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Abstract

The paper compares the deterministic and robust optimization approaches to

improve the aerodynamic design of helicopter airfoils. The two formulations

are different due to the characteristics of each approach. In the deterministic

case, the objective of optimization is the minimization of drag while main-

taining a level of lift that guarantees satisfaction of the trimming condition.

In the case of robust design, a range of angles of attack and not a single trim

condition is considered. Thus, the robust optimization takes the lift-to-drag

ratio as a measure of the performance of the airfoil, imposing at the same

time an inequality constraint on the lift coefficient to guarantee a sufficient

level of lift, and then checking after optimization that the trimming condition

can be satisfied. The two approaches are compared showing pros and cons

of the robust framework. In general, the robust approach shows the capabil-

ity to reach the same mean performance of the deterministic one, but with

a lower degradation of performance in other conditions considered through

the uncertainty. On the other hand, the difficulties in imposing the lift trim

condition for the robust formulation may lead to results of limited use.

Keywords: Airfoil design, unsteady aerodynamics, uncertainty

quantification, robust optimization.
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1. Introduction

Forward flight is one of the most peculiar and complex flow conditions for

rotorcraft blades. The flow encountered by the blade is periodically changing

over the azimuth angle and the extremes of this cycle are very different from

each other [1], see Figure 2. On the retreating side, the angle of attack is

typically high, close to stall, and the blade section Mach number is lower,

in the subsonic range or even close to the incompressible limit. For this

reason, aerodynamic design should take into account the variability of the

flow encountered by the blade, as it is highly possible that an improvement

in some conditions may cause a deterioration of performance in others [2].

The unsteady flow encountered on a rotorcraft blade affects the prediction

of both local aerodynamics along each blade section and the overall perfor-

mance. A correct simulation of the complex rotor blade environment requires

considering simultaneous speed and angle of attack fluctuations of the incom-

ing airflow, compressibility effects, three-dimensionality of the flow, accurate

viscous separation modelling and coupling of the aerodynamic loads with the

blade dynamics and aeroelasticity. The accurate prediction of rotor loads

requires the definition of detailed computational fluid dynamics (CFD) and

computational structural dynamics (CSD) models coupled through appropri-

ate procedures [3]. Even with such models the correlation with experiments

is often not so good. In a pivotal work, Bhagwat et al. [4] showed that thanks

to three-dimensional (3-D) CFD/CSD simulations it is possible to improve

the quality of the predicted loads of complex maneuvered flight conditions.

However, highly refined grids are necessary together with computationally

expensive turbulence models, as shown also in Ref. [5].

Several authors employed 3-D models to perform blade geometry opti-

mization in hover. Le Pape and Baumier [6] used the 3-D models to optimize
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the twist, chord, sweep and anhedral distributions, while Sun and Lee [7] also

optimized the airfoil shape in the same flow conditions. Many other authors

used 3-D detailed models to perform the rotor optimization in in hover, and

in few cases in forward flight as well [8–11]. However, the computational

cost is very high, and consequently it is hard to combine the complexity with

the necessity to obtain good performance under a range of operating condi-

tions, including other relevant conditions, as suggested for any aerodynamic

optimization in Ref. [12]. Consequently, many design approaches regarding

aerodynamics of blades have tackled the problem by separating the influence

of these combined effects. In this framework, it still makes sense to start from

the optimization of the blade airfoils at different radii, and then to work on

the optimization of other geometrical elements, like planform, adding an ad-

ditional external optimization loop around the airfoil optimizer [13]. In this

paper the analysis will be limited to the first optimization step, and so limited

at the level of airfoil optimization. There is a consensus on the correlation

between the lift-to-drag L/D ratio of the airfoil and the L/D ratio of the

rotor [14, 15], so this could be taken as performance objective together with

the maximization of lift coefficient at high angle-of-attacks.

However, even in the case of optimization of airfoils, the selection of

operating conditions is not an easy task. In fact, each airfoil during each

rotation is subject to a range of angles of attack and Mach numbers due to

the combination of the rotational velocity with flight speed (see Figure 1).

This is presented in Fig. 2 where the operating conditions of a blade element

are shown for different blade section radial positions. It is clear that both

the local angle of attack α and the freestream Mach number M undergo a

periodic variation over the rotation period.

To take into account the variation of flow conditions over the azimuth
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Figure 1: Schematic of distribution of incident speed on a rotor blade in forward flight.

angle, a fully unsteady optimization may be considered, by inserting unsteady

models in the optimization loop and directly evaluating the cycle of lift,

drag and moment coefficients for each design, as done in [16]. However,

this approach is very expensive from a computational point of view, and

the accurate prediction of time-varying aerodynamic loads of pitching and

plunging airfoils is still a challenge. In most cases, one can resort to a multi-

point approach, where the evaluation of the aerodynamic performance is

obtained by means of steady models computed at different azimuth angles

ψ, see Fig. 1. This is the approach followed in several works on optimization

of airfoils for rotorcraft, see Refs. [17, 18].

This approach could be used to account for the variability of α−M along

the azimuth, but the α−M set changes as the aircraft flies at a different ad-

vance ratio or at a different disk loading. However, the increase of the number

of points that compose the objective function may become difficult to manage
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Figure 2: Operating conditions for blade sections (data from Ref. [1, p.296]).

by the optimization task [18], causing problems in the numerical procedures

and in the methods to analyse the results. A help in this sense could be

achieved by the employment of the robust optimization approach presented

in Ref. [19], that allows to look for an airfoil that is minimally sensitive to

the variation of operative conditions. This approach is the one pursued here.

However, the robust optimization represents a change of paradigm with re-

spect to the deterministic one. Instead of optimizing a single figure of merit

or a collection of figures of merit, the robust approach optimizes a statistical

measure of the figure of merit or a collection of statistical measures, taking

into account the fact that the airfoil will operate in a variable uncertain en-

vironment. This change requires a significant modification in the problem

formulation.

This work extends the application of robust optimization methods based

on the consideration of uncertainties for the optimization of helicopter rotor

airfoils, initially presented in Ref. [19] for hover, to the more complex and
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challenging case of forward flight. In the following sections, the optimization

problem of improving the aerodynamic performance of airfoils is tackled

from both deterministic and robust points of view. The robust approach

has the potential to lead to airfoils that are more suitable for rotorcraft by

taking into account the uncertainty of the operating conditions.

In particular, a two-point optimization problem is set up, considering

the two most representative conditions of forward flight: the retreating and

advancing blade conditions (see Fig. 1). The idea of using two conditions

is aligned with the choice made by other authors dealing with the forward

flight optimization, see [17, 18], and allows a thorough comparison of the two

optimization approaches presented here. While, the employment of a larger

number of blade sections would be conceptually simple, it would only add

computational burden to what is presented here.

The optimization will investigate the blade section of the Bo105 rotor [20,

21] used in the full-scale wind tunnel experiments at NASA Ames. The airfoil

of the blades used in the test was the NACA 23012. Here the airfoil at the

radial station r/R = 0.85 is considered and the operating conditions for

advancing and retreating sides are taken from the corresponding “figure-of-

eight” in the (M,α)–plane from Ref. [1] presented in Fig. 2.

The evaluation of the performance of the optimal shapes over the azimuth

angle is performed in the post-processing phase with steady models. To

motivate the choice of steady models, section 2 discusses the comparison

between unsteady CFD predictions and steady computations.

