
Chapter 3
Segregated Algorithms for the Numerical
Simulation of Cardiac Electromechanics
in the Left Human Ventricle

L. Dede’, A. Gerbi, and A. Quarteroni

Abstract We propose and numerically assess three segregated (partitioned) algo-
rithms for the numerical solution of the coupled electromechanics problem for
the left human ventricle. We split the coupled problem into its core mathematical
models and we proceed to their numerical approximation. Space and time dis-
cretizations of the core problems are carried out by means of the Finite Element
Method and Backward Differentiation Formulas, respectively. In our mathematical
model, electrophysiology is represented by the monodomain equation while the
Holzapfel-Ogden strain energy function is used for the passive characterization of
tissue mechanics. A transmurally variable active strain model is used for the active
deformation of the fibers of the myocardium to couple the electrophysiology and the
mechanics in the framework of the active strain model. In this work, we focus on the
numerical strategy to deal with the solution of the coupled model, which is based
on novel segregated algorithms that we propose. These also allow using different
time discretization schemes for the core submodels, thus leading to the formulation
of staggered algorithms, a feature that we systematically exploit to increase the
efficiency of the overall computational procedure. By means of numerical tests
we show that these staggered algorithms feature (at least) first order of accuracy.
We take advantage of the efficiency of the segregated schemes to solve, in a High
Performance Computing framework, the cardiac electromechanics problem for the
human left ventricle, for both idealized and subject-specific configurations.
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3.1 Introduction

The heart performs two fundamental tasks: it pumps the deoxygenated blood to the
lungs to get oxygen and release carbon dioxide, while it simultaneously pushes the
oxygen rich blood into the arteries delivering it to tissues and organs [46], almost
to every cell in the human body. Despite the apparent simplicity of these tasks,
the heart function is however the result of the concerted action of several physical
processes taking place at different spatial scales, i.e. at the cellular, tissue, and organ
levels, other than time scales. In the mathematical modeling of the heart function
all these processes have to be properly considered and, above all, integrated;
we refer to this as an “integrated heart model” [62]. The electrophysiology, the
active and the passive mechanics are referred to as “single core models”, and
are expressed by systems of Ordinary Differential Equations (ODEs) and Partial
Differential Equations (PDEs). Although their individual behavior is nowadays
quite established, further theoretical studies are necessary to better understand their
interactions [12, 19, 26, 28, 61, 67]. Since, as noticed before, the processes under
consideration feature different spatial and temporal scales, the grid for the numerical
approximation of the individual core models must be properly chosen. Moreover, the
discretized integrated problem can be formulated by either a monolithic approach,
where the approximated equations are assembled in a single large system and
simultaneously solved, or a segregated approach, where the approximated equations
are solved sequentially.

We focus here on the electromechanics of the left ventricle (LV). For the
investigation of this model and its numerical approximation we refer the interested
reader to, e.g., [33, 53, 61, 62, 68, 77, 80, 82]. Segregated algorithms are investigated
in [4, 12, 33, 44, 68, 82], where the electrophysiology and the mechanics problems
are solved separately. In [20, 21, 37], the integrated problem is instead solved using
a monolithic approach. In either case, suitable solvers (and preconditioners) must
be employed for the efficient solution of the linear systems stemming from the
discretization of the problems.

