4kg) V20 + 32kg0 + 4 (kia® + 32vky) 6°

) (1c)
+ 4k;a*(0 — 6°/6) (9pu + 9,v) = 0,
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Figure 1: (A) The system consists of a network of 21x21 square domains connected by thin ligaments. The
positive direction of rotation alternates for neighboring squares: a counter clockwise rotation of the [i, 5]
square (the square located on the i** row and j** column) is defined positive if 4 4 j is an even number
and negative if i + j is odd. (B) Deformation of the sample when subjected to Eggphcd = —4%. The color
indicates the rotation of the squares. (C) We model the system as an array of rigid squares connected at
their vertices by elastic springs. (D) Evolution of 6 as a function of €¥} as predicted by Eq. (solid lines)
and measured in our experiment (markers).

where 0, f = 0f/0a, V? = O,y + Oyy, and u, v and 6 are three continuum functions that interpolate the
discrete variables ul®7!, vl and Alid] as,

u(r=ajy=ai) =yl
v(r=ajy=ai)=v", (2)
0(x=ajy=ai)= gli-al,

The uniaxial compression loading considered in our experiments is then modeled by imposing

v(y = aNy) —v(y=a)= a(Ny - 1)€ggp1ied’ (3)

and
Opu +60%/2 =0, (4)

where Eq. @ is obtained by requiring the longitudinal forces in all horizontal ligaments to vanish (since
the vertical edges of the structure are traction-free).
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Figure 2: (A) Deformation at 7} ;.4 = —4% of a sample with 8 phase-inducing defects arranged to induce
. . vy _ Yy - _ i
nucleation of phase+. (B)-(C) Deformation at (B) &7/ ;.q = —4% and (C) ;] j;.q = —6% of a sample with

8 phase-inducing defects arranged to induce nucleation of phase+ near to the bottom boundary and phase-
near the top one. Experimental and numerical snapshots are shown on top and bottom, respectively. The
color corresponds to the rotation of the squares. Zoom-ins of the defects are also shown. (D) Comparison
between analytically predicted (solid lines) and experimentally extracted (circular markers) evolution of
the squares’ rotation 6 across the sample for different values of applied strain. (E) Analytically predicted
evolution of the total energy of the structure as a function of domain wall position yq for different values of
applied strain. (F) Evolution of the domain wall position yy as a function of the applied strain sggplied as
predicted by theory (continuous line), numerical simulations (dashed line) and extracted from experiments

(markers). (G) Evolution of the energy barrier AE as a function of applied strain e} ;-

For the case of an homogeneous deformation (as that shown in Fig. [B), both the rotation of the squares

and the longitudinal strain in y-direction are spatially constant (i.e. § = 5 and 9,v = ¥/, where 0, and €%/

are the constant rotation and longitudinal strain). It follows that, when substituting Eq. @ into Egs. (1)),
Eqgs. and vanish, whereas Eq. becomes

24y + 1)e¥y
(1- ETE g e - emyo =0, o)
where e¥¥ = —8kg/kja®. Further, Eq. reduces to eyf = el 4. Eq. can be solved to obtain the
rotation of the squares, 65, as a function of the strain £¥} as
0, el > ey
3 — (24y + 1)ely’ st~ er

Eq. @ defines the pitchfork-shape bifurcation diagram shown in Fig. . At €YY the initially stable solution
(85t = 0) bifurcates into two new stable branches that correspond to positive and negative rotation of the
squares and, therefore, to the two buckling-induced phases supported by the system (which we refer to as
phase+ and phase-). Note that the evolution of the average rotation of the squares as a function of Eggphed
extracted from the experiments (circular markers in Fig. ) nicely follows the phase- branch, confirming
the validity of our model.



Phase-inducing defects and domain walls

While in our sample the emerging buckling-induced phase is determined by unavoidable small imperfections
introduced during fabrication, one can impose a prescribed phase by placing stiff plastic plates with length
lg = 1.2a into selected holes to act as phase-inducing defects (Figs. and Fig. S2). Such plates fully
determine the buckling direction of the ligaments to which they are connected and, therefore, depending
on their position and orientation, can induce the formation of either phase+ or phase-. To demonstrate
our approach, we evenly distribute eight of such defects in the holes next to the horizontal boundaries. We
find that when the eight defects are located and oriented as shown in Fig. (see Fig. S3 for details), they
overcome the imperfections introduced during fabrication and make phase+ appear upon buckling (Fig.
and Movie S2). Further, by simply rotating the defects next to the top boundary by 90 degrees (Fig. S3),
we can get phase- to propagate from the top boundary and phase+ from the bottom one (Fig. ) This
leads to the coexistence of two phases within the specimen and to the formation of a horizontal domain wall
in which the angles of individual squares switch from positive to negative values. For Eggphed = —4% such a
domain wall is located near the center of the specimen. However, when the applied compression is increased
to e liea = —6%, it shifts towards the bottom (Fig. [2C and Movie S2).

To ensure that the phenomena observed in the experiments are not artifacts introduced by friction or
unavoidable imperfections, we next conduct discrete simulations in which we model the phase-inducing
defects as stiff springs with stiffness kg > k; and length at rest Iy (SI Appendix, section 3.2). We find a
very good agreement between the numerical and experimental results (Figs. —C), with the simulations
capturing both the deformation-induced shifting and thinning of the domain walls (Movie S2 and Figs. S12-
18 for simulation results conducted on larger 51 x 51 structures).Having confirmed that our experimental
observations emerge because of the bulk properties of the medium (rather than friction or geometrical
imperfections), we then seek analytical solutions to describe both the profile and position of the emerging
domain walls. To this end, since both our experiments and discrete simulations indicate that gradient of
deformation along the domain wall are negligible (Figs. and C), we assume that 9,(-) = 0 (SI Appendix,
section 4.1). It follows that Egs. and reduce to

dyyv+0d,0 =0, (7a)
—a®(ksa® — 4kg)dy,0 + 32ke0 + 2 (kia® + 64vkg) 6° )
+ 4k;a*(0 — 0°/6)d,v = 0,
Next, we integrate Eq. to obtain
dyv=—0%/2+C, (8)

where C' is an integration constant that can be determined by assuming homogeneous deformation inside
each phase (i.e. far away from domain wall). Specifically, by imposing

ayv‘phase:i: - 823, e‘phasezl: - iQSh (9)

and using Eq. to connect £¥/ and 65, C' is determined as

24 1)6?
C=cw [1 + (%g)t] . (10)
Finally, by substituting Egs. and into Eq. we obtain
16kg (1 424
dyyl = —o? ( V) 90— 0.)(60 + 20). (11)

3a? (ksa? — 4kyp)

Eq. has the form of the Klein-Gordon Equation with quadratic and cubic nonlinearities and has been
shown to admit analytical solutions of the form [3T], 32] 24],

6 =6, tanh 2% (12)
w



where yo denotes the position of domain wall and

a [3(ksa? — 4ky)
U0\ Ske (11 249)° (13)

indicates its characteristic width. Having determined 6, the solution for the displacement field u(x,y) and
v(z,y) is then calculated by integrating Eqgs. (4) and (8) and 6y is determined as a function of e}’ ;.4 by
imposing Eq. (note that because of the existence of the domain wall ¥}  ¢¥¥ . . (SI Appendix, section
4.1). At this point, it is worth noticing that by multiplying both sides of Eq. by dy0 and integrating
with respect to y, its effective Lagrangian (from which Eq. can be retrieved by imposing d,L = 0) is
obtained as

N LI LA
L=3(dy0)° - — [2% 9}. (14)