In the deterministic approach presented in section 3, the objective of the

optimization is to minimize the drag, whilst maintaining a level of lift that

guarantees satisfaction of the trimming condition. In the case of robust de-

sign, a single condition is not considered, and the trimming condition cannot
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be applied to a range of values for the angle of attack. Thus, the idea is

to optimize the lift-to-drag ratio as a measure of performance of the airfoil,

impose an inequality constraint on the lift coefficient to guarantee a sufficient

level of lift, and then check after optimization that the trimming condition

can be satisfied. This approach is used in section 4, and results coming from

deterministic and robust optimization are presented and compared in sec-

tion 5. In both cases only two points over the azimuth angle are considered

in the optimization loop, hence a a posteriori assessment of the performance

is presented in section 6. Finally, conclusions and perspectives are drawn in

section 7.

2. Unsteady vs steady CFD simulations for the evaluation of loads

in forward flight

This section investigates how correct the idea of using steady simulations

is for optimization of blade airfoils in forward flight at different azimuth

angles, considering that the real flow condition is fully unsteady. The in-

vestigation starts with some validation tests, then it presents the simulation

of the unsteady loads acting on the reference airfoils, i.e. the NACA 23012

and the NACA 0012 airfoils, during a combined pitching motion and peri-

odic variation of Mach number, representative of the conditions met by rotor

airfoils during forward flight.

In the literature, only few works have considered a translation along the

freestream direction which is necessary to simulate the speed fluctuation

encountered by the blade section [22]. Among these, Refs. [23, 24] have been

devoted to the experimental investigation of the effects of coupled oscillations

in angle of attack and freestream speed, as it occurs in the real flow around

the rotor blade. These studies have tackled conditions below static stall,
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for an airfoil undergoing a combination of harmonic pitching, plunging, and

fore-aft motion in incompressible flow.

A compressible formulation of the theories presented in Ref. [25] has been

developed and assessed in Ref. [26] against a CFD code based on the Euler

equations. A numerical analysis of dynamic stall caused by pitching motion

and freestream fluctuations has been performed by means of a CFD tool

based on the SST k − ω turbulence model in Ref. [27].

2.1. Unsteady CFD set-up and validation

The simulation is performed using the SU2 software suite [28]. In par-

ticular, the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations

together with the Spalart–Allmaras model [29] are used to simulate the flow-

field around the airfoil. The numerical grid is a C-type, structured mesh

(Fig. 3) with 77792 rectangular cells. The number of airfoil wrap-around

points is 128, while the normal points are 256. The grid extends ± 30 chords

around a unit chord airfoil (Fig. 3b) and the wall y+ is equal to one, since a

wall functions are not used in the simulation. Grid convergence studies are

reported in [30].

The time-varying freestream velocity and angle of attack have the follow-

ing time dependency

V (t) = V∞ (1 + λ sin(ωt)) (1)

α(t) = α0 + ∆α sin(ωt+ ψ) (2)

where V∞ is the mean freestream speed, λ is the percentage of variation in

the freestream speed, ω is the angular velocity of the fluctuations, α0 is the

mean angle of attack, ∆α is the amplitude of the angle of attack oscillation,

and ψ is the phase angle. The freestream velocity direction is not modified

during pitch oscillations.
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(a) C-mesh. (b) Close-up on the airfoil.

Figure 3: Typical mesh used for unsteady RANS CFD computations.

To obtain the sinusoidal variation to the freestream velocity of Eq. (1), a

time-varying translation of the airfoil along the direction of the mean angle

of attack h(t) is performed with the following time dependency

h(t) = −V∞λ
ω

cos(ωt). (3)

The time-varying translation and pitching are implemented with a volumet-

ric rigid displacement applied to each cell of the mesh in each iteration of

physical time. To be consistent with the experimental data, it is necessary

to match the reduced frequency k = ωc/2V∞, where c is the airfoil chord.

The CFD setting is validated against experimental measurements and

other computations. Different test cases are considered for the validation.

Here, the focus is on the experimental data taken from Ref. [23] for the case

of the NACA 0012 airfoil undergoing the speed fluctuation in Eq. (1). The

corresponding operating conditions are reported in Tab. 1. The computations

have been performed considering 100 intervals for each period T = 2π/ω,

and 800 dual-time iteration. The number of steps in dual time are set
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α0 [deg] ∆α [deg] V∞ [m/s] Re M∞ λ k ψ [deg]

6. 0. 25 4·105 0.07 0.114 0.101 0

Table 1: Operating conditions for validation of SU2 model of NACA0012 airfoil with

experimental data from Ref. [23].

to 800 to guarantee that the residuals of the equations are always lower

than 1e−4 for every time step. It is noted that the simulation with time-

varying freestream Mach number requires a streamwise translation of the

airfoil with amplitudes depending on the chosen variation of speed, but also

on the reduced frequency. In some cases, the amplitude of this motion may

exceed 5 chords, therefore it has been found necessary to both reduce the time

step — to apply a small translation at each outer iteration — and increase

the number of dual time steps — to guarantee accuracy. Figure 4 presents the

lift ratio L/Lst between the unsteady lift L and the steady value Lst, i.e. the

value computed when both λ and ∆α are equal to zero in Eqs. (1–2), plotted

against the azimuth angle ψ = ωt. A very good agreement is found between

the CFD result obtained with the SU2 software and the experimental data,

with a maximum error affecting the amplitude of the lift ratio by 6%.

Additionally, the numerical data presented in Ref. [26] for the NACA 0006

airfoil oscillating in pitch only has been compared to the results obtained

with the unsteady CFD set-up presented in the preceding section. In this

case, it was possible to also compare the pitching moment. The resulting

aerodynamic coefficients are presented in Fig. 5.

More extensive details on the validation can be found in Ref. [30] where

results of combined pitch and freestream velocity oscillations can be found

too. As a final remark, it is noted that experimental data for these kinds of

oscillating airfoils are scarce, and that measurements of the unsteady drag
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Figure 5: Lift ratio and moment coefficient for a NACA-0006 harmonically pitching airfoil

with α = 2 + 2 sin(ωt) deg, reduced frequency k = 0.2.
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coefficients are not assessed in the respective literature.

2.2. Comparison of steady and unsteady simulation

The estimate of the lift and drag coefficients obtained with the CFD

set-up are compared to the steady approximation used in the optimization

problem. This comparison is obtained by computing the aerodynamic coeffi-

cients by means of an unsteady RANS simulation presented in the preceding

section and different steady models:

• for the advancing side, an Euler simulation with SU2 is performed,

with the set-up that will be later presented for the optimization prob-

lem (section 3.2). Since the Euler equations are used, a correction

associated with viscous effects is added to the inviscid SU2 estimate

combining the van Driest II method and a form-factor correction as

presented in Ref. [31];

• for the retreating side, the XFOIL solver is adopted

• for the remaining intermediate points, the MSES code is used.

The aerodynamic models used in this optimization problem are different

for each side of the blade in order to capture the specific features of the

flow in such different operating conditions, while limiting the computational

effort.