In this work we use the monodomain equation [13, 41, 59] together with the
minimal Bueno-Orovio ionic model [8] for the description of the electrophysiology.
For the passive mechanics, we use the state-of-the-art Holzapfel-Ogden model
[39] together with the active strain approach [2, 3] for the active mechanics, the
latter endowed with a newly proposed model for the transmurally heterogeneous
thickening of the myocardium [6]. The mechanics is then coupled with the
electrophysiology by means of a mathematical model describing the shortening of
the myocardial fibers [28, 71], triggered by a change in the ionic concentrations
in the cardiac cells, namely the intracellular calcium concentration. Regarding
the numerical approximation of the integrated model, we use the Finite Element
Method (FEM) for the space discretization while the time discretization is carried
out by means of the Backward Differentiation Formulas (BDFs) [63]. We propose
three novel segregated algorithms in combination with both implicit and semi-
implicit schemes, the latter consisting in the partial evaluation of the nonlinear
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terms with an approximation of the unknowns of the same order of the BDF scheme
[11, 29]. We compare the numerical results obtained by means of the segregated
algorithms with those of the monolithic method proposed in [28] for physically
meaningful benchmark problems. We develop our segregated algorithms in a way
such that different timestep sizes for the electrophysiology and the mechanics can
be used, thus leading to the so-called staggered algorithms. The use of different
timestep sizes for the time discretization of the single core models is indeed made
straightforward by the use of segregated approaches. Moreover, this is physically
motivated as each core model features very different time scales: precisely, the
electrophysiology requires a small timestep size while the mechanics yields stable
and accurate results also for relatively coarse time discretizations. We show that
the segregated schemes exhibit order of convergence with respect to the timestep
size equal to one. Moreover, regarding the computational efficiency, we show that
the segregated algorithms allow dramatic reductions of the computational costs
with respect to the monolithic scheme. This is particularly true for a segregated
algorithm in which the ionic, the monodomain, the mechanical activation, and the
mechanics equations are fully decoupled and a timestep size ten times larger is used
for the latter with respect to the former. Finally, we use the proposed algorithms for
subject-specific large scale simulations for a full heartbeat and discuss the results
thus obtained.

This chapter is organized as follows: in Sect. 3.2 we recall the mathematical
models for the electrophysiology, the mechanics and the mechanical activation of
the myocardium; in Sect. 3.3 we carry on the space and time discretizations of
the single core models; in Sect. 3.4 we propose the segregated algorithms for the
solution of the integrated problem; in Sect. 3.5 we report and discuss the numerical
results obtained with the proposed methods; finally, we draw our Conclusions.

3.2 Mathematical Models

We recall, for each physical process, the underlying mathematical models in the
form of ODEs and PDEs.

3.2.1 Ionic Model and Monodomain Equation

The systolic phase of the LV starts when the electric signal originated from the
atrioventricular node is conveyed through the Purkinje fibers network and delivered
to the myocardium [7, 14, 38, 55]. The signal triggers a complex interaction between
the transmembrane potential v and different ionic species thus causing a quick
depolarization and repolarization of the cells. This change of v is known as action
potential [47]. The electric signal propagates faster along the myocardial fibers
which, together with the sheets, characterizes the internal structure of the muscle
[73] as depicted in Fig. 3.1.
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Fig. 3.1 Fibers in a subject-specific geometry (left) colored by a transmurally linear variable and
a close up of a slice with fibers f0, sheets s0, and normals n0, together with their relative position
(right)

We use a set of NI ODEs in the ionic variables w = {
wq

}NI

q=1 to model
the ionic species concentrations and currents through the cell membrane and the
monodomain equation, a nonlinear diffusion-reaction parabolic equation derived
from the bidomain equations under simplifying assumptions [13, 14], to model the
tissue electrophysiology. This is compactly written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w
∂t

= α(v)(w∞(v) − w)+ β(v)w in �0 × (0, T ),

χ

(
Cm

∂v

∂t
+ I ion(v,w)

)
= ∇ · (JF−1DmF−T∇v) + Iapp(t) in �0 × (0, T ),

(JF−1DmF−T∇v) · N = 0 on ∂�0 × (0, T ),

v = v0, w = w0 in �0 × {0},
(3.1)

Here, �0 is the reference domain and T > 0 is the final time of the simulation;
χ and Cm ∈ R

+ are the ratio of membrane surface with respect to the volume
and the membrane capacitance, respectively. The term I ion(v,w) represents the
currents driven by the ions concentrations while Iapp is an externally applied
stimulus. The current geometry displacement (the displacement of the myocardium)

d = X − x determines F = I + ∂d
∂X

and J = det(F), where X and x are the

space variables in the reference (�0) and in the deformed (�) configurations,
respectively. We neglect, for simplicity, stretch activated currents (SAC) [22, 42]
and other bioelectrical effects of mechanical feedbacks [16–18]. To account for the
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anisotropic electrical conductance of the myocardium, the diffusion tensor reads
Dm = σiso(I − f0 ⊗ f0) + σf f0 ⊗ f0, where f0 is the local fiber orientation (see
Fig. 3.1) that varies transmurally, while the sheets direction s0 (which is oriented as
the normal to the collagene sheets) is orthogonal to the LV walls. The n0 direction
is orthogonal to both f0 and s0; σiso and σf are the fiber-transversal and the fiber-
longitudinal conductances, respectively. Finally, the terms α(v), β(v), and I ion are
prescribed according to the ionic model. Among the many models proposed in
literature ([1, 47, 48, 52, 79]) we choose the Bueno-Orovio minimal model [8] for
which NI = 3. We assimilate the variable w3 to the intracellular concentration
[Ca2+].