Remarkably, Eq. is identical to the Lagrangian of the ¢* mode — a well-known model established to
describe second order phase transitions and domain walls in solid state materials [33]. Next, we verify the
validity of our analytical solution by comparing the evolution of the squares’ rotation across the sample as
recorded in our tests and predicted by Eq. (Fig.[2D). When choosing yo to best match the experimentally
observed location of the domain wall (magenta lines in Fig. ), we find an excellent agreement between
analytical and experimental results, with the analytical solution nicely capturing the deformation-induced
thinning of the domain wall. However, it is important to note that yy can also be calculated by minimizing
the total energy of the system, Eiota (SI Appendix, sections 3.3 and 4.2). As shown in Figs. , we
find that initially (i.e. for e} .y > —2.3%) Eiotal is a convex function with a minimum located at the
center of the specimen (i.e., at yo = 11a). However, as the applied compression is increased, it gradually
turns into a multi-welled landscape with a local maximum at the center and two minima that progressively
move towards the horizontal boundaries. Therefore, since the structure always seeks to minimize its total
energy, our model indicates that for Eggphed < —2.3% the domain wall tends to shift towards one of the
horizontal boundaries (see solid line in Fig. ) While such shifting of the domain wall is present in both
our experiments and simulations, it is found to start for larger values of applied deformation in simulations
(see markers and dashed line in Fig. ) Such discrepancy is attributed to the small energy barrier AFE
for moderate levels of applied strain (Fig. ), which makes the shifting very sensitive to imperfections and
friction. However, despite this discrepancy, the results of Fig. 2] indicate that our analytical model captures
all the experimentally observed salient features of the emerging domain walls.

Pinning defects and stable domain walls

As shown in Fig. [2] by carefully arranging a few phase-inducing defects in the metamaterial we can induce
the formation of a domain wall, whose location varies as a function of the applied deformation. In order to
program the position of the domain wall, one can prevent the rotation of selected squares by introducing
pinning defects consisting of square shaped rigid plates (with size 0.95a x 0.95a) placed into neighboring
holes (Fig. S2). In Figs. we present results for a sample with four pinning defects equally spaced along a
horizontal line (see Fig. S4 for details), in addition to the previous eight phase-inducing defects arranged as
in Figs. and C. We find that in this case the location of the domain wall is fully determined by the square
defects that act as pinning sites (see Fig. for €7} iea = —6% and Movie S3).This is due to the pinning
defects that modify the total energy of the system and make it convex for any value of applied deformation,
with a clear minimum at the defects’ locations (Fig. and Fig. S19-S20 for additional results). Moreover,
we find that the density of the pinning defects plays an important role. For example, it is possible to create a
wavy domain wall by increasing the spatial separation between defects. In Fig. and Movie S3, we show a
60x21 sample (larger width to minimize boundary effects) with pinning defects separated by 10 holes instead
of 5. The competition between the pinning sites and the tendency of the domain wall to shift towards the
boundary to minimize the total energy, both cooperate in the formation of an undulating phase separation
(see Figs. S21-S23 for additional results). Finally, while in Fig. [3| we considered pinning defects positioned
on the central line, the location of the domain wall can be programmed at any location in the sample (see
Fig. S19 for additional results).
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Figure 3: (A) Deformation at sggplied = —6% of a sample with 4 pinning defects and 8 phase-inducing

defects arranged as in Figs. and C. Experimental and numerical snapshots are shown on left and right,
respectively. The color corresponds to the rotation of the squares. A zoom-in of a pinning defect is also
shown. (B) Analytically predicted evolution of the total energy of the structure as a function of domain wall
position yq for different values of applied strain. (C) Numerically predicted deformation at sggplied = —6% of
structures comprising 21 x 60 squares with pinning defect separated by 10 holes. The domain wall becomes

wavy for large enough values of applied compression.

Domain walls with arbitrary orientations

The domain wall’s orientation can be easily varied by arranging the defects along lines that form an angle
a4 with the horizontal axis. In Fig. @A we show samples with 8 phase-inducing defects linearly arranged
and angled at ¢4 = arctan(1/2) and /4 to induce opposite phases across the joining line (see Fig. S3for
details on the arrangement of the defects). We find that at 5ng1ied = —4% not only are the emerging domain
walls shifted from the center of the region defined by the line of defects, but they also have a very different
orientation than that prescribed by the defects (i.e. the domain wall forms an angle ¢ = 21° and 19° with
the horizontal axis for ¢4 = arctan(1/2) and 7 /4, respectively - see also Movie S4). To understand this
behavior, we extend our model to domain walls with ¢ # 0 by introducing the local coordinates (Fig. |7_1|A)

¢ =2xsinp+ycosy, n=2xcosp —ysiny. (15)

When we neglect the variation of deformation along the domain wall (i.e. we assume 0,(-) = 0), we find
that the profile of the domain wall is described by (SI Appendix, section 4.1),

0 = 6, tanh ﬂ, (16)
w



where (y denotes the position along the (-axis of the domain wall and

2 _
we & 3(ksa? — 4kop) . (17)

in2
gst 8k9(1 + 24’7) + ksiﬁ:f:aaj::;r;o:; ©

Using the analytical solution given by Eq. , we then calculate the total energy of the system as a function
of the orientation ¢ and position (y of the domain wall. As shown in Fig. @B, we find that the domain walls
observed in our experiments minimize Fiota (see also Figs. S24-25). However, once again the position and
orientation of the domain walls can be controlled by introducing a few square pinning defects to reshape
the energy landscape of the structure. For example, by placing four pinning defects along a line which runs
parallel to those defined by the phase-inducing defects (Fig. and Movie S4), we can manipulate Fiota) to
assume a single-welled landscape with a minimum at ¢ = ¢4 and (o = 21a/ cos pq (Fig. D). Hence, given
this energy landscape, the domain walls form exactly along the lines defined by the pinning defects (Fig. )
Further, by arranging the pinning defects along complex paths and carefully placing a few phase-inducing
defects to initiate phase+ and phase- at desired locations, information in the form of arbitrary images can

be encoded into the system, which can be revealed upon the application of a large enough compressive load
(Fig. ME and Movie S4).

Applications

Having demonstrated that domain walls can be engineered by arranging few defects in selected locations,
we then explore how these can be harnessed to enhance the static and dynamic behavior of the system. To
begin with, we focus on the effect of the domain walls on the non-linear stress-strain response of the material.
If we assume that near the horizontal boundaries of the structures (i.e. far away from the domain wall) the
deformation is homogeneous (i.e., § = 5 and dv/dy = €%¥), the averaged normal stress in the y-direction
can be analytically obtained by taking the continuum limit of the longitudinal forces acting on the vertical

hinges as (SI Appendix, section 4.3)
k 62
o = = <sg§/ + *”t> : (18)

t 2

In the absence of domain walls (i.e. for the case of homogeneous deformation), e}y = e ;.4 and 0 can be
determined as a function of %Y

appliea USing Eq. . Differently, in the presence of a domain wall 65; and €%¢
are simultaneously determined as a function of eggplied by imposing Eqgs. and . In Fig. we report
the stress-strain curves predicted by Eq. for systems with and without domain walls. We find that
the structures become stiffer when a domain wall arises and the two opposite phases interact. Moreover,
in Fig. we compare the stress-strain curves predicted by our analytical model with those numerically
calculated and the ones measured experimentally in 21 x 21 structures with (i) no defects (green line) and
(i) eight phase-inducing defects arranged as in Figs. [2B and C (magenta line). The good agreement between
all set of data shows that our analytical model has potential to complement numerical tools for the design of
systems with a targeted mechanical response. In its current form the model can only capture the response of
systems with a single domain wall. However, we show in Fig. that this stiffening effect can be amplified
by the interactions of multiple domain walls. Therefore our future work will aim at improving the current
analytical model to predict more complex scenarios with multiple domain walls.