On the retreating side featuring subsonic conditions below the static stall

boundary, XFOIL is considered appropriate, since it is an aerodynamic code

that couples panel and integral boundary layer methods for the analysis of

subsonic, isolated airfoils [32]. XFOIL provides a fast and sufficiently accu-

rate estimation of the aerodynamic force coefficients for a two-dimensional
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section in the range of angle of attack considered in this problem, know-

ing that the highest value of the angle of attack in the range is below the

static stall limit for most airfoils. The transition of the boundary layer is

predicted by applying the en criterion [33], while compressible effects for low

Mach numbers are taken into account by the Karman-Tsien correction [34].

For the adjustable transition parameter Ncrit the value of 9 gives satisfactory

results for helicopter flows, as shown in Ref. [35].

Instead, for fully developed transonic conditions, such as the one expe-

rienced on the advancing side, a solver based on Euler equation, as SU2,

able to compute the drag rise caused by the appearance of shock wave was

considered sufficient to reach the optimization objective of a shock-free or

minimum shock airfoil. In this case no boundary layer is modelled since the

viscous drag is not considered as part of the objective of the optimization on

the advancing side. The grids used in Euler computations are O-grids, more

simplified than those used for RANS computations shown in Fig. 3. This

allows to minimize the computational cost.

To run the full unsteady simulation it is necessary to identify the law of

variation of the angle of attack, Mach number, and Reynolds number with

the azimuth. This law is based on the varying freestream Mach number

and angle of attack plotted in Fig. 2, and can be described by means of the

following expressions

M(t) = M∞ (1 + λ sin(Ωt))

α(t) = α0 +

nh∑
i=1

∆αi sin(iΩt+ ψi), nh = 4 (4)

where Ω is the blade 1/rev frequency, M∞ is the freestream Mach number,

and λ is the percentage variation of Mach number. The angle of attack is

described by means of a sine series, where α0 is the mean angle of attack,
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∆αi is the angle of attack variation of the i-th term in the series and ψi is

the i-th phase angle. This structure of the variations has been obtained with

a convergence analysis based on a sine Fourier series with increasing number

of terms. Figure 6a shows the reference α −M cycle, while Fig. 6b shows

the variation of the angle of attack and Mach number with azimuth angle.

The values of the variables in Eq. (4) are presented in Tab. 2. They lead to

the following extrema used in the optimization loop: (i) a maximum value

of the angle of attack equal to 12.5 deg at a Mach number of 0.28 and (ii)

a minimum value equal to -1.5 deg at a Mach number equal to 0.75 (see

Tab. 4).

For comparison, steady state solutions were computed at eight equidistant

azimuth stations starting from azimuth 0 (see Figure 1) for the airfoil at
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Figure 6: Time varying Mach number and angle of attack encountered by airfoils (Eq. (4)).
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M∞ λ α0 ∆α1 φ1 ∆α2 φ2 ∆α3 φ3 ∆α4 φ4

[-] [-] [deg] [deg] [deg] [deg] [deg] [deg] [deg] [deg] [deg]

0.515 0.45 5.36 6.84 -173.8 0.67 -86.0 0.28 112.3 0.2 -22.5

Table 2: Parameters used in Eq. (4) to impose the variable angle of attack and Mach

number to the NACA 0012 and NACA 23012 airfoils.

r/R = 0.85.

NACA 0012 NACA 23012

Unsteady Steady Diff. Unsteady Steady Diff.

avg(CL) 0.591 0.588 0.5% 0.756 0.769 1.8%

avg(CD) [counts] 126.61 110.18 12% 121.26 101.51 16%

Table 3: Comparison of average drag coefficient and lift coefficient obtained from steady

and unsteady computations for NACA 0012 and NACA 23012 airfoils.

The results for the NACA 0012 airfoil and NACA 23012 airfoil are pre-

sented in Fig. 7 and Fig. 8, respectively. The average aerodynamic coefficients

over the azimuth angle are presented in Tab. 3. Excellent agreement is ob-

served with regard to the lift coefficient, both in terms of average value and

amplitude oscillations. The differences between the unsteady CFD-based av-

erage and the steady value is less than 1% for the NACA 0012 airfoil and

less than 2% for the NACA 23012 airfoil. In terms of drag coefficient, the

discrepancy between the unsteady results and the steady approximation is

more pronounced. The unsteady wake effects are completely neglected in

the steady approximation and they greatly affect the drag coefficient, more

so than in the case of the lift coefficient. This is most likely the reason

for this reduction in accuracy. Nevertheless, the average values of the drag
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coefficient differ by 12% and 16% for the NACA 0012 and NACA 23012,

respectively. The magnitude of the error for the steady approximation is

encouraging, and the different steady models are considered an acceptable

solution to significantly reduce the computational cost of the optimization

loop, both deterministic and robust. Additionally, Figs. 7-8 show that,even

if locally at certain azimuth angles the difference between steady and un-

steady drag coefficients may be significant, the two azimuth angles selected

are reasonably representative of the range of drag coefficients met by the air-

foil during each revolution. The average drag coefficient per rotor turn that

influences the torque can be estimated using the steady state approximation

at a fraction of cost necessary to run a fully unsteady analysis.

The use of this variable fidelity approach allows for an efficient exploita-

tion of computational resources, as pointed out by Ref. [36]. This is especially

important for robust optimization that are always computationally intensive

[19]. For more details on how this combination of XFOIL, MSES and Euler

SU2 has been identified as the best trade off between accuracy and computa-

tional cost, the reader is referred to [19]. In addition, the work presented in

Ref. [16] backs up this conclusion. In fact, Reference [16] demonstrates that

optimal solutions are not greatly affected by the use of either an unsteady

or steady model, as long as the reduced frequency is moderate. This is often

the case for rotorcraft where 1/rev frequency is typically below a reduced fre-

quency of 0.06 [37, p. 449]. For this specific Bo-105 rotor the 1/rev reduced

frequency, related to freestream velocity variation, is equal to 0.034, and the

highest reduced frequency reached by angle of attack variation is 0.12 (see

Section 6).
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Figure 7: Cycle of lift and drag coefficient of the NACA 0012 airfoil.
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Figure 8: Cycle of lift and drag coefficient of the NACA 23012 airfoil.
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3. Deterministic forward flight optimization

The deterministic optimization of a helicopter rotor airfoil in forward

flight typically consists in the minimization of the drag coefficient CD, whilst

ensuring the satisfaction of constraints on the lift CL and moment CM coef-

ficients. Examples of such an approach are given in Refs. [17, 18, 38]. The

constraint on the lift coefficient is set to maintain the trim condition of the

entire helicopter.

Here, a target lift coefficient CL is set to consider a specific trim condition,

and the moment coefficient is bounded within a given threshold CM to avoid

excessive loading on the blade pitch link. The objectives on the advancing

and retreating sides are conflicting with one another. In fact, an optimal

shape for the advancing side would be a mildly cambered airfoil to postpone

drag rise to higher Mach number values, whereas the adoption of a highly-

cambered airfoil on the retreating side could be better for higher angle of

attack, for instance by means of nose-droop.

In mathematical terms, the two single-objective optimization problems

may be formulated as follows

minimize: CDi(x)

subject to: CLi(x) = CLi |CMi
(x)| ≤ CMi

by changing: x (5)

where x are the design variables, and the subscript is related to the advancing

or retreating side as shown in Table 6.