3.2.2 Mechanical Activation

The concentration of calcium ions [Ca2+] drives complex dynamics in the sarcom-
eres [66], which lead to the cardiomyocites stretching. We use a phenomenological
model for the local shortening of the fibers (denoted by γf ) at the macroscopic level.
The latter, firstly proposed in [71], and further developed in [28, 68], reads:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂γf

∂t
− ε

g(w3)
�γf = 1

g(w3)
�(w3, γf ,d) in �0 × (0, T ),

∇γf · N = 0 on ∂�0 × (0, T ),

γf = 0 in �0 × {0}.

(3.2)

Here g(w3) = μ̂Aw
2
3, while �(w3, γf ,d) depends on the sarcomere force-

length relationship [28, 34, 68]; we refer the reader to [28] for the expression of
�(w3, γf ,d). Finally, μ̂A, ε ∈ R

+ are tuning parameters for the subject-specific
case under study.

3.2.3 Passive and Active Mechanics

We model the myocardium as a hyperelastic material [54]; then P = P(d) = ∂W
∂F

is the first Piola–Kirchhoff stress tensor and W the strain energy density function.
To model moderate volumetric changes (2–15%), we use the nearly-incompressible
formulation [25] by multiplicatively decomposing the deformation gradient F into

the isochoric F and the volumetric Fv parts as F = FvF, where Fv = J
1
3 I.

We use the Holzapfel-Ogden strain energy density function [39]—the state–of–
the–art in passive myocardial tissue modeling—with a volumetric term weakly
penalizing volumetric variations [74] W(C, J ) = Wel(C, J ) + Wvol(J ), where
the expression of Wel is given in [28] with parameters determined in [39] and
Wvol = B

2 (J − 1) log(J ); B ∈ R
+ is the bulk modulus.
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We use the active strain formulation [2, 3, 51, 70] to account for the active
behavior of the myocardium. This approach corresponds to a decomposition of F
in the form F = FEFA = J

1
3 FEFA; FE is the isochoric component of the elastic

(passive) part of the deformation, where FE = FvFE , and FA is the prescribed
active deformation (active strain) tensor. We have that P = det(FA)PEF−T

A ,
where PE = ∂W

∂FE
. We refer to [28, 30, 31] for more details. We use the following

orthotropic form for the tensor FA [2, 5, 57, 68, 69]:

FA = I + γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0,

where γn and γs are the local shortening (or elongation) of the tissue in the directions
s0 and n0, respectively. Following [6, 28], we set γn as transmurally variable, γn =
k′(λ)

(
1√

1+γf
− 1

)
, where λ is a transmural coordinate, varying from λendo at the

endocardium and λepi at the epicardium. The dependent variable γs is chosen to
ensure det(FA) = 1; hence, γn = γn(γf ) and γs = γs(γf ).

We finally use the stress tensor P(d, γf ) in the momentum equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂2d
∂t2

−∇0 · P(d, γf ) = 0 in �0 × (0, T ),

(N ⊗ N)

(
K

η
⊥d + C

η
⊥
∂d
∂t

)

+ (I − N ⊗ N)

(
K

η

‖ d + C
η

‖
∂d
∂t

)
+ P(d, γf )N = 0 on �

η

0 × (0, T ),

P(d, γf )N = pendo(t)N on �endo
0 × (0, T ),

d = d0,
∂d
∂t

= ḋ0 in �0 × {0}.
(3.3)

where ρ is the density of the myocardium. The boundary ∂�0 is partitioned in
�endo

0 , �epi
0 , and �base

0 , representing the endocardium, the epicardium, and the
ventricle base, respectively. For η ∈ {base, epi}, we consider generalized Robin
conditions with parameters Kη

⊥,K
η
‖ , C

η
⊥, C

η
‖ ∈ R

+, whereas the pressure pendo(t)

(still prescribed at this stage) is set at the endocardium; the generalized Robin
conditions are meant to represent the effect of the pericardium and surrounding
tissues on the epicardium. Finally, d0 and ḋ0 denote initial conditions.