Next, we study the effect of the domain walls on the propagation of small amplitude elastic waves. To this
end, we consider a metamaterial with alternating light (with mass m) and heavy (with mass 3m/2) squares
and numerically calculate its dispersion relations as a function of 6, assuming a state of homogeneous
deformation (Fig. and ST Appendix, section 3.6). We find that for § = 0 (i.e. for unrotated squares) a
complete band gap exists at frequency f = 3293 — 3674 Hz (highlighted as the grey-shaded area in Fig. ),
so that waves within this frequency range are not expected to propagate in the system. However, as the
rotation of the squares is increased, this band gap shifts to a lower frequency range (f = 2652 —2941 Hz - see
Figs.[5|C and D). Importantly, since || ~ 0 within the domain wall and |f| > 0 in the surrounding compressed
medium, such shifting can be harnessed to guide elastic waves along the paths defined by the domain walls.
Our analytical model can be used to predict the width of the propagating channels, wechannel, at a given



frequency f. To demonstrate this, we focus on f = 2800 Hz - a frequency for which waves can propagate
only if —0.25 < 6 < 0.25 (Fig. ) In Fig. we report the evolution of 6 predicted by Eq. along the
y-direction for a 21x21 sample at three different deformation levels 7! . | = 0%, —4% and —8%. The width
of the propagating channels can be easily determined by identifying the region in which —0.25 < 6 < 0.25.
For this specific case we find that wehannet = 21a (entire structure), 8.0a and 5.5a at eggphed =0, -4% and
-8%, respectively. Next, to verify these predictions, we report the eigenmodes associated to the frequency of
f~ 2800 kHz at e} ;.4 =0, -4% and -8% for a system with defects arranged to form a horizontal domain
wall (Fig. and (SI Appendix, section 3.6)). As predicted by our continuum model, we find that, when
the system is undeformed (i.e. for e’ ;.4 = 0%), the vibrations are spread through the entire structure.
Differently, at Englied = —4% and -8% they are confined near the domain wall, in a prescribed region.
Importantly, the width of this region is very close to the one predicted by our analytical model wehannel. As
such, our results indicate that domain walls generated by localized defects can be exploited to tune global
properties of the system such as stiffness and wave guiding and that our analytical model can be leveraged

to guide the design of functional systems.

Conclusions

To summarize, we have shown that in a rotating-squares based mechanical metamaterial domain walls across
which the rotation of the squares varies from positive to negative values can be formed by carefully arranging
a few phase-inducing defects that control the nucleation of the two rotated buckling-induced phases. We
have established an analytical model that explicitly describes the spatial profile of the domain walls for
different orientations and predicts their evolution as a function of the applied deformation. Further, guided
by this model, we have shown that domain walls of arbitrary shapes can be engineered by introducing a few
pinning defects to modify the energy landscape of the structure. Importantly, since the considered defects
can be easily placed and removed (the deformation is purely elastic), our platform can be used to efficiently
explore how the shape and orientation of the emerging domain walls affect the mechanical properties of
the material. Moreover, our study indicates that the metamaterial creates long range interactions between
the local defects, which may generate domain walls and ultimately affect the material’s global mechanical
properties. We envision the exploitation of domain walls in order to encode new modes of functionality in
mechanical systems, including information encryption, stiffness tuning and wave guiding.

Materials and Methods

Details of fabrication are described in SI Appendix, section 1. The protocol for experiments is provided in SI
Appendix, section 2. The discrete model used to investigate the response of the system and additional numerical
results are presented in SI Appendix, section 3. Details of the continuum model is presented in SI Appendix, section
4.
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S1 Fabrication

Our sample is fabricated by laser cutting a natural sheet with a thickness of 3.2 mm (McMaster-
Carr part number: 87145K73). The pattern is designed to comprise 21 square cells in both the
horizontal and vertical directions (Fig. S1(a)). The squares have diagonals of 10mm-length and
are connected by hinges with width and length of 1 mm (Fig. S1(b) and (c)).

Since rubber is notoriously difficult to laser cut, we set up a custom procedure in order
to obtain a clean cut. Firstly the geometry is created with a custom code in MATLAB (The

MathWorks, Inc.), exported as pdf file and passed on to the laser cut rig (PLS6.150D, Universal



Laser Systems). Secondly the distance between the laser head and the rubber sheet is calibrated
as instructed in the machine’s operating manual, in order to assure a sharp focus. The design is
then cut into the rubber sheet, producing a groove of about 1 mm in depth. The parameters used
for the cut are 70% of the laser power and 10% of the maximum translation speed of the rig.
Next, the laser head is lowered of Imm in order to move the focus on the base of the groove.
The same procedure is repeated for a second and a third time, cutting about 1 mm each time

and finally achieving the cut through of the material.
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Figure S1: Snapshots of our sample comprising an array of 21 x 21 squares connected at their vertices
by thin hinges.
As part of this study we introduce two types of defects to guide the deformation of our

samples:

* Phase-inducing defects: to determine the direction of rotation of certain squares we
insert a stiff orange plate (12 mm X 5 mm X 0.76 mm, laser cut from plastic shim,
McMaster-Carr part number: 9513K75) into the adjacent hole (see Fig. S2(a)). By vary-
ing the orientation of this orange plate from horizontal to vertical we can change the

direction of rotation of the neighboring squares. Similarly, the direction of rotation can

2



be switched by translating the plate to one of the neighboring holes (while keeping its
orientation). In Fig. S3 we show how we arrange 8 of such defects within the sample to

generate the deformation fields shown in Figs. 2 and 4 of the main text.

* Pinning defects: to prevent certain units to rotate we insert a blue stiff square (9.5 mm
x 9.5 mm x 3.18 mm, laser cut from a blue acrylic plate, McMaster-Carr part number:
8505K741, see Fig. S2(b)) into the neighboring hole. In Fig. S4 we show how we arrange
4 of such defects within the sample to generate the deformation fields shown in Figs. 3
and 4 of the main text.

(a) phase-inducing (b) pinning defect
defect

'V'V‘ FrvwVvwVvN
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Figure S2: (a) Magnified view of a phase-inducing defect. (b) Magnified view of a pinning defect.
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Figure S3: Distribution of phase-inducing defects within the sample to generate the deformation fields

shown in (a) Fig. 2A of the main text; (b) Fig. 2B-C of the main text; (c) Fig. 4A of the main text
(pa = arctan(1/2)); (d) Fig. 4A of the main text (pq = 7/4).
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Figure S5: Distribution of phase-inducing and pinning defects within the sample to generate the defor-

mation fields shown in (a) Fig. 5B of the main text; (b) Fig. 5C of the main text.



S2 Testing

To test the mechanical response of our sample, we place it on a base plate (black acrylic plate,
3.18 mm thickness, McMaster-Carr part number: 8505K741) and cover them with a transpar-
ent plate (clear acrylic plate, 3.18 mm thickness, McMaster-Carr part number: 8560K239) to
prevent out-of-plane buckling while being able to observe its deformation (see Fig.S6(a) for top
view and (b) for side view). Note that to minimize friction between the sample and the plates,
plastic stickers (Amazon Standard Identification Number (ASIN): BOTMO6NDG4X) are glued

on the sample (see Fig.S6(c)).

plastic stiqlge_rsv

r;-ﬁkg ©  rrr——
force sensor

Figure S6: (a) Top view of the testing setup. (b) Front view of the testing setup. (c) Magnified view of the
sample, with plastic stickers on the center of square cells. (d) Magnified view of the setup highlighting
the cover and base plates used to prevent out-of-plane deformation.

The samples are uniaxially compressed using two acrylic plates (made using McMaster-

Carr part number: 8505K741): an end plate to prevent their motion and a loading plate to



apply the deformation. During the test, the loading plate is inserted in between the cover plate
and base plate to compress the sample (see Fig.S6(d) for a zoomed-in view). The loading
plate is connected to a translation stage (LTS300 - Thorlabs) and a force sensor (1 Ib Load
Cell, LSB200 Miniature S-Beam Load Cell, FUTEK Advanced Sensor Technology, Inc.) is
assembled between them to monitor the reaction force from the sample during the test. Note
that lubricant is applied to both the end and loading plates so that the squares on the boundaries
of the samples can slide along the plates.