The values of the lift constraint CLi are set for each side with the in-

tent of producing a design that improves the performance of the baseline

NACA 23012 airfoil. The aerodynamic coefficients of the NACA 23012 airfoil

at the specified operating conditions are presented in Tab. 4. Those coeffi-
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Position Case # α[deg] M [-] Re [-] CL [-] CD [counts] CM [-]

Advancing 1 -1.5 0.75 4.6e6 -0.025 86.97 0.02

Retreating 2 12.5 0.28 1.7e6 1.411 191.3 0.03

Table 4: Aerodynamic coefficients of Bo-105 NACA 23012 airfoil at radial station r/R =

0.85 on the advancing and retreating sides.

cients are taken from Ref. [39]. It is possible to note that the NACA 23012

airfoil provides a slightly negative lift on the advancing side. At high ad-

vance ratio it is possible the outer portion of a helicopter blade can operate

at slightly negative lift. However, to avoid any possible confusion it has been

chosen to change CL1 into a slightly positive value set to generate lift. Fur-

thermore, the constraint on the moment coefficient has been enlarged with

respect to the value of the NACA 23012 airfoil to give more freedom to the

design optimization and explore design solutions which may have a larger

moment coefficient but better performance in the transonic condition.

To complete the scenario of deterministic optimization problem, a single-

objective optimization with compromise performance is presented. The op-

timization problem in this case is defined as follows

minimize:
1

2

2∑
i=1

wiCDi(x)

subject to: CLi(x) = CLi |CMi
(x)| ≤ CMi

i = 1, 2

by changing: x, (6)

where wi are weights chosen from the drag coefficient of the optimal airfoils

obtained in the single-point optimization cases (see Tab. 5 for values). In this

way the each product wiCDi will be roughly equal to one. The weights are

used to identify the trade-off point between retreating and advancing blade
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Case M [-] Re [-] CL CM wi [1/counts]

1. 0.75 4.6e6 0.025 0.08 1/2

2. 0.28 1.7e6 1.411 0.04 1/160

Table 5: Operating conditions and aerodynamic constraints for airfoil optimization in the

advancing (1.) and retreating (2.) side.

section performance.

3.1. Design variables

Particular attention is drawn to the design variables. To describe an

airfoil shape with a finite set of variables, the Class/Shape function Trans-

formation (CST) [40] is used. The parameterization is well-defined by spec-

ifying two functions: a geometry class function C and a shape function S

that defines the particular shape of the geometry. In this case, the airfoil

shape is decomposed into the camber mean line ζc and the normal thickness

ζt distributions. The CST is applied to ζc and to ζt of the airfoil and it reads

ζc(χ) = C(χ) S(χ) + χ ζTEc = C(χ) ·
n∑
i=0

AciSN,i(χ) + χ ζTEc

ζt(χ) = C(χ) S(χ) + χ ζTEt = C(χ) ·
n∑
i=0

AtiSN,i(χ) (7)

where χ = x/c is the non-dimensional chordwise coordinate, the coefficients

Aci , A
t
i define the Bernstein polynomial coefficients of the camber line and

thickness distributions respectively, Sn,i is the i-th term of the Bernstein

polynomial of order N [40].

The thickness distribution is taken in perpendicular direction with respect

to the camber mean line. Then, the camber line and thickness distribution

are such that the upper surface ζu and lower surface ζl are obtained applying
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the thickness perpendicular to the camber line, as follows

ζu = ζc + ζt cos(ε)

ζl = ζc − ζt cos(ε), (8)

where ε = arctan
(

dζc
dχ

)
. Please note that the χ coordinate of the resulting

airfoil will also be affected by this summation of vectors.

The coordinate of the camber mean line at the trailing edge is set to zero

to consider a closed trailing edge and null geomenull In addition, the class

functions for the camber line Cc and the thickness distribution Ct are defined

as follows

Cc(χ) = χ(1− χ) Ct(χ) =
√
χ(1− χ). (9)

While the class function for the thickness distribution is the one suggested in

Ref. [40] to define a rounded nose distribution close to the leading edge, the

class function for the camber presents a linear term to avoid vertical slope of

the camber distribution at the leading edge. In addition, the linear term of

the class function permits to directly relate the first coefficient of the shape

function Ac0 to the slope of the camber line at the leading edge.

The coefficients of the shape function S(χ) design variables xs of the

optimization problem. A convergence study, suggested the employment of a

4th order polynomial for each distribution, that yields a total of 10 airfoil

design variables plus the angle of attack.

The order of the polynomial could be chosen based on a convergence anal-

ysis of the CST. To do this, an extensive numerical campaign has been per-

formed for a representative group of helicopter rotor airfoils — e.g. NACA23012,

SC1095, SC1094 — by using an increasing polynomial order, up to 7-th order

to obtain complex geometrical features, like the trim tab of the HH02 (for

further details see Ref. [19]).
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In addition to the coefficients describing the shape of the airfoil, the

angle of attack can be regarded as a design variable. In fact, it is possible

to solve the constrained optimization problem stated in Eq. (5) by acting on

the airfoil design variables xs to minimize the drag coefficient and on the

angle of attack to track the target lift coefficient inside two nested loops.

The underlying idea is an analogy with the blade collective pitch control: to

increase thrust it is necessary to act on the collective pitch, which changes

the angle of attack of the blade section.

Thus, each airfoil tested in the optimization loop is obtained with a spe-

cific set xs, and its performance is evaluated by computing the angle of

attack α that provides the desired lift coefficient. The nested optimization

loops used to implement this procedure are described in detail in Section 3.3.

Thus, the resulting set of design variables is x = {xs, α}.

3.2. Aerodynamic models

The models used to describe the aerodynamic loads on the airfoil on the

advancing and retreating sides were described in section 2.2.

For the computation inside the optimization loop with SU2, a two-dimensional

coarse structured mesh of 20480 rectangular cells is used (see Fig. 9). The

mesh extends to ±25 chords around the airfoil. For each airfoil in the opti-

mization loop, the computation runs for 500 iterations starting from a base-

line solution of the NACA0012 airfoil. The mesh is deformed by displacing

the airfoil boundary cells according to the new geometry and by translat-

ing the displacement to the volume cells with a method based on the finite

element method discretization of the linear elasticity equations [28]. The

element stiffness is set inversely proportional to the wall distance, and 500

smoothing iterations are applied to get a regularly deformed mesh.

The computational cost for each steady evaluation of the figure of merit
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(a) O-mesh. (b) Zoom.

Figure 9: Coarse structured grid around NACA-0012 (20480 cells) for SU2 Euler inviscid

computations inside the optimization loop.

using the high fidelity Euler model is about fifteen times that of running a

solution with the low fidelity XFOIL solver.

3.3. Optimization algorithm

To solve the optimization problem in Eq. (5), a Non-dominated Sort-

ing Genetic Algorithm [41] is chosen for its ability to explore the design

space. Evolutionary algorithms have been employed to tackle many engi-

neering optimization problems. Applications to aerodynamic optimization

problems can be found for instance in Refs. [42–44]. The main advantages of

such approaches are the possibility to tackle multi-objective problems with-

out scalarization and to exhaustively explore the design space. On the other

hand, they are very expensive from a computational point of view because

they require many computations of the objective function, even in the region

of the domain where designs with poorer performance are present. Main

tuning parameters of the algorithm are the population size, the number of

generations, the crossover and mutation probabilities pc, pm and the so-
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called sharing parameter used to take into account the relative isolation of

an individual along a dominance front. Typical values for the crossover and

mutation probabilities pc = 0.9, pm = 0.1 are chosen and the sharing pa-

rameter is set using a formula based on the number of design variables.

