Scalar Mixing in Homogeneous Isotropic
Turbulence: a Numerical Study
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The initial stage consists of a short transient that Iasl.s for less
than one turnover time and significantly depends on the
injection condition of the passive scalar. During this stage, the
first and second time derivatives of i, are negative and we
observe that the system progressively "looses memory™ of the
initial concentration distribution.
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In Section Results we have shown the temporal evolution of the
normalised PDF of the passive scalar concentration and pointed
out its link with the value of i : the shape of the PDF exhibits an
exponential-like form as fansl > 1, it abruptly changes shape
fori_ = 1and evolves as a Gaussian-like distribution as i_tends
to zéro. This same behaviour, observed here adopting statistics
over a control fluid volume for each time step, was observed in
wind-tunnel e(pemnenu when nnul\sm; one-point statistics
obtained from time series ata fixed
location downwind a continuous scalar release in a turbulent
honndary laver. as deseribed in 101, Indeed. wind-tunnel
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To explain the evidence shown in the previous Section from a
phenomenological stand poml we can rely on the depiction in
the Figure below, Froposm; the analogy between the present
DNS simulation of an unsteady decaying puff and the wind-
tunnel results of a steady release of a passive scalar in a
turbulent bounded flow.
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ABSTRACT

The prediction of turbulent dispersion is of primary importance in estimating the mixing processes
involved in a variety of events playing a significant role in our daily life. This motivates research on the
characterisation of statistics and the complex temporal evolution of passive scalars in turbulent flows.
A key aspect of these studies is the modelling of the probability density function (PDF) of the passive
scalar concentration and the identification of its link with the mixing properties. In order to investigate
the dynamics of passive scalars, as observed in nature and in laboratory experiments, we perform
direct numerical simulations (DNS) of a passive tracer injected in the stationary phase of
homogeneous isotropic turbulence (HIT) flows, in a setup mimicking the evolution of a fluid volume in
the reference frame of the mean flow. In particular, we show how the gamma distribution proves to be
a suitable model for the PDF of the passive scalar concentration and its temporal evolution in a
turbulent flow throughout the different phases of the mixing process. Notably, gamma distributions
allow for a reliable prediction of the decay of the concentration fluctuations intensity as governed by a
mixing time scale, the latter reflecting the dynamics of small scale turbulence. The results proposed
here show a remarkable agreement agreement between the gamma distribution model predictions at
subsequent times and the statistics based on both DNS and wind tunnel runs.



INTRODUCTION

Turbulent dispersion and mixing of passive scalars arc ubiquitous in nature. As it is well known, the turbulent
character of high Reynolds number flows reflects on the fluetuations of the passive scalar concentration
occurring over a wide range of spatial and temporal scales [ 1, 2].

The statistical characterisation of these fluctuations is essential for the modelling of several
processes occurring in industrial, biological, and environmental flows (see Figure above as examples:
(a) plume generated by a chimney (i.e. an elevated continuous source in a non-isotropic and non-
homogeneous turbulent flow field); (b) volecanic ash and steam in the Sunda Strait released by Anak
Krakatau volcano in Indonesia three months before its eruption in December 2018). To this aim, over
the years this issue has been tackled by several authors considering a large variety of flow
configurations [3-9].

In a number of applications of interest in physics, chemistry, biology, and engineering, a key aspect is
the prediction of the spatial variability of the one-point PDF of the scalar field. Previous
works have shown that, depending on the flow configuration, this can be modelled by different
distributions [3-10], including the Weibull, the lognormal, and the gamma distributions. Notably, the
latter was shown to be a suitable model for both dispersion and mixing in internal flows [3-8] and for
localised releases in the atmosphere [7-g, 11, 12].



DIRECT NUMERICAL SIMULATIONS

The present work aims at further exploring the above features, through the investigation of
concentration statistics and mixing in a framework mimicking the evolution of the passive scalar in a
homogeneous isotropic turbulent fluid. To this purpose we performed DNS of a stationary
turbulent velocity field (with zero mean) where a puff of passive scalar is released and let evolve to
get insights on diffusion and mixing properties as seen in the reference frame moving with the bulk of
such stream flows as those generated in wind tunnels.