The uniaxial compression tests are captured with a camera (SONY, RX100) recording at 30
fps and with a resolution of 1920x 1080 pixels and the deformation is tracked via image digital
processing conducted in MATLAB. Specifically, the deformation is tracked using the following

3 steps

 Step 1 Each frame is converted to black-and-white and the holes between the squares are
extracted by setting a threshold on gray scale of the image. Since the sample comprises

21x21 squares, 400 holes are extracted (see Step 1 in Fig. S7).

* Step 2 The boundaries of each hole are fitted with four segments (see Step 2 of Fig. S7
- in the zoom-in we highlight the boundaries of one hole with magenta dashed line and
the four segments with red, purple, yellow and green continuous lines. Note that the blue

dots corresponds to the pixels).

* Step 3 The position and rotation of each square element is calculated from the position
and rotation of the four surrounding segments obtained in Step 2 (see Step 3 of Fig. S7).
Specifically, the position of the square’s center is calculated by the averaged coordinates
of the center points of the four segments and its rotation by averaging the rotation of the

segments. The squares are colored to show their rotation.



Note that the whole process is automatized in Matlab and it typically takes 2 minutes to

process a recorded video.

Step1

Orignal frame

(=)ot 0000000000004¢9¢
1o 1000000000000 40¢o
1o1o00000000000404¢9)
PP YT I 23 06060000000d
PP ITITIITS o
e §20000000000000¢0 ¢
2242424233360 ¢
4 4400000064 ‘o
PRI IR Y
oloteteotedottotololbe
1002000000000 0000¢0¢
slole)otetettotoiole
1200009090000 000000)
)40 0¢00000000¢0)
| 3660606043000 0.0 6004
000060004334 04000004
1202004000000 000002)
IEREsisisesssssststiy
~ieteteteseesctotot
o o o o o o o o
2 8 8 & 8 8 R B8
© 0«N
w,ﬁba 5
QY
3. 6
Y 94
4 64
¢ <
v o 0
£y *>é
5 3
4 4
- D
> o 4

hxwy p

0.4

'Y b o

800

600

400

200

Step3

Step2

Figure S7: Procedure for tracking the deformation of our samples.



S3 Discrete Model

S3.1 Governing equations

Our system consists of square crosses that are connected by thin and flexible hinges (see Fig.
S1). As recently shown in several studies [1, 2, 3, 4, 5], the response of such system can
be accurately captured by modeling it as an array of rigid bodies connected at the vertices
via a combination of longitudinal and rotational springs (see Fig. S8(a) for the schematics).
Specifically, in our discrete model we consider the squares to be rigid and to have three degrees
of freedom: the displacement in the z-direction, u, the displacement in the y-direction, v, and
the rotation around the z-axis, 6 (see Fig. S8(b)). Note that to facilitate the analysis, we define
the positive direction of rotation alternatively for neighboring squares. Focusing on the [i, 5]
square, we define a counter clockwise rotation positive if ¢ + j is an even number and negative
if 2 + 7 1s odd. As for the hinges, we model them using a combination of three springs. Their
longitudinal response is captured by a linear spring with stiffness k;; their shearing is captured
by a linear spring with stiffness & and their bending is captured by a non-linear torsional spring,

which obeys
M = ko(0 + ~6%), (S

where M is the torque exerted by the spring, ky is the rotational stiffness and + is a dimension-
less material parameter. Note that, to facilitate the analysis, we assume that the longitudinal and
shearing springs are always parallel either to the x or y axis (an assumption which is valid only
for small global rotations of the system).

Under the assumptions listed above, the equations of motion for the [i, j]*" square are given



(b) FY L]

longitudinal spring k;

o

shearing spring k;

Flz [i,]

torsional spring kg
Y

Figure S8: Discrete model based on rigid units connected at their vertices by springs. (b) Schematic view
of the [i, 5]*" rigid square unit.

by [4]
ma;Ltzj] _ 24:}7;’ [ivj],
p=1
m(‘??az;[;lﬂ _ zi:Fg 23] (S2)
J8280—t[;]] = 24: Mp[i’j],

] are the

where m and J are the mass and rotational inertia of the squares, F, 131 and F/ g
normalized forces in the x-direction and the y-direction generated at the p-th vertex of the [i,

4] unit by the springs and M,[f’j ) represents the corresponding moment. For the set of springs
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considered in this study Egs. (S2) specializes to

§24li-]

mw — K (u[z‘,j+1] 4ol =1 QU[z‘,j}) + kg (u[i+17j] 4 qlimhal Qu[id])

B0 g (64541) — cos (0171 + (1) 55 [ (601) — s 114)],
nlgé%gﬁ':=kz(vﬁ+lﬁ]+—v“14]—-2UHJU + kg (] 4 b= gyl

o (1717) — o 1190) —(<1)7%9 52 [ (1) — s g1,
ﬁzii’ﬂ = —ky (019 4 gli=1a] . glia 1]y glid =1l y ggli])

kg ((9[i+1,j] + 0[1‘,]’])3 + (Q[i—l,j] + g[i,j})?, + (9[i,j+1] + 9[2‘73‘])3 + (Q[i,j—ﬂ + g[z‘,j})S)

_lea? sin H[i’j](8 — o8 A1 — cog Q1] — cog 91T — cog A1 — 4 cos H[i’j])

_leCR sin 0] (I H1l B =1 g i+ LIl g li= 1l

+ks4a2 cos Olid] (sin Qi+ gin glEd=1 4 gin @+19] 4 gin -9 — 4gin g[ivj])

(S3)

For a structure comprising N, rows and N, columns of squares Eqs. (S3) result in a system
of 3N, x N, coupled differential equations, which we numerically solve using the 4th order
Runge-Kutta method (via the Matlab function ode45). In all our simulations we bind the vertical
displacement of the bottom row of squares to zero (i.e. we set v['7] = 0) and apply a homoge-
neous displacement Ay, in the vertical direction onto the top row (i.e. we set pINvd) = Astage)-
Further, to eliminate rigid body motion, we also set the horizontal displacement of the center
unit in the bottom row to be zero (i.e., ulberV=/2)] — (). Note that to minimize dynamic effects
the displacement is applied very slowly (i.e. at a velocity three order of magnitude smaller than

that of linear waves travelling through the system).
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S3.2 Defects

To model the defects introduced in our samples, we use very stiff linear springs with stiffness
kq = 10k;. Each phase-inducing defect is modelled using one spring with initial length Iy =
1.2a (since the orange plates used in our experiments have a length of 1.2a) that connects
the opposite vertices of the hole (see Fig. S9(a)). Each pinning defect is modelled using two
springs with initial length /; = a that connect two sets of opposite vertices of the hole (see
Fig. S9(b)). Since the defects are not glued to the sample, we assume that the springs only

support compression loads

kd (ld - lver) ) lf ld > lver
F defect — (84)
0, if ld < lver
where [, denotes the distance in the deformed configurations between the two vertices to which

the spring is attached.