After performing an initial generation of 200 individuals to explore the

design space, 40 individuals are then retained and evolved during 30 gener-

ations.

Inside the genetic algorithm loop, an inner loop is nested to deal with the

lift coefficient constraint (see Fig. 10). In particular, for each design vector

xs,k of the k-th iteration in the genetic loop, a secant method is used to find

the angle of attack α that guarantees CL,k = CL. The i-th iteration of the

secant loop reads

αi = αli +
αri − αli

CL(αbi)− CL(αai)

(
CL − CL(αai

)
) (10)

where αli and αri are the left and right boundaries of the interval in which the

angle of attack is sought for and they satisfy: CL(αri) > CL and CL(αli) <

CL. The left and right values are updated according to the value of the lift

coefficient for the current αi: if CL(αi) > CL + 0.0005, then αri+1
= αi; if

CL(αi) < CL − 0.0005, αli+1
= αi, and if |CL(αi) − CL| ≤ 0.0005, the loop

breaks.

The method converges in a few iterations, owing to the quasi-linearity of

the lift coefficient for most airfoils in the vicinity of considered values of the

angle of attack. Lack of convergence within a few iterations is not critical,

because this happens for airfoils with poor values of the lift coefficient that

should be discarded anyway. The result of the two nested loops is a set of

optimal solutions defined by a design vector {xs, α}. It is noted that the

inner trim loop targets the equality constraint on the lift coefficient, but the

resulting design vector atisfy the moment coefficient constraint.
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Additionally, a constraint on the minimum allowable airfoil thickness has

been considered to obtain airfoils that satisfy also structural requirements.

The lower limit for thickness was set at 10%. Airfoils with a thickness below

the threshold were simply discarded during the creation of a new generation

of individuals.

4. Robust optimization problem

The objective of robust optimization is to design an airfoil that is mini-

mally sensitive to the variation of the operating conditions. In this case, it

is considered that the operating conditions at which the blade section will

operate are affected by the uncertainty arising due to modelling assumptions

of physical parameters necessary at the design stage.

Due to the uncertainty, the objective function f is no longer only a func-

tion of the design variables x, but it also depends on the uncertain variables

ξ. Within this uncertain framework a minimization with a target lift coef-

ficient at a specific design condition loses its meaning. However, a robustly

optimal airfoil with a satisfactory lift-to-drag ratio in a range of conditions

could be used to trim the aircraft at a specific lift coefficient, whilst always

keeping a low drag coefficient. In addition, if the robustness of the lift-

to-drag ratio will translate into the drag coefficient at a specific target lift

coefficient, a robust shape would ensure less variability of the required power

due to aerodynamic drag.

In particular, for the problem under analysis, the following objectives are

defined for each side of the rotor disk.

1. On the advancing side, the rotor blade encounters transonic flow, so

airfoils should typically be designed to delay drag divergence to higher

Mach numbers [14, 15]. Thus, the lift-to-drag ratio CL/CD is the ob-
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jective f1 of the optimization: f1 = CL/CD, with the constraint of

providing a lift coefficient equal to or greater than the value of the

baseline airfoil.

2. On the retreating side, the increase of the lift coefficient is typically

sought for [14]: for the blade at 270 deg the ratio C
3/2
L /CD is maximized,

which is a measure related to the rotor figure of merit [15] and privileges

the lift coefficient over the drag coefficient, that is f2 = C
3/2
L /CD.

Finally, the constraints on the moment coefficient and minimum thickness

used in the deterministic case are still considered.

In mathematical terms, the resulting optimization problem can be stated

as:

maximize : µ (fi (xs, ξ))

and minimize : σ2 (fi (xs, ξ))

subject to : g (xs, ξ) ≤ 0

by changing : xs, (11)

where the constraints are collected in vector g. The objective functions of

Eq. (11) are related to the statistics of the figure of merit fi: the mean value

µ and the variance σ2. The design variables in this case are only xs , while

the angle of attack is considered as one of the uncertain parameters in the

robust design problem.

Indeed, the angle of attack α and the Mach number M encountered by

the two-dimensional section of the blade are considered as uncertain, because

they are affected by uncertainty on the modelling of the physical parameters

considered in the design stage. Both aerodynamic and structural uncertain-

ties, may affect the value of the angle of attack and Mach number. In par-

ticular, the latter may affect the blade dynamic movement and deformation
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that in turn change the relative angle and speed of the airfoil with respect

to the flow. Following a probabilistic framework, the uncertain variables are

modelled as uniformly distributed random variables around a nominal value.

The uniform distribution has been chosen after the analysis of reports on

experimental measures available for this rotor, like Ref. [21]. From this re-

ports it is possible to have an idea of the experimental uncertainty but not of

the probability density function with which this uncertainty is distributed.

Consequently, it has been decided to use a uniform distribution to avoid any

bias toward any specific value. In any case, it must be stressed that this

choice does not affect the validity of the proposed approach. The nominal

conditions are reported in Tab. 4 and the uncertainty band is set to 5% for

the Mach number and for the angle of attack, again based on the analysis of

experimental results [21]. Also in this case the range was taken looking at

the variability desumed by available experimental data [21].

The statistics of the performance fi are computed by means of an uncer-

tainty propagation technique, a method to propagate the uncertainty affect-

ing the operating conditions into the quantity of interest f .

4.1. Uncertainty quantification

A probabilistic framework is employed to deal with the uncertain input

data. In this context, the stochastic input quantities ξ are treated as indepen-

dent continuous random variables. The random vector ξ, whose dimension

is equal to the number of uncertain variables nξ, belongs to the probability

space (Ω,F , P ), composed of the sample space Ω, the σ-algebra F of the

subsets of the events, and a probability measure P . It essentially maps the

samples in Ω = [0, 1]nξ into the random outcomes ξ ∈ Ξ, and it is charac-

terized by the probability density function pξ(ξ). The output of the system

is then a stochastic variable, and therefore the performance E(y, ξ), which
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is a function of the solution, is a stochastic variable as well. In the robust

optimization, procedure the interest is in reconstructing the mean value and

the variance of the quantity of interest; in the following, the stochastic out-

put variable is referred to as u(y, ξ), while its deterministic realization is

ũi(y, ξi). Let us define the expected value of the stochastic variable u as

follows

〈u〉 =

∫
Ξ

u(y, ξ) pξ(ξ) dξ,

with pξ(ξ) =
∏nξ

i pξi(ξi) being the joint probability of the independent input

variables.Let us define the inner product operator of two stochastic variables

u and v with respect to the joint probability (i.e. the covariance for indepen-

dent u and v)

〈u, v〉 =

∫
Ξ

u(y, ξ)v(y, ξ) pξ(ξ) dξ.