The Navier-Stokes equations for an incompressible fluid together with the convection-diffusion
equation for the concentration are integrated by means of the Geophysical High-Order Suite for
Turbulence (GHOST) code (Mininni et al. [13]), a highly parallelised (hybrid MPT-OpenMP) pseudo-
spectral framework with second order explicit Runge-Kutta time stepping. The Navier-Stokes
equations have been integrated on a cubic grid of 5123 points (corresponding to a box whose linear size
in adimensional units is Ly=271), with periodic boundary conditions. A stochastic forcing F was used to
inject energy into the velocity field to achieve and maintain a statistically stationary state. A puff of
passive scalar modelled with a Gaussian concentration peaked in centre of the box is injected at an
arbitrary time in the statistically stationary state of the simulation and is let to diffuse.

The full system of equations implemented is reported here:

V:u=0
6tu+(u-V)u=—Vp+F+%V2u

e +u Ve= PTIRB Vie

u being the velocily field, p the pressure, and ¢ the passive scalar concentration. The DNS governing
paramelers are the Prandll (Pr) and the Reynolds (Re) numbers. The former is sel equal Lo 1, while the
latter is set to 3000.

Note thal the (periodic) boundary conditions induce thatl the concentration averaged over Lhe
domain keeps a constant value throughout the numerical simulation,



RESULTS
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The concentration statistics provided by the DNS results allowed the temporal evolution of the mixing process to
be investigated. We can identify three main stages that are conveniently defined by linking the shape of the
PDFs of the spatial distribution of the concentration to the temporal evolution of the (volume averaged)
concentration fluctuation intensity 1. (defined as the ratio between the standard deviation and the mean value of
the concentration).

In the movie provided the reader can suitably capture the connection between the concentration PDF and i.

The initial stage consists of a short transient that lasts for less than one turnover time and significantly
depends on the injection condition of the passive scalar. During this stage, the first and second time derivatives
of i; are negative and we observe that the system progressively "looses memory" of the initial concentration
distribution.

The first phase starts at the inflection point of i. and now the scalar is progressively transported throughout
the domain. This presents specific features: i) the concentration ficld presents high intermittency, ii) i. is larger
than 1, iii) the concentration PDF is characterised by a large number of zero-values (mostly distributed at the
cdge of the evolving puft), and iv) it approximates an exponential-like shape.

The second phase begins when the domain gets completely filled by the passive scalar and i, =1, and it is
mostly characterised by the diffusion. During this stage the scalar field progressively homogenises and the
concentration PDFs assume a lognormal-like shape.

The increasing scalar homogenisation induces a further transition of the PDFs towards a clipped Gaussian [117.

In order to identify the statistical distribution showing the best agreement with the presented numerical results,
we tested different models for the scalar PDFE. To do this, we therefore computed the PDF of the concentration
for ecach time step. The agreement between the PDFs obtained from the DNS and the analytical model
distributions is estimated here using the Kullback-Leibler divergence.
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As shown in the Figure above, close to t; the lognormal distribution is not appropriate since it is not able to
reproduce the effects of the meandering process in the near-field, as observed to the scalar source in wind-tunnel
experiments. Conversely, it provides accurate estimates of the scalar PDF after the homogenisation process
induced by the relative dispersion. The Weibull 2p distribution performs suitable approximations of the
concentration PDF in the near-field, whereas it fails to model the distribution of the scalar at large turnover
times.

The gamma distribution of cquation

p(x|A, 0) = r(;)a <%)A_l eXp(_%)

. . ~ . . - . ~ . 22
where y is the sample space variable for the concentration, I is the Gamma special function and 2 = (io)~ and 0 =
2, - . -
(o) /<c> are the shape and scale parameters, shows a more accurate overall behaviour providing a good
agreement with the numerical solutions both in the near and in the far fields.

Based on this evidence, we assume that the concentration PDF in the system under study is well approximated
by a gamma distribution,

This assumption implies that the fluctuation intensity is modelled by a negative exponential, whose decay is
governed by a typical mixing time scale:

1) — 10 exp(—%)

The mixing time scale can be estimated from our numerical experiments by locally fitting the above
Equation over short intervals of the DNS values of i, using 1,,, as free parameter.

Note that in the bottom-right panel of the Movic above, the "mixing model" is an established model for the
mixing time scale (the Interaction-by-Exchange-with-the-Mean micromixing model, IEM [10, 15]), while the
"Gamma model" arc the values estimated using this Equation.