@) (b)

Figure S9: (a) A phase-inducing defect is modelled using one spring. (b) A pinning defect is modelled
using two springs.
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S3.3 Total energy of the structure

Given a deformed configuration defined by u[*7!, v/ and 6[*J!, he total energy of the structure,

FEioia1, can be calculated as

gt (9], 01, 001) = ko [( [ gli-d) 4 glid+1)2 | %(Q[mﬂ | glig+] )4]

@
Il

—
<.
I

—

.Mg
M7
—
DO =

+ %]{S [v[i,jﬂ] _ v[i,j] _ g (Sine[i’jﬂ] + Sine[i7j])]2
1 [,5+1] [ig] 4 & [i,j+1] NG
+§7€z [U —ut ~|—§(2—0059’J —cos@vf)}

Ny—1 N,

ko [(Q[m] + 9[2+1,J])2 + %(9[%17]] + 9[%1])4]

@
|

—_
<
|

—

\'M
\'M

K, [u[wl,ﬂ _ il g (sin 00+19) 4 sin g[m‘})] ’

+
DN | — l\.’)l»—l

Ky [ [i+1.5] _ g lid] 4 2(2 — cos O] — cos Al J})]Z }

+Edefectsv
(S5)

where Fgrecs denotes the energy associated to all defects placed into the sample. Specifically,
for a structure with ng stiff springs introduced to mimic the experimental defects, Fyefects Can be

written as

Betects = Z Sha(la— )" (S6)

where [*

o denotes the distance in the deformed configuration of the two vertices to which the

spring is attached and depends of the location of the defect.

S3.4 Uniaxial compression of a structure without defects

While in the presence of defects Eqgs. (S3) have to be solved numerically, an analytical solution
can be obtained when a sample without defects is subjected to uniaxial compression in the

vertical direction. For this case
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* (7) the inertia terms can be neglected,

o2ulidl  g2plial 92l d]

=0, Vi, J S7
a2 a2 a2 b 7)
* (72) the deformation is homogeneous,
plFhdl il = ey
. (S8)
00 =04, Vi, j

where €Y/ is the homogeneous strain and 6, is the constant angle by which all squares
rotate (with neighboring units rotating in opposite direction) due to the applied static

deformation.

* (721) the longitudinal forces in all horizontal ligaments vanish (since we have traction free
boundary conditions on the left and right edges)
Ff 6,31 Fy 631 — gy [l 1al gl 4 g (2 — cos 0] — cos 9“““) } =0, Vi, j,
(S9)

When substituting Eqgs. (S7) - (S9) into Egs. (S3), we find that the first two equations vanish

and the third one simplifies to
8kyl: (1 + 479§t) + kja? sin 0y (1 — cos 0y) + kya® sin 0, €% = 0. (S10)

While Eq. (S10) can only be solved numerically to find the relation between the strain €%/
and the resulting rotation of the squares 6, analytical solution can be obtained by assuming

0 < 1, so that sin 6y, ~ 6, — 62,/6 and cos 0 ~ 1 — 62, /2. Under this assumption Eq. (S10)

reduces to
(1- CREE ) 2 - empo—o. s11)
with
e _Ifl_’f;. (S12)
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Eq. (S11) can be solved analytically to obtain the rotation of the squares, , as a function of

the strain £} as

0, o > el
Oy = N —6 (g%} — &%) o (S13)
3 — (24 + 1)e%’ st e

Eq. (S13) indicate that, when loaded starting from the undeformed configuration (i.e. from
e? = 0 and 6, = 0), the squares initially only translate and do not rotate (i.e. 6, = 0).
However, at the critical strain £¥Y the solution bifurcates; the initial branch 0, = 0 becomes
unstable and the squares move to the second branch and start to rotate. Note that a given unit
has equal probability to rotate in clockwise or counter-clockwise direction, but its direction
of rotation determines that of all the other squares (since neighboring units tend to rotate in
opposite directions).

Finally, in an attempt to determine the stress-strain response of the structure, we focus on

the longitudinal forces acting on all vertical ligaments,
F a1 F} i) Ky |01l — glial g (2 — cos 0" — cos 9[”“]) }, Vi, j, (S14)

which in the case of homogeneous deformation (Eq. (S8)) and 6, << 1 (so that cosfy ~

1 — 62,/2) simplify to

ij ivj 02
Fy 0= Fp 9 = ak, <s§f+§), i, (S15)
It follows that the normal stress in y-direction can be obtained as
Y [4, ] k 62
oW 2 M e% + =t (§16)
at t 2

where ¢ = 3.2 mm is the thickness of the sample and 6y, is defined in Eq. (S13).

S3.5 Parameter identification

To make the discrete model parameters relevant to our experimental sample, we need to estimate

the mass of the square units (m), their rotational inertia (.J), the spring stiffness (k;, K and Kjy)
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and the non-linear parameter ~.

Mass m. The mass of each square is m = 0.18 g (it is calculated by multiplying the volume of

the square by the density of the rubber).
Rotational inertia J. It is calculated as J = ma?/12 = 0.0152 g-cm?.

Spring stiffness k;, ky and non-linear parameter y. We focus on the unixial compression
of a sample without defects (see Fig. S10(a) - also shown in manuscript Fig. 1B) and fit the
theoretically predicted force-strain curve (through Egs. (S10) and (??)) to the experimental
measurements. In Fig. S10(b), we show that the experimentally measured stress-strain curve

(triangular markers) can be best fitted by the model (solid line) using
k; = 1080 N/m, kg =1.62 x 107* N -m, and v = 0.5. (S17)

The initial stiffness is governed by k;, the critical strain €% = 0.012 is given by Eq. (S12), and

~y controls the slope of the stress-strain curve in the post-buckling regime.

(a) experiment (b) A experiment — theory (c) bl e
0.3 60 = ‘ « g
= buckling - g
= 50 b - ~
g =40 & 1 bl e
= gb hardening -« -
= 2 20
© 5 ~
B @ initial stiffness
<

0

0 2% 4% -6%
applied
vy

e ——

S ——

)+ :
-0.3 pIS=I=tzi=i=i=i=i= applied strain

Figure S10: (a) A snapshot of the experiments where uniaxial compression leads to homogeneous de-
formation. (b) Matching of the model predicted force-strain relation with the experimental measure-
ments. (c) FEM simulations for the estimation of k.

Spring stiffness k;. To determine the normalized stiffness of the shearing spring, ks, we
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conduct Finite Element simulations using the commercial package Abaqus/Standard. In our
analysis, (z) we consider two half squares with dimensions identical to those of our samples
(see Fig. S10(c)); (#7) we assume plane stress conditions; (i2¢) we mesh the models using
quadratic triangular elements (Abaqus element type: CPS6) and ascertain the accuracy of the
mesh through a mesh refinement study; (2v) we use an incompressible neo-Hookean model with
initial shear modulus ;p = 0.3 MPa to capture the material response; (v) we account for geo-
metric non-linearities. We run two simulations in which we apply an horizontal displacement
0; and a vertical displacement J, to the two vertical boundaries of our model, respectively (see
Fig. S10(c)). The stiffness k; and k; is then obtained from the measured reaction force F; and

F (given by the sum of all reaction forces at the nodes located on one of the two boundaries)

as
F, N F N
EFE = =2 = 620—, kFF=_—2 —137—. S18
! 20, m’ ° 20, m (S18)

Note that this longitudinal stiffness calculated via Finite Element & * is different from the exper-
imental measured one k;. This can be attributed to the fabrication error of the laser cut specimen.
Nerveless, we can assume that the ratio between shear and longitudinal spring stiffness should
conserve, and calculate the shear stiffness our specimen as

/{ZFE
ks *—k; = 239 N/m. (S19)

=~ 7FE
k;

S3.6 Propagation of linear waves

To characterize the propagation of linear waves in the considered metamaterial, we start by
linearizing the discrete equations of motion around a deformed equilibrium configuration de-

scribed by u[;;j], vLi’j], and QL?j] (withi = 1,..., N, and j = 1,...,N,;). We then consider
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perturbations ulh? }, v and 65! of the displacement and rotation of the [¢, j]-th square,