3.2.3.1 Prestress

If, at the initial time t = 0, pendo = pendo(0) > 0, the blood pressure acts at
the endocardial walls and thus the net force acting on the myocardium is not zero.
The reference configuration �0 is therefore unstressed at t = 0, which leads to
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unphysical deformations in problem (3.3). To overcome this issue, we use a prestress
approach [40, 78] to determine the internal stresses of the myocardium such that the
latter remains in mechanical equilibrium at t = 0. After observing that P(d, γf ) =
P(d0) at t = 0, we look for a vector d̂0 and a tensor P0 such that

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇0 · P(̂d0) = −∇0 · P0 in �0,

(N ⊗ N)K
η
⊥d̂0 + (I − N ⊗ N)K

η
‖ d̂0 + P(̂d0)N = 0 on �

η
0 ,

P(̂d0)N = pendoN on �endo
0 ,

(3.4)

with d̂0 ≈ d0. We then use the stress tensor P̃(d, γf ) = P(d, γf ) + P0 in place of
P(d, γf ) in the first of Eq. (3.3), and set d0 = d̂0, ḋ0 = 0. Since the pair (̂d0,P0)

is a solution of Eq. (3.4), this allows the myocardium to remain in mechanical
equilibrium at t = 0.

3.2.4 Cardiac Cycle

As we aim at modeling the LV electromechanics for a full heartbeat (typically about
0.8 s long), we need to account for the blood interaction with the LV along the
different phases of the heartbeat (see Fig. 3.2). Hence, we solve different 0D model
(ODEs) [26, 68, 82]. The phases are, in order:

1. Isovolumic contraction: the early stages of the LV contraction drive an increment
of the endocardial pressure pendo from the End Diastolic Pressure (EDP) pendo

EDP

(about 10 mmHg) to the one in the aorta pao (about 85 mmHg). We determine
pendo as the solution of

dV endo

dt
(pendo) = 0, t ∈ (0, T1], (3.5)

where V endo(0) is set to the initial LV volume. Thus, we require that the
ventricular volume V endo remains constant; T1 = T1(p

endo) is the earliest time
occurrence at which pendo ≥ pao;

2. Ejection: the ventricular volume V endo decreases due to the contraction of the
LV forcing the blood to flow through the aortic valve. We use a two elements
Windkessel 0D model [84] in the form:

C
dpendo

dt
= −pendo

R
− dV endo

dt
, t ∈ (T1, T2], (3.6)

with pendo(T1) = pao where C and R represent the capacitance and resistance of
the electric circuit mimicking the blood flow in the aorta. This phase ends when
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Fig. 3.2 Wiggers diagram [43] of the left heart depicting the aortic, ventricular, and atrial
pressures as well as the ventricular volume, along the four phases of the cardiac cycle

pendo becomes smaller than pao, thus closing the aortic valve. Since we do not
model the aortic pressure over time, we set in Eq. (3.6) T2 = T2(V

endo) as soon

as dV endo

dt (T2) ≥ 0;
3. Isovolumic relaxation: the endocardial pressure pendo decreases as a conse-

quence of the LV early relaxation while V endo remains constant and is treated
similarly to the isovolumic contraction (Eq. (3.5)). We denote the end time of
this phase as T3 = T3(p

endo), the occurrence at which pendo ≤ pendo
min (about

5 mmHg);
4. Filling: the pressure drop in the LV causes the opening of the mitral valve, which

in turn causes an increment of V endo due to the blood flowing into the LV, until
both the pressure pendo and the volume V endo reach the EDP values. We model
this phase by linearly increasing pendo until it reaches the value pendo

EDP at the time
T 3 = 0.7 s, and we keep it constant from T 3 to the final time T = 0.8 s, that is:

dpendo

dt
= ς, t ∈ (T3, T ], (3.7)

with ς = pendo
EDP−pendo(T3)

T 3−T3
if t ∈ (T3, T 3] and ς = 0 if t ∈ (T 3T ].
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3.3 Space and Time Discretizations

We briefly discuss the numerical discretization of the single core models (3.1), (3.2),
and (3.3) with respect to the space and the time independent variables.