The mean and variance then read

µ(u) = 〈u〉

σ2(u) = 〈u, u〉 − 〈u〉2. (12)

To reconstruct the quantities in Eq. (12), a Polynomial Chaos (PC) ex-

pansion method [45] is used. In fact, under specific conditions, a stochastic

process can be expressed as a spectral expansion based on suitable orthogo-

nal polynomials, with weights associated to a particular probability density

function. The first study in this field is the Wiener process that was later de-

veloped in Ref. [45]. The basic idea is to project the variables of the problem

onto a stochastic space spanned by a complete set of orthogonal polynomials

Ψ that are functions of the random variables ξ. For example, variable u has

the following spectral representation

u (y, ξ) =
∞∑
k=0

αk (y) Ψk (ξ) (13)
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where Ψk are the PC orthogonal polynomials and αk the coefficients of the

expansion. In practice, the series in Eq. (13) must be truncated to a finite

number of terms N , which is determined by

N + 1 =
(nξ + no)!

nξ! no!
,

where nξ is the dimension of the uncertainty vector ξ and no is the order

of the univariate polynomial expansion φi(ξi) from which the multivariate

polynomials Ψk(ξ) are obtained via tensorization, i.e.

Ψk (ξ) =

nξ∏
i

φi(ξi).

The polynomial basis φi(ξi) is chosen according to the Wiener-Askey scheme

[45] in order to select orthogonal polynomials with respect to the probability

density function pξ(ξ) of the input. In this work, because a uniform distri-

bution is considered, Legendre polynomials are employed. The orthogonality

property can be advantageously used to compute the PC coefficients of the

expansion αk in a non-intrusive PC framework; this procedure is called Non-

Intrusive Spectral Projection (NISP) [42]. In fact, from the orthogonality

property it directly follows that

αk =
〈u(y, ξ),Ψk(ξ)〉
〈Ψk(ξ),Ψk(ξ)〉

∀k. (14)

The computation of the PC coefficients requires an integration of the polyno-

mials that can be estimated with several approaches, among which quadra-

ture formulae are chosen in this study. As a result, the solution of the deter-

ministic problem is required for each quadrature point. Once the polynomial

chaos and the associated αk coefficients are computed. The mean value and

the variance of the stochastic solution u (x, ξ) (Eq. (12)) are obtained lever-

aging the orthogonality of the polynomials Ψk with respect to the probability
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function pξ:

µ(u)|PC =

〈
N∑
k=0

αk (y) Ψk (ξ)

〉
= α0 (y)

σ2(u)|PC =

〈(
N∑
k=0

αk (y) Ψk (ξ)

)2〉
− α2

0 (y)

=
N∑
k=1

α2
k (y)

〈
Ψ2
k

〉
. (15)

Because a uniform distribution is considered also in the forward flight

case, Legendre polynomials are employed in the PC expansion. The order

of the expansion is retained from a convergence analysis which proved that

a fourth-order polynomial is sufficient to accurately capture the statistics.

The reconstruction of the statistics is based on the evaluation of the exact

function for a set of samples ξk in the uncertain variables domain for each

design vector xs.

5. Results

As presented in the previous sections, different optimization problems

are performed. A summary of the optimization cases studied in this work

is given in Tab. 6. Letters DO and RO stand for the deterministic and

robust optimizations, while numbers 1 and 2 refer to advancing and retreating

sides, respectively. The case DO0 represents the best trade off airfoil when

considering both retreating and advancing sides.

5.1. Deterministic optimization

The results of the deterministic optimization problems are: (i) airfoil DA1

with the optimal drag coefficient on the advancing side, (ii) airfoil DA2 with

the optimal drag coefficient on the retreating side, and (iii) airfoil DA0 with
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Case Objective Equality Inequality Design

constraints constraints variables

DO1 minCD,1 CL1 = CL1 |CM1| ≤ CM2 xs, α

DO2 minCD,2 CL2 = CL2 |CM2| ≤ CM2 xs, α

DO0 min
∑2

i=1wiCD,i CL1 = CL1 |CM1| ≤ CM1 xs, α

CL2 = CL2 |CM2| ≤ CM2

RO1 maxµ(f1) and min(σ2(f1) |CM1| ≤ CM1 xs

RO2 maxµ(f2) and minσ2(f2) |CM2| ≤ CM2 xs

Table 6: Summary of optimization problems.

the optimal weighted sum of drag coefficients. These airfoils are presented

in Fig. 11 and the characteristics of their geometry are reported in Tab. 7.

It is possible to note that the optimal airfoil for the retreating side is highly

cambered to cope with the higher angle of attack and it has a lower thickness-

to-chord ratio to reduce the drag coefficient. The optimal airfoil for the

advancing side generates positive lift owing to a slight camber and greater

thickness. The slope of the camber line at the leading edge is controlled by

the first coefficient of the parameterization thanks to the modification of the

CST discussed in Section 3.1. Both in the overall airfoil geometry and in each

specific parameter presented in Tab. 7, it is possible to note that airfoil DA0

represents a trade-off solution between DA1 and DA2, although it appears

more similar to the DA1 airfoil. This similarity is likely to be due to the

choice of the weighting function.

With regard to performance, the drag coefficients of the optimal airfoils

are presented in Tab. 8. The drag coefficient are expressed in drag counts,

where one drag count is equal to 0.0001. The gains with respect to the base-
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DA1 DA2 DA0

Maximum thickness 0.1187 0.1049 0.1161

Position of maximum thickness 0.36 0.22 0.31

Maximum camber 0.0054 0.0303 0.0079

Position of max camber 0.81 0.31 0.73

First design variable (Ac0) 0.065 0.289 0.107

Camber slope at LE [deg] 3.704 16.098 6.108

Table 7: Characteristics of the optimal airfoils (for unit chord).

CD1 α1|CL1
CM1 CD2 α2|CL2

CM2

[counts] [deg] [-] [counts] [deg] [-]

DA0 0.8947 -1.059 0.0463 177.8 11.1 -0.0108

DA1 0.6927 -1.002 0.0459 – – –

DA2 191.99 -3.101 0.1047 126.0 9.27 -0.0393

Table 8: Performance of the optimal airfoils: performance of DA1 in the retreating side is

not reported because DA1 airfoil cannot satisfy lift constraint. The values for the baseline

airfoil are reported in Tab. 4.

line NACA 23012 airfoil are presented in Tab. 9. The DA1 airfoil and the DA2

airfoil significantly improve the performance of the advancing and retreat-

ing sides, respectively. This was expected for a deterministic optimization

that starts from a baseline airfoil that has been used extensively on rotor-

craft, as for the Bo-105 helicopter, but that was not specifically developed

for rotorcraft flow conditions.

Airfoil DA1 is an airfoil which reduces the drag coefficient by smoothing

curvature variations of the upper and lower sides, yielding a shock-free flow-
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Percentage gain Percentage gain Relative gain Relative gain

side 1 side 2 side 1 side 2

DA0 +99% +7% 1/97.2 1/1.08

DA1 +99% – 1/125 –

DA2 – +34% – 1/1.52

Table 9: Gain of the optimal airfoils with respect to the baseline NACA 23012 airfoil:

gain of DA1 in the retreating side and gain of DA2 in the advancing side are not reported

because these airfoils do not satisfy respectively the lift and moment constraints.

field (see the Mach number contour in Fig. 12a). However, on the retreating

side, the DA1 airfoil cannot satisfy the lift constraint, therefore its drag co-

efficient is not reported in Tab. 8 and its gain is not present in Tab. 9. On

the other side, airfoil DA2 reduces the drag coefficient of the NACA 23012

airfoil by reducing the peak friction coefficient and by postponing boundary

layer transition, as presented in Fig. 13a. However, on the advancing side,

the performance of such an airfoil is very poor and a strong shock wave is

present on the lower side (see Fig. 12b). The trade-off airfoil DO0 has a

significant gain on the advancing side, because it is more similar to the DA1

airfoil. As a matter of fact, a shock-free flowfield is obtained with this airfoil

(Fig. 12c), whereas on the retreating side, an earlier transition to a turbulent

boundary layer is present, leading to a higher friction coefficient (Fig. 13b).