UE)JJ — yltdl — U[sit’j]
Ug’ﬂ — plidl — vi’ﬂ (S20)
91[};,]‘] — glidl _ QZJ]
which take the metamaterial to a new equilibrium configuration where Eqs. (S3) are still sat-
isfied. By substituting Eqgs.(S20) into Eqs.(S3) and linearizing them with respect to wli! lil

and 017 ], we find that the incremental equations of motion can be written in matrix form as

d2
M— (&) = K®,, S21
(@) s21)
where
B, = [ull], ol QI 121 (2 g2l NN NN NN\ T (g0
M is the mass matrix
M = diag [m,m, J,m,m, J,....,m,m, J| (S23)

and K is the stiffness matrix of the system that can be determined by numerically differentiating

the total energy of the structure (Eq.(S5)) as

82 Etotal ((I)st)
K= 2175t S24
0., 0d,, (524)
with
T
= [uly !, ol 0L Wl ol oL e e gl (s2)

Note that ®, and ®; are vectors with 3N, N, entries and K and M are a (3N, N,) x (3N, N,)

matrices.
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Natural frequencies and eigenmodes. To determine the natural frequencies of the system

we seek a solution of Egs. (S21) in the form of
&, = b, (S26)

where » = y/—1, w is the cyclic frequency of harmonic motion and ®,, is a vector that defines

the amplitude of the eigenmodes. Substitution of Eq. (S26) into Eq. (S21) yields
(K + w’M) @,, = 0. (S27)

Eq. (S27) defines an eigenvalue problem that we solve to numerically determine the 3N, N,

natural frequencies of the predeformed metamaterial and associated eigenmodes.

Dispersion relation. To calculate the band structure of the predeformed metamaterial with
alternating light (with mass m) and heavy (with mass 3m/2) squares (reported in Fig. 5C of
the main text) we focus on a unit cell that comprises four squares and is defined by the two
lattice vectors a; and a, (see Fig. S11). We then consider a supercell comprising 5 unit cells

(see Fig. S11) and seek a solution of Eqgs. (S21) in the form of a harmonic wave,
Ba(f) = $,, e (AT I-w1) (S28)

where /i is the two-dimensional wave vector, Tl (t) is a vector containing the 12 degree of

freedom of the [p, ¢]-th unit cell and
rlPd — pa; + qas (529)
with p, ¢ = —1,0 and 1. Substitution of Egs. (S28) into Eq. (S21) yields

~w'M®, + > KPP, et _ g (S30)

p,q=—1,0,1
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supercell

Qe
Voo d) <
LA

Figure S11: Supercell used to calculate the dispersion relation.

where M and K% are the mass matrix and stiffness matrix of the [p, g]-th unit cell. Eq. (S30)

can be further rewritten as

[—wQM n K(ﬁ)} &, =0, (S31)
where
K(g)= > Kbpdem? (S32)
p,q=—1,0,1

depends on wave vector fi. Eq. (S31) defines an eigenvalue problem that can be solved to obtain
frequency w as a function of wave vector fi. Eq. (S31) yields 12 dispersion branches each

corresponding to a linear wave mode that are shown in manuscript Fig. 5C.
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S3.7 Additional numerical results
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Figure S12: Numerically predicted deformation at applied strain eggplied = —2%, —4% and —8% of

structures comprising 21 x 21 squares (top) and 51 x 51 squares (bottom) in the absence of intentional
defects.
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Figure S13: Numerically predicted deformation at applied strain eggplied = —2%, —4% and —8% of
structures comprising 21 x 21 squares (top) and 51 x 51 squares (bottom) with phase-inducing defects

linearly arranged and angled at ¢4 = 0 to get phase- to propagate from the top boundary and phase+
from the bottom one.
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Figure S14: Numerically predicted deformation at applied strain 6ggphed = —2%, —4% and —8% of

structures comprising 21 x 21 squares (top) and 51 x 51 squares (bottom) with phase-inducing defects
linearly arranged and angled at o4 = arctan(1/2) to get phase- to propagate from the top-right corner
and phase+ from the bottom-left one.
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Figure S15: Numerically predicted deformation at applied strain 5aygplied = —2%, —4% and —8% of

structures comprising 21 x 21 squares (top) and 51 x 51 squares (bottom) with phase-inducing defects
linearly arranged and angled at ¢4 = 7/4 to get phase- to propagate from the top-right corner and
phase+ from the bottom-left one.
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Figure S16: Numerically predicted deformation at applied strain 5ggphed = —2%, —4% and —8% of

structures comprising 21 x 21 squares (top) and 51 x 51 squares (bottom) with pinning defects equally
spaced along a horizontal line spanning their center, in addition to the previous phase-inducing defects
arranged as in Fig. S13.
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Figure S19: Numerically predicted deformation at applied strain sggphed = —6% of structures comprising

21 x 21 squares and pinning defects equally spaced along horizontal lines located near the top (left) and
bottom (right), in addition to the previous phase-inducing defects arranged as in Fig. 2B of the main text.
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defects arranged as in Fig. 2A of the main text. Since the phase-inducing defects induce the formation
of a single phase, no domain wall is generated (i.e. pinning defects along can not lead to the formation

of domain walls).

25



—— — I S T— 20a 1
5 i *4=4=)- il 3 5 — Egzpued =-2%
3 $383%: S15a — e = —a%
g DTy
s 3anse auds e S SI oS 7z 104
~ 5
o - Eggpued =—6% |
- 0 20a 40a 60a
z-axis
— — — — 20a
38383 S 154
bo | =}
5 a sy £ 10 JA\
+
5% 7 a VA
:,g .y
&3
0 20a 40a 60a
r-axis
-0.3 EE— . 0.3
angle 0071 [rad]
. . . . . v ..
Figure S21: (a) Numerically predicted deformation at €applied = —6% of structures comprising 21 x 60

squares with pinning defect separated by 5 (top) and 13 (bottom) holes (in addition to phase-inducing de-
fects arranged to generate an horizontal domain wall). (b) Corresponding domain wall profiles extracted

at ey g = —2%, —4% and —6%.
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Figure S22: Numerically predicted deformation at eggphed = —4% (top) and -10% (bottom) of structures
compromising 21 x 60 squares with (a) only one pinning defect and (b) two pinning defects at the center

(in addition to phase-inducing defects arranged to generate an horizontal domain wall).
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Figure S24: Numerically predicted deformation at sggplied = —6% (left) and -10% (right) of structures

compromising 21 x 21 squares with (a) only one pinning defect and (b) two pinning defects (in addition
to phase-inducing defects arranged to generate an horizontal domain wall). Similar wavy pattern are
observed for the emerged domain walls as in the wide 21 x 60 squares sample (see Fig. S21).

28



S4 Continuum Model

As shown in Section S3.4, in the absence of defects the applied uniaxial loading results in
an homogenous state of deformation that can be easily described analytically. By contrast, our
experiments and discrete simulations indicate that the introduction of defects may lead to highly
inhomogenous deformation fields and the formation of distinct domain walls. Here, we simplify
the discrete equations of motions to obtain analytical solutions for a system in which the defects
generate such domain walls.

We start by considering a structure that is uniaxially deformed by applying a compressive
strain 5§gp“ed and has a perfectly straight domain wall at an angle ¢ with respect to the horizontal
axis and seek for an analytical solution that describes the spatially inhomogeneous deformation
of the system. Towards this end, we introduce three continuous functions u (x, y), v (z, y) and

0 (z, y) that interpolate the displacements and rotation of the [i, j]'* square as

w(z = ja,y = ia) = ul®, (S33)
v(z = ja,y = ia) = vl (S34)
0 (x=ja,y =ia) = O, (S35)

where = and y are the coordinate along the z- and y-axis, respectively. Assuming that the width

of the domain wall is much larger than the size of the squares, the normalized displacements u

and v and the rotation 0 of the [i, j — 1], [i, j +1)", [i — 1, j]" and [i + 1, j]"* squares can
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then be expressed using Taylor expansion as

u P~ u+ ap Opu + Gmu}
r= ] y 'L

(a 5) %u} m

(@,

Trx

u[z"!‘pﬂ] ~

=J,y=1

=7, y=i

i 9
(ap)?