3.3.1 Space Discretization

We use the Finite Element Method, FEM [63], for the space discretization of the
PDEs of Sect. 3.2, thus obtaining a system of ODEs for each core model. We
consider a mesh composed of pairwise disjoint tetrahedra Th such that ∪K∈Th

K =
�0, where h is the maximum size of the elements K ∈ Th. Then, we define
the finite dimensional spaces Xr

h = {
v ∈ C0(�0) : v|K ∈ P

r (K) ∀K ∈ Th

}
and

Xr
h = [

Xr
h

]3, where P
r (K) is the set of polynomials of degree smaller than

or equal to r in the element K . By indicating with
{
ψj

}Ndof
r

j=1 a basis for Xr
h,

it holds Xr
h = span(ψ1, . . . , ψNdof

r
), Xr

h = span({ψk
1}3

k=1, . . . , {ψk
Ndof
r

}3
k=1), and

ψk
j = ψj ek , where ek is the k-th unit vector of R3. We then denote by

{
xj

}Ndof
r

j=1
the set of the Degrees of Freedom (DoFs) associated to Xr

h and Xr
h. The functions

vh, γf,h, and dh are the FEM approximations of v, γf , and d, respectively, and
we denote by v, γ f , and d the vectors containing the nodal values of the primitive

variables. Specifically, for the ionic variables wq

h(x, t) =
∑Ndof

r

j=1 w
q

j (t)ψj (x), where

w
q

j (t) ≈ wq(xj , t), from which wq (t) =
{
w
q

j (t)
}Ndof

r

j=1
and w(t) = {

wq(t)
}NI

q=1.

Similarly, for the transmembrane potential vh(x, t) = ∑Ndof
r

j=1 vj (t)ψj (x), where

vj (t) ≈ v(xj , t) and v(t) = {
vj (t)

}Ndof
r

j=1 . For the active strain, γf,h(x, t) =
∑Ndof

r

j=1 γf,j (t)ψj (x), where γf,j (t) ≈ γf (xj , t) and γ f (t) = {
γf,j (t)

}Ndof
r

j=1 . For

the displacement, dh(x, t) = ∑Ndof
r

j=1

∑3
k=1 d

k
j (t)ψ

k
j (x), where dkj (t) ≈ d(xj , t) · ek

and d(t) =
{{

dkj (t)
}Ndof

r

j=1

}3

k=1
.

We write the equations of the ionic model at each node xj , j = 1, . . . , Ndofr .
The semi-discrete formulation of the ionic model hence reads: given v(t), find w(t)

such that
{

ẇ(t)+ U(v(t))w(t) = Q(v(t)), t ∈ (0, T ],
w(0) = w0,

(3.8)

where Uii (v) = αq(vj )−βq(vj ) and Qi (v) = αq(vj )w
∞
q (vj ), with i = q Ndof

r +j ,

for q = 1, . . . , NI , j = 1, . . . , Ndof
r .
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For the monodomain equation we obtain instead the following semi-discrete
problem: given w(t) and d(t), find v(t) such that

{
Mv̇(t)+K(d(t))v(t)+ Iion(v(t),w(t)) = MIapp(t), t ∈ (0, T ],
v(0) = v0,

(3.9)

where Mij = ∫
�0

ψjψi d�0, Kij (dh) = ∫
�0
(JhF−1

h DmF−T
h ∇ψj ) · ∇ψi d�0,

Iioni (v,w) = ∫
�0

I ion
(
vh,w

1
h, . . . , w

NI

h

)
ψi d�0, and Iappi (t) = Iapp(xi , t) for

i, j = 1, . . . , Ndof
r and v0 = {

v0(xj )
}Ndof

r

j=1 ; Fh = ∂dh
∂X and Jh = det(Fh). To

overcome numerical instabilities [9], we use however a lumped mass matrix M
L

in place of M [60].
The semi-discrete formulation of the mechanical activation problem (3.2) reads:

given w(t) and d(t), find γ f (t) such that

{
Mγ̇ f (t)+ εK(w(t))γ f (t)+ �(w(t), γ f (t),d(t)) = 0 t ∈ (0, T ],
γ f (0) = 0,