5.2. Comparison with robust optimization

Two different robust optimization problems are performed, the first one

for the advancing side (problem RO1) and the second one for the retreating

side (RO2). The Pareto front for the case of the advancing side is presented

in Fig. 14a where the two objective functions are the mean value and the
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Airfoil CD,1|CL1
α1|CL1

µCD,1 σ2
CD,1

(σ/µ)CD,1

[counts] [deg] [counts] [counts2] [-]

DA0 0.895 -1.059 5.26 65.75 1.54

DA1 0.693 -1.002 2.16 11.12 1.54

RA1 0.898 -1.510 2.03 5.668 1.17

Table 10: Drag coefficient of the deterministic airfoil minimizing CD1
(DA1), the trade-off

airfoil (DA0) and the airfoil selected from the robust front in the advancing side (RA1).

variance of the lift-to-drag ratio. Please note that in the figure the mean

value and the variance are obtained with a scaling factor of 1/10 acting

on f1 = CL/CD. The reason for this choice is due to the small values of

CD caused by the inviscid approximation combined with shock-free optimal

airfoils. The front presents a very robust solution that, however, comes at

the expense of poor performance. In the higher part of the front, solutions

with high mean value are found.

To compare the results obtained from the Pareto front in RO1 and the

deterministic result DA1, a solution or a group of solutions from the front

in Fig. 14a should be selected. To do this, the target lift coefficient CL1 is

compared to the lift coefficients obtained in the samples used for the recon-

struction of the mean value and variance in the UQ loop. The lift coefficients

for the solutions of the front are plotted in Fig. 14b. From this set, airfoil

RA1 is selected, which is the airfoil that exhibits a lift coefficient equal to the

target value inside the uncertainty range considered and a high mean value of

the lift-to-drag ratio. Airfoil RA1 is also highlighted in Fig. 14a. The value

of the angle of attack for which the lift coefficient of airfoil RA1 is equal to

CL1 is called α1|CL1
and is equal to -1.51 degrees at the Mach number used

for the deterministic optimization DO1. As presented in Tab. 10, at this

34



Airfoil µCL,1 σ2
CL,1

(σ/µ)CL,1 µCM,1 σ2
CM,1

(σ/µ)CM,1

DA0 0.0257 4.52e-05 0.26132 0.0459 9.87e-07 0.0217

DA1 0.0211 4.04e-05 0.30151 0.0457 1.81e-06 0.0294

RA1 0.0253 8.20e-05 0.35816 0.0688 1.47e-06 0.0176

Table 11: Lift and moment coefficient of the deterministic airfoil minimizing CD1
(DA1),

the trade-off airfoil (DA0) and the airfoil selected from the robust front in the advancing

side (RA1).

condition the performance of the RA1 airfoil is similar to that of the other

two optimized in a deterministic way, DA1 and DA0. In fact, the RA1 airfoil

too does not present an extended region of supersonic flow and shock waves

(see Fig. 15). However, if an uncertainty band is considered around the con-

dition ensuring trim requirement, both the mean value and the variance of

the drag coefficient for airfoil RA1 are smaller than the values of airfoil DA1

(see Tab. 10). The table also presents the coefficient of variation, defined as

the ratio of the standard deviation σ to the mean value µ, to appreciate the

dispersion with respect to the mean value.

To complete the analysis, Table 11 presents the mean value and variance

of the lift and moment coefficients for airfoil RA1 and airfoil DA1. In the

table, it is interesting to note that the mean value of airfoil RA1 is closer to

the target value. Additionally, it is possible to see that the mean values of

the drag coefficient, lift coefficient, and moment coefficient are obtained with

the fourth-order PC expansion, which has been assessed within a convergence

study, not reported here for brevity [30]. Despite the presence of shock waves

in this range of conditions, the integral values remain smooth throughout the

stochastic space and a fourth-order polynomial provides sufficiently accurate
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Airfoil CD,2|CL2
α1|CL2

µCD,2 σ2
CD,2

(σ/µ)CD,2

[counts] [deg] [counts] [counts2] [-]

DA0 177.8 11.13 178.4 91.32 0.0536

DA2 126.0 9.27 126.2 28.40 0.0422

RA2 148.1 10.66 148.4 33.83 0.0392

Table 12: Drag coefficient of the deterministic airfoil minimizing CD2
(DA2), the trade-off

airfoil (DA0) and the airfoil selected from the robust front in the retreating side (RA2).

estimates of the statistics.

The same analysis can be performed for the Pareto front of the retreating

side. Figure 16a presents the optimal set of solutions obtained from the

robust optimization. As emerged from the results in [19] for the hovering

case and the advancing side, interesting solutions from the front are typically

those with high mean performance. A possible criterion for decision making

in the post-processing of the front is then the selection of non-dominated

solutions with a mean value higher than the value of the reference airfoil.

This criterion helps removing the solutions with poor performance, but it

still retains solutions with lower variance than the reference result thanks to

the quality of the Pareto front.

For this subset of airfoils, the comparison between the robust front and

the deterministic airfoil is performed in the same way as presented for the

advancing side. Figure 16b shows the lift coefficient of the samples used in

RO2 with a mean value higher than the reference value. In this case, every

airfoil in the optimal set provides a lift coefficient that is greater than the

target value CL2 . Thus, to select an airfoil from the front for comparison,

airfoil RA2 has been chosen as a trade-off between the two objectives.

For this airfoil, an angle of attack equal to 10.66 deg is needed to satisfy
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Airfoil µCL,2 σ2
CL,2

(σ/µ)CL,2 µCM,2 σ2
CM,2

(σ/µ)CM,2

DA0 1.3998 8.37e-04 0.207 -1.069e-02 3.84e-06 -0.18

DA2 1.4113 8.67e-04 0.021 -3.924e-02 6.51e-07 -0.02

RA2 1.4016 6.24e-04 0.018 -1.383e-02 7.68e-06 -0.20

Table 13: Lift and moment coefficient of the deterministic airfoil minimizing CD2
(DA2),

the trade-off airfoil (DA0) and the airfoil selected from the robust front in the retreating

side (RA2).

the trim condition. By applying the same uncertainty range as used in the

robust optimization case, it is possible to compute the mean value and the

variance of the drag coefficient of RA2. These values are higher with respect

to the value computed for airfoil DA2 (see Tab. 12). In fact, the optimal

deterministic airfoil has a very low value of drag coefficient because it satisfies

the lift constraint at a very low angle of attack (9.27 deg) thanks to the

highly cambered mean line. However, airfoil DA2 cannot satisfy the moment

coefficient constraint in the uncertainty range. As presented in Fig. 17, the

moment coefficient exceeds the threshold value CM2 . On the contrary, the

robust optimization formulation guarantees that the optimal airfoils would

not incur moment penalties throughout the uncertainty range (see Tab. 13).