0
2 aﬂ? T

: 2
ol x4+ ap Oyv + (ap) 6@@}

O8I+l ~ |0 + ap 9,0 +
- v Y= (S36)

r 2
0173l ~ |0+ ap 0,0 + —(ag ) ayye}

cos 009 | cos O + ap O, cosf + 2

Oy COS 9]
r=J,y=1

2
Mﬁyy coS 9]

(ap)?

cos Ali+P] [cos 0+ ap 0,cosl +

T=j,y=1

sin APl {sin 04 apd,sinf + Oy SIN 6]

r=j,y=1i

(ap)?

sin O PI) {sm 0+ ap 0,sinf + ——0,, sin 9}

r=j, y=1
where p € {—1, 1} and 0,f = O0f/Oa. Substitution of Eqs. (S36) into Eq. (S3) yields the

continuum governing equations of the system,

k10ppu + ksOyyu — k10, cos 0 = 0, (S37a)

k10yyv + ksOpev — K10y cos ) = 0, (S37b)
4kpa®V?0 + 32k, (9 + 4793) — kya*cos@V?siné
(837¢)
kia®sin @ [8 — 8cosf — a®V? cos b + 4(d,u + 9yv)]| =0,
where V? = 0,, + 0yy. Note that in Eqgs. (S37) the inertia terms are disregarded as we are

looking for quasi-static solutions. Furthermore, in deriving Egs. (S37) from Egs. (S3) we also
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have neglected all the terms that switch sign between each neighboring unit (i.e., the terms with
coefficient (—1)"™7), as they are intrinsically incompatible with continuous solutions and have
shown to have small influence on the final solutions [4].

The uniaxial compression loading considered in our experiments is then modeled by impos-
ing

v(y=alN,)—v(y=a) :a(Ny_l)gy

Y
applied>

(S38)

and

O,u+1—cosf =0, (S39)

where Eq. (S39) is obtained by requiring the longitudinal forces in all horizontal ligaments to

vanish (by substituting Eqgs. (S36) into Eq. (S9)).
S4.1 Analytical solution

Eqgs. (S37)-(S39) formulate a complete mathematical problem that can be solved to obtain an-
alytical solutions. To this end, we use a third order Taylor polynomial to approximate the

functions sin and cos as

63 62
sin&%@—g, and COSQ%1—5, (540)

Substitution of Eq. (S40) into Eq. (S37) and (S39) yields
k10peu + ksOyyu + k00,0 = 0, (S41a)

klayyv + k:sﬁmv + kléayﬁ = 0, (S41b)
—a®(ksa® — 4kg) V20 + 32kg0 + 4 (ka® + 327vky) 6°

) (S41c)
+ 4kja*(0 — 693) (Dpu + Oyv) = 0,

and

Opu+62/2 =0, (S42)
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respectively. Since Egs. (S41) are a set of coupled nonlinear partial differential equations, to
obtain an analytical solution we want first to reduce them to a single second order differential
equation. As a first step in this direction, we substitute Eq. (S42) into Eqgs. (S41) and find that
Eq. (S41a) vanishes, whereas Eqgs. (S41b) and (S41c¢) simplify to
k:lé?yyv + kOppv + k:lQ@yQ =0, (S43a)
—a®(ksa® — 4kg) V20 + 32kg0 + 2 (k:la2 + 6471{9) 63
03 (S43b)
+ dkya* (0 — E)ayv = 0.

Next, we introduce a local coordinate system, (-7, aligned with the domain wall
(=xsinp+ycosp, and 1 =xcosp —ysiny, (S44)

where ¢ is the angle between the domain wall and the horizontal axis (which is considered pos-
itive when clockwise - see Fig. S25). Since our experiments and discrete simulations indicate
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Figure S25: Schematic of a domain wall with an orientation of ¢ and position (p.

that the variation of deformation along the domain wall are negligible (see Figs. S13-S18), we

further assume that 0, (-) = 0 and write the derivatives with respect of = and y as
O0x(-) =sinpdc(-), and 0,(-) = cospdc(-). (S45)
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Substitution of Eq. (S45) into Egs. (S43) yields

(k; cos® ¢ + k, sin® ©)decv + kycospbde =0, (S46a)
— a®(ksa® — 4kg)dec0 + 32ko0 + 2 (kia® + 64vky) 6°
1. (S46b)

+ 4kla2(9 — 695)d<v =0

which are the governing equations of the system written as a function of ¢. To solve this system

of differential equations we first integrate Eq. (S46a) to obtain

k; cos ¢

0>+ C S47
2(ky cos? ¢ + k, sin® ) M (547)

dC’U:—

where (' is an integration constant that can be determined by assuming homogeneous defor-

mation inside each phase (i.e. far away from domain wall). Specifically, by imposing

ay’U = 8?;%/7 0
phaset

= 104, (548)

phaset

and using Eq. (S11) to connect £¥} and 6, C' is determined as

ky cos 9 8kq 9 62, 4ke02,
C= — 1+4~0%) — ——— — =, S49
ki cos? o+ kysin?p ' ka2 cos @ (1+46,) 2cosp  3kia?cos (549)
By introducing Eq. (S49), Eq. (S47) can be rewritten as
k’l COSs @ 2 2 8]€9 2 QQt 4k902t
dev = 05, —0°)— —— (1 +4v05,) — —— — = —. (S50
¢ k; cos? o + k, sin® go( ot ) kya? cos (1+46) 2cosp  3kja®cosp (550)

We then substitute Eq. (S50) into Eq. (S46b) to obtain

2k kya® sin? o
kqsin® ¢ + k; cos? o

1 4
adef = ——— {4 (— + 327) ko +

koa? — dkg 3 0(0 — 05)(0 + 05). (S51)

Eq. (S51) has the form of a Klein-Gordon Equation with quadratic and cubic non-linearities

and admits analytic solutions in the form of

0 — 0, tanh S0 — g tanh “ERP YOS~ G

w w

(S52)
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where w represents the width of the domain wall and (, denotes the position of the domain wall
(see Fig. S25). Note that to determine w as a function of system parameters we substitute the

solution Eq. (S52) into Eq. (S51) and find that the latter is identically satisfied only if

LA 3(ksa? — 4ko) (S53)
Out \| 8ko(1 + 247) + f Lahelsin e

Finally, the displacement solutions u(z, y) and v(z, ) can be obtained by integrating Egs. (S39)

and (S50), respectively

T x 2
u(ac,y)z/o (cosf — 1) da:’%/o —%da:’

S54
_ wbi [xsing 2 2 (5542)
9 sin w + e2(zsin p+y cos p—Co)/w 4 ] T e2(ycosp—Co)/w +1)/’
o(g) = /C {kl cos 902((3089 — ('302 Ost) 8/{:928t (1+ 4%79;) ~ 1—cos Hst] i
0 k; cos? p + kgsin” kja? cos ¢ sin Oy cos
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Finally, 0, at a given level of applied strain e,,,.4

is determined imposing Eq. (S38) with
v(x,y) given by Eq. (S54b).
In the special case of a structure with an horizontal domain wall (i.e. ¢ = 0) Egs. (S52),

(S53), (S54a) and (S54b) reduce to

0(z,y) = 05 tanh Y= % y07

w
92 —
u(x’ y) — —LI. tanh2 u;
2 w (S55)
1 1
_p2 _
v(z,y) = Ow (e—Qyo/w +1  e2—yo)/w 1 1)

- [gkeest (1+ 4+62)

I- ‘95 )
kja? sin 0, + €08 t] y
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S4.2 Position (;, and orientation ¢ of the domain walls

To predict the position and orientation of the domain walls as a function of the applied
deformation, we use Eq. (S5) to calculate the total energy of the system for a given distribution
of defects with the displacements and rotation of each square (i.e. ul*7, v[*7] and #"7]) defined
by interpolating the analytical solutions given by Egs. (S52) and (S54),
Wl = u(z = j,y = i),
ol = oz = j,y = 1), (S57)
glidl — O(x=j,y=1).