(3.10)

where Kij (w) = ∫
�0

ε

g(w3
h)
∇ψj · ∇ψi d�0 and �i (w, γ f ,d) = − ∫

�0

1
g(w3

h)
�

(
w3
h, γf,h,dh

)
ψi d�0, for i, j = 1, . . . , Ndof

r .
The semi-discrete formulation of the mechanics problem (3.3) reads: given

γ f (t), find d(t) such that

⎧
⎨
⎩
ρsM3d̈(t)+ Fḋ(t)+Gd(t)+ S(d(t), γ f (t)) = pendo(t)− S0, t ∈ (0, T ],
d(0) = d0, ḋ(0) = 0,

(3.11)

where d0 =
{{

d0(xj ) · ek
}Ndof

r

j=1

}3

k=1
, M3 = diag{M,M,M}, pendoi =

∫
�endo

0
pendoN·ψ i , S0,i =

∫
�0

P0 : ∇0ψ
k
i d�0, Fkij = ∑

η∈{epi,base}
∫
�
η
0

(
C
η
⊥(N ⊗ N)

+C
η
‖ (I − N ⊗ N)

)
ψk
j · ψk

i d�0, F = diag
{
F
k
}3
k=1, Gk

ij = ∑
η∈{epi,base}

∫
�
η
0

(
K

η
⊥

(N ⊗ N)+K
η
‖ (I − N ⊗ N)

)
ψk
j · ψk

i d�0, G = diag
{
G
k
}3
k=1, Ski (d, γ f ) =

∫
�0

P(dh, γf,h) : ∇0ψ
k
i d�0, S(d, γ f ) = diag

{
Sk(d, γ f )

}3

k=1
for i, j =

1, . . . , Ndof
r . The discretized prestress problem (3.4) can be similarly written as:

find (̂d0,P0) such that

Gd̂0 + S(̂d0,h) = pendo
EDP − S0. (3.12)
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3.3.2 Time Discretization

We now carry on the time discretization for each of the semi-discrete single
core problems of Sect. 3.3.1. For the electrophysiology several approaches have
been proposed and used to solve the monodomain equation, in combination with
the ionic model: explicit schemes [36, 68], implicit schemes [49, 59, 85], and
implicit-explicit (IMEX) schemes [15, 75]. Regarding the mechanics, we consider
an implicit scheme, while we consider both implicit and semi-implicit schemes
for the electrophysiology. We symbolically rewrite the semi-discrete problems of
Sect. 3.2 in the general form:

⎧
⎪⎪⎨
⎪⎪⎩

Mizi (t)+ Ti (z(t)) = Hi (t) t ∈ (0, T ], i = 1, . . . , 4,

zi (0) = zi,0, i = 1, . . . , 4,

ż4(0) = 0,

(3.13)

where z1 = w, z2 = v, z3 = γ f , z4 = d, and M1 = I
d
dt , M2 = M3 = M

d
dt ,

M4 = ρsM3
d2

dt2
. The nonlinear vector-valued functions Ti and Hi are specific of the

corresponding core model. In order to obtain a fully discretized formulation using
the BDF scheme, we exploit the following approximation of the time derivatives:

d

dt
zi (tn+1) ≈ 1

�t

(
ϑ I

0zn+1
i − zI

i

)
, zI

i =
σ∑

k=1

ϑ ′
kzn−k+1

i , i = 1, . . . , 4

d2

dt2
z4(t

n+1) ≈ 1

(�t)2

(
ϑ II

0 zn+1
4 − zII

4

)
, zII

4 =
σ+1∑
k=1

ϑ II
k zn−k+1

4 ,

(3.14)

where �t = T
NT

is the timestep size, NT being the number of subintervals, while
the parameters ϑ ′

k, ϑ
′′
k , k = 0, . . . , σ depend on the order σ of the BDF scheme.