Excluding the initial transicnt, this time scale exhibits a smoothly growing trend in the first phase and oscillates
around a constant value in the second phase. Far away from the source, when the scalar length scale has become
larger than the turbulence length scale. 1, presents an asymptotic value exactly equal to the turbulent time scale
Tm — K& (where K is the turbulent kinctic energy and ¢ is its dissipation ratc).

CROSS-VALIDATING THE GAMMA MODEL

In Section "Results" we have shown the temporal evolution of the normalised PDF of the passive scalar
concentration and pointed out its link with the value of i.: the shape of the PDF exhibits an
exponential-like form as far as i¢ > 1, it abruptly changes shape for i, = 1 and evolves as a Gaussian-like
distribution as i, tends to zero. This same behaviour, observed here adopting statistics over a control
fluid volume for each time step, was observed in wind-tunnel experiments when analysing one-point
statistics obtained from concentration time series measured at a fixed location downwind a continuous
scalar release in a turbulent boundary layer, as described in [10]. Indeed, wind-tunnel experiments
have shown that the statistics of the concentration of a continuous scalar plume in a boundary layer
(i.e. a non-isotropic and non-homogeneous velocity field) can be fully described by a gamma
distribution.
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In the Figure above, we show a comparison between the PDF of the presenlt DNS resulls, the one-point
wind-tunnel statistics performed by Nironi et al. [11] and the gamma distribution for same values of i.:
(a) ic=2.25 at t,, (b) i,=1.0 at t,, (¢) i,.=0.53 at t; and (d) i.=0.33 at t,, where t,, ts, t; and t, are the same
instants as in Section "Direct Numerical Simulations”. Here we can appreciate how the DNS solutions
and the wind-tunnel measurements exhibit a similar behaviour and, then, that the gamma
distribution can be assumed a suitable model for both numerical and experimental
PDFs.



ANALOGIES WITH WIND-TUNNEL RESULTS

———- plume axis meandering relative dispersion
——-—--- SOUICE axis space

To explain the evidence shown in the previous Section from a phenomenological stand point we can rely on the
depiction in the Figure above, proposing the analogy between the present DNS simulation of an unsteady
decaying putt and the wind-tunnel results of a steady release of a passive scalar in a turbulent bounded
flow.

A peculiar aspect of the dispersion of localised atmospheric releases is the appearance of a meandering motion

of the plume [14], due to the action of turbulent eddies larger than the plume size. The meandering highly affects
the dispersion process in the near field of the source and is gradually attenuated moving away from it, as the size
of the plume increases, under the action of the relative dispersion (due to smaller scale eddies), and that finally

induces the plume size to exceed the size of the larger scale structure ot the flow,

In the puft, at each time step, every point of the simulation matrix can be considered as a possible realisation of
the plume along the source axis at a given distance from the source, in the equivalent reference wind-tunnel
experiment. We can therefore assume the equivalence between spatial statistics based on DNS and the
single-point measurements conducted in the wind-tunnel. The first instant corresponds to a measurement of
the concentration near the source, while the last one corresponds to a measurement taken in the far field (both on
the source axis) in the case of the wind-tunnel experiment. Thus, taking a specific instant of the DNS, the spatial
statistics of the concentration over the entire simulation box would match the temporal statistics of the signal of
the concentration measured at the corresponding position (always on the source axis) in the wind-tunnel
experiment. In this framework. the near-source meandering region in the experiments, in which one-point
statistics exhibit high intermittency, corresponds to the first phase of the DNS simulation, in which the scalar has
still not filled the domain and the spatial concentration statistics is affected by the presence of zero-values of the
concentration in part of it. Similarly, the far-field relative dispersion region, in which the intermittency in the
one-point statistics is suppressed, corresponds to the second phase of our [INS results, in which the scalar has
filled the box and the mixing acts towards a complete homogenisation of the concentration.

In other words, the DNS results mimic the evolution of the scalar puffs released in the wind tunnel as they
get translated horizontally by the mean flow while undergoing turbulent advection. Invoking the ergodicity
of both numerical and experimental flows, we could therefore compare the spatial statistics computed on the
simulation output with the single-point temporal statistics computed in the wind tunnel.

Unlike the HIT case, when also stratification and/or rotation are present, sporadic extreme events develop in the
vertical component of the velocity and in the temperature affecting mixing and transport properties of turbulent
flows as shown in [16-19]. A comparison between DNS and wind-tunnel measurements of stratified turbulence
will be the subject of a future investigation along the lines of the present work.
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