The discrepancy in the performance of airfoils DA2 and RA2 is due to

the fact that the lift coefficient of the robust airfoil is significantly greater

than the target lift coefficient. Thus, the deterministic optimization and the

robust optimization are essentially exploring different regions of the design

space, according to the specific objectives. To some extent, a fair compar-

ison between the two methods is meaningful if the two methods share the

“same” objectives. This means, for example, that for this specific case the

target lift coefficient should be higher for the comparison with the robust
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airfoils. Another possibility is to define the nominal condition for the robust

case starting from the deterministic results. This would at least ensure the

presence of the deterministic airfoil in the robust population (as long as it

satisfies the constraints). This last strategy appears more straightforward,

and the results of its application are reported in another paper [46].

Finally, it must be noted that both optimal robust solutions RA1 and

RA2 show an average value of the moment coefficient that is in the imposed

limits but higher than the one of DA0, with a limited variance.

6. Verification of design along the full range of azimuth angles

Up to this point, the performance of the optimal airfoils is considered only

for the advancing and retreating side conditions. However, the blade section

encounters different operating conditions over the period of rotation of the

blade and an assessment of the performance over the full range of azimuth

angles is appropriate. To do this,

With the laws of Eq. (4) and values of Tab. 2 the baseline NACA 23012

develops the trim loads required. However, for the optimal airfoils, new

values of the amplitude of the sine terms describing the angle of attack must

be computed, because the target lift coefficient is obtained on both sides at a

different angle of attack. In other words, the amplitude of the time-varying

angle of attack presented in Fig. 6b must be corrected for each optimal shape.

In general, the azimuth variation of the angle of attack is caused by the blade

cyclic pitch control, the induced velocity of the rotor, the blade dynamics,

and aeroelastic deformations. Thus, as a first approximation, it is possible to

associate the 2/rev, 3/rev and 4/rev contributions in Eq. (4) to the nonlinear

contributions depending on the aerodynamic effects of vortices, wakes and

the blade dynamics. These contributions are essentially a function of the
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DA0 DA1 DA2 RA1 RA2

α0 [deg] 5.04 5.75 3.09 5.49 4.58

∆α1 [deg] 5.88 6.51 5.97 6.76 5.87

Table 14: Variables of time-varying angle of attack (Eq. (4)) for optimal shapes.

lift produced by the blade, which remains unchanged for the optimal airfoils.

However, the first sine term ∆α1 (1/rev) is directly related to the cyclic pitch

control and can be adjusted to maintain the trim requirement. So, only this

term is updated for the optimized airfoils, as shown in Tab. 14.

Using the same procedure as shown in section 2, steady state compu-

tations are performed at eight azimuth angle stations. The aerodynamic

coefficients for the deterministic optimal airfoils (DA0, DA1, DA2) are pre-

sented in Fig. 18. It is possible to note that the cycle of the lift coefficient

is similar for the three airfoils owing to the equality constraint on the lift

coefficient used in the optimization loop. Please recall that airfoil DA1 is

not capable of satisfying the trim constraint in the other design condition

considered (i.e. the retreating side).

The average of the drag coefficient over the azimuth angle avg(CD) is

then computed and the results are summarised in Tab. 15. The table also

presents the results for the airfoils selected from the robust Pareto front,

i.e. airfoil RA1 and airfoil RA2. The associated cycles of the aerodynamic

coefficients are presented in Fig. 19. As expected, airfoil DA0 provides the

best average drag coefficient over the azimuth angle. The penalty of airfoil

DA1 in the other design condition (i.e. the retreating side) is higher than the

penalty suffered by airfoil DA2 in the other design conditions. As a result,

airfoil DA2 has a better average value. Airfoil RA2 has a small penalty
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Airfoil DA0 DA1 DA2 RA1 RA2

avg(CD) [counts] 98.76 122.22 105.5 118.84 107.71

Table 15: Average drag coefficient for optimal airfoils in forward flight.

with respect to its deterministic counterpart and it also presents a fairly

symmetrical cycle. Airfoil RA1 on the other hand has a better average value

than the corresponding deterministic airfoil.

7. Conclusions

A methodology for robust optimization has been developed to tackle the

problem of designing airfoils in forward flight. Robust optimization requires

the coupling of the uncertainty quantification method with the optimization

algorithm. This coupling increases the computational demand, especially in

aerodynamic applications, where a single function evaluation may be very

expensive.

To obtain comparable results through robust and deterministic optimiza-

tions it has been necessary to consider a fairly different problem set-up.

Deterministic results have proven how different the optimal airfoils are for

the advancing and retreating sides. Comparison with the robust approach

have shown similarities and differences between the use of the drag coef-

ficient as a deterministic objective and the employment of the lift-to-drag

ratio in a robust context. In general, the robust approach has shown the

capability to define airfoils that have a mean performance close to the one

obtained through a deterministic approach. At the same time, the choice of

low variance airfoils though the application of the robust approach ensures

the possibility to obtain airfoils that perform adequately without violating

the constraints also at other design condition. This is a characteristic that
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should be considered fairly important when designing airfoils for rotorcraft,

where a significant variability of the operating conditions could be expected.

The identification of the optimal airfoil directly through a robust formu-

lation as the one proposed here, may result cumbersome, given the difficulty

in the identification of an optimal airfoil with an uncertainty band across

the required lift coefficient. So, a sequential strategy that considers first the

application of the deterministic optimization, and then that of the robust

optimization should be considered the best approach. Starting from the op-

timal deterministic airfoils this methodology will lead to airfoils with good

performance that suffer of a limited degradation in other design conditions.

Finally, it has been shown that the employment of robust optimization

leads to airfoils that have slightly better performance when analyzed for a

spectrum of azimuth points wider than those used for optimization. The

optimization shown in the paper is based on the adoption of steady state

aerodynamic models. In section 2 it has been shown that in the range of re-

duced frequency considered the adoption of a steady state formulation leads

to substantially correct results, even thought unsteadiness may have a sig-

nificant impact on the overall airfoil drag. So even better results may be

expected by a full unsteady robust optimization of airfoils. The adoption of

full unsteady models for the evaluation of the objective function does not pose

any theoretical difficulty other then a significant increment of computational

resources.
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Figure 10: Outer NSGA loop for xs and inner trim loop to determine α.
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Figure 11: Optimal airfoil geometries for optimization problem DA1, DA2 and DA0.
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(a) DA1 (b) DA2

(c) DA0

Figure 12: Mach number contour on the advancing side for airfoil optimal airfoils.
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Figure 13: Pressure and friction coefficient on the retreating side for optimal airfoil.
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Figure 14: Results of the robust optimization for the advancing side (RO1).
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Figure 15: Mach number contour of RA1 airfoil at α1|CL1
= −1.51 deg.
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Figure 16: Results of the robust optimization for the retreating side (RO2).
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Figure 17: Loads of the DA2 in the uncertainty band around α1|CL1
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Figure 18: Lift and drag coefficient with azimuth for the deterministic optimal airfoils.

53



0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Mach number

C
L

 

 

0.2 0.4 0.6 0.8 1
50

100

150

200

250

300

Mach number

C
D

 [
c
o

u
n

ts
]

RA1

RA2

Figure 19: Lift and drag coefficient with azimuth for the robust optimal airfoils.
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