The position ( and orientation ¢ of the domain walls are then obtained by minimizing Fi,.

Examples are reported in Figs. S26, S27 and S28.

(a) (b) - (c)
21 x 21 51 x 51 201 x 201
5 25 , 300 ‘
N 3 _ g o i =10%
= 4 Eapplica = 10% = ZOL Elipticd = 10% J = 200 ‘
< . < N <
53 315 : s
S M ; M |
%2 > 10 : = b
<)) o i o P
& 8 \ L 6% } g 100\ | 6%
&1 & 5 3 3 -
0 ! 0 : 0 '
5a 10a 15a 10a 30a 50a 10a 30a 50a
position yg position yg position yg
. . . . . . . .. yy _
Figure S26: Analytical predicted evolution of Fi, as a function of domain wall position ¥ at Eapplied =

—2%, —4%, —6% and —10% for structures with (a) 21 x 21 squares; (b) 51 x 51 squares and (c) 201 x 201
squares and phase-inducing defects arranges to generate an horizontal domain wall. The results indicate
that, while in small structures Eiq, gradually turns into a multi-welled landscape with two minima that
progressively move towards the horizontal boundaries, in larger structures present Fiy, becomes flat
upon compression. As such, we expect the domain walls in large structures to remain at the center even
upon compression. In another words, the shifting of domain walls observed in our samples is caused by
boundary effects.

35



vy — vy — vy —
(a) Eupplicd =—2% Eapplicd =—4% Eapplicd =—8%

10 | @20 '
5 10 20
5 10
2 5
A, A |
4
0.30 059 1o
0.21 0.50 1.86
1.85
0 10 20 30 0 10 20 30 0 10 20 30
o So ¢
20
10 20
10
’ 5
0.64 200
0.55 213
0.42 I W22
0 10 20 30 0 10 20 30
Co <0

213
212

Epoar [J]
Eouar [J]
Eiouar [J]

©

(b)

pa = arctan(1/2) 40
Ca=11.8

30

L Pd = 20

o
(&) N
o

n

Epcuar [J]
Epotar [J]
Eqa [J]

0

Evu 1]
Ew [J]
Evou W]

0.30
0.29

0 10 20 30
‘o

Figure S27: Analytically predicted evolution of iy, as a function of (y and ¢ at angpned = —2%, —4%
and —8% for structures comprising 21x21 squares and phase-inducing defects arranged as (a) in Fig.
2B-C of the main text; (b) in Fig. 4A of the main text (pq = arctan(1/2)) and (c) in Fig. 4A of the
main text (pg = 7/4). As the applied compression increases, the local minima of F, move away from
the centered line between and shift towards the boundaries. Furthermore, for the cases with ¢4 # 0
the domain walls also change their orientation as Eggphed in increased. These results nicely explain the

experimental results reported in Figs. 4A and 4C.
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Figure S28: Analytically predicted evolution of Fiy at 5ggphed = —2%, —4% and —8% for structures

comprising 21 x21 squares and phase-inducing and pinning defects arranged as (a) in Fig. 3A of the main
text; (b) in Fig. 4C of the main text (¢4 = arctan(1/2)) and (c) in Fig. 4C of the main text (pg = 7/4).
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S4.3 Stress-strain curves

To determine the stress-strain curve of our structures and quantify the effect of the domain
wall on their mechanical response, we take the continuum limit of the longitudinal forces acting

on the vertical ligaments (i.e. we substitute Eqs. (S36) into Eq. (S14))

2
FY = ak (? + %) (S58)
Y

By assuming that inside each phase (i.e., far away from domain wall) the deformation is homo-
geneous, we can make use of Eq. (S48) to simplify Eq. (S58) as

92
FY = ak (ggj;’ + Tt) (S59)

Finally, the normal stress in y direction can be obtained as

FY K 62
vy — 2 M [ yy oy st S60
Note that Eq. (S60) can be used to calculate the stress-strain curve of samples with or without

— W

applicd aNd B¢ can be

a domain wall. While for the case of homogeneous deformation &%/

vy

determined as a function of 7 .., using Eq. (S11), in the presence of a domain wall 0, and £

are simultaneously determined as a function of ;) .., by imposing Eqgs. (S11) and (S38) (with
v given by Eq. (S54b)).

In Fig. S29 we compare the stress-strain curves predicted by Eq. (S60) with those obtained
experimentally and using our discrete model for 21 x21 structures without phase-inducing de-
fects and with phase-inducing defects arranged along two lines that form an angle p; = 0,

arctan(1/2) and 7 /4 with the horizontal axis to generate a domain wall. We find that our

continuum model nicely captures the mechanical response of all these structures.
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Figure S29: Stress-strain curve measured in experiments (markers) and predicted by numerical simula-
tions (dashed lines) and analytical solution (solid lines) for structures with 21 x 21 squares and (a) no

phase-inducing defects; (b-d) phase-inducing and pinning defect arranged along two lines that form an
angle (b) ¢4 = 0, (c) arctan(1/2) and (d) /4 with the horizontal axis to generate a domain wall.
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S4.4 Additional analytical results

(a) manuscript Fig. 4A (without pinning defect)

paq = arctan(1/2) = 0.46 pa =m/4=0.79
=033

S;Eplied — 4%
5a 10a 15a 20a 5a 10a 15a 20a
position ¢ position ¢

(b)  manuscript Fig. 4C (with pinning defect)
pa = arctan(1/2) = 0.46 pa =7/4=0.79
©»=0.79

E;gplied — _4%
5a 10a 15a 20a 5a 10a 15a 20a
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Figure S30: (a)-(b) Comparison between analytically predicted (solid lines) and experimentally extracted

(circular markers) evolution of the squares rotation 6 across the sample at eggplied =—

compression (i.e. for larger 6;).
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structure with defects arranges as in (a) Fig. 4A of the main text and (b) Fig. 4C of the main text. (c)
Contour plot of domain wall width w as a function of ¢ and 6 as predicted by Eq. (S53). As ob-
served in experiments, our analytical solution predicts the domain walls to become thinner for increasing



S5 Description of Supporting Movies

Movie S1: Uniaxial compression of a flexible mechanical metamaterial based on the
rotating-squares mechanism
Deformation of a sample subjected to uniaxial compression in the absence of intentional de-
fects. Under the applied deformation, one of the beam-like ligaments in the sample buckles
first, because of immeasurable small imperfections introduced during fabrication. This pro-
vides a unique nucleation site that leads to the formation of a uniform buckling pattern in which

all squares alternately rotate in clockwise and counterclockwise directions.

Movie S2: Deformation of samples with phase-inducing defects
Deformation of a sample with 8 phase-inducing defects arranged to induce nucleation of phase+.
Deformation of a sample with 8 phase-inducing defects arranged to induce nucleation of phase+

near to the bottom boundary and phase- near the top one that forms a horizontal domain wall.

Movie S3: Deformation of samples with both phase-inducing and pinning defects
Deformation of a sample with 8 phase-inducing defects arranged to induce nucleation of phase+
and phase- and 4 pinning defects located at the center of the sample.

Numerically predicted deformation for structures comprising 21 x 60 squares and with pinning
defects separated by 5 and 10 holes (in addition to phase-inducing defects arranged to induce

nucleation of phase+ and phase-).
Movie S4: Domain walls at different orientations

Deformation of samples with 8 phase-inducing defects arranged along two lines that form an

angle ¢4 = arctan(1/2) and 7/4 with the horizontal axis. Deformation samples with additional
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4 pinning defects arranged along two lines that form an angle ¢4 = arctan(1/2) and 7/4 with

the horizontal axis.
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