In the implicit case, we obtain the following nonlinear systems:

Ai (zn+1) = bn+1
i , i = 1, . . . , 4, n = σ, . . . , NT − 1, (3.15)

with zn assigned for n = 0, . . . , σ . In the semi-implicit case, on the other hand,
we extrapolate the variables in the nonlinear terms Ai (zn+1) by means of the
Newton-Gregory backward polynomials [11]—as done, e.g., for the Navier–Stokes
equations in [29]—thus yielding a linear system at each timestep. The extrapolated
variables are evaluated by means of an approximation of the same order σ of
the BDF scheme as zi (tn+1) ≈ z∗i = ∑σ

k=1 βkzn−k+1
i . We thus approximate the

nonlinear terms as Ai (zn+1) ≈ ∑4
j=1 Ai,j (z∗)zn+1

j + Ãi (z∗), with notation being
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understood. By recalling Eq. (3.15), we hence obtain a system in the form:

4∑
j=1

Ai,j (z∗)zn+1
j = bn+1

i n = σ, . . . , NT − 1, (3.16)

with zn assigned for n = 0, . . . , σ and bn+1
i = hn+1

i − Ãi (z∗).

3.3.2.1 Discretization of the 0D Fluid Model

We evaluate the volume V endo(t) at time tn by exploiting the formula reported in
[68]. For the discretization of the 0D fluid models of Sect. 3.2.4 in terms of pendo,
we consider the following approaches tailored on the phase of the heartbeat (we
drop the “endo” superscript for simplicity). At each n:

1. Isovolumic contraction: we use an inexact Newton method to solve Eq. (3.5)
by iteratively updating the pressure as pn+1

k+1 = pn+1
k − �t

ζ
(V n+1

k − V n), for

k = 0, 1, . . . with pn+1
0 = pn and V n+1

0 = V n. By dimensional arguments,

we approximate ∂V
∂p
(pn+1

k ) as −�t
ζ

[
mm4s2

g

]
in the Newton iterate. At each

iteration, pn+1
k+1 is used to solve the electromechanics problem thus obtaining

V n+1
k+1 ; the procedure is repeated until the condition

|V n+1
k+1 −V n|
�t

< ε is satisfied.
The parameter ζ < 0 has to be “sufficiently” small in order for the fixed point
algorithm to converge;

2. Ejection: the two elements Windkessel model (3.6) is solved in the pressure
variable with a BDF scheme of order σ = 1:

C
pn+1 − pn

�t
= −pn+1

R
− V n − V n−1

�t
; (3.17)

3. Isovolumic relaxation: we proceed as in 1);
4. Filling: the pressure is simply updated as pn+1 = pn +�t ς .

3.4 Numerical Coupling: Segregated Strategies

We first recall the monolithic strategy that we introduced in [28], then we propose
three new segregated strategies for the solution of the electromechanics problem.
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3.4.1 Fully Monolithic Strategy (IIEIAIMI)

We use the implicit scheme (3.15) for the time discretization of each core model
and we assemble the integrated problem in a monolithic fashion, thus considering a
“strong” coupling among the fully discretized core models; see [28]. This amounts
to solve, for n = σ, . . . , NT − 1, the following system of size 8 × Ndof

r :

(IIEIAIMI ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϑ I

0

�t
+ U(vn+1)

)
wn+1 − Q(vn+1) = 1

�t
wI,

(
ϑ I

0

�t
M+K(d

n+1
)

)
vn+1 + Iion(vn+1,wn+1)= 1

�t
MvI +MIapp(tn+1),

(
ϑ I

0

�t
M+ εK(wn+1)

)
γ n+1
f + �(wn+1, γ n+1

f , d
n+1

) = 1

�t
Mγ I

f ,

(
ρs

ϑ II
0

(�t)2
M3 + ϑ I

0

�t
F+G

)
d
n+1 + S(d

n+1
, γ n+1

f )

= ρs
1

(�t)2
M3d

II + 1

�t
Fd

I + pendo(tn+1)− S0,

(3.18)

which we indicate as (IIEIAIMI), where the subscript I stands for the implicit
solver, and compactly rewrite in algebraic form as

An+1
EM (zn+1) = bn+1

EM , (3.19)

with notation being understood. We then apply, at each timestep, the Newton method
[63] to approximate the solution of the nonlinear problem (3.19) by iteratively
solving the linear system

J
n+1
EM,kδzn+1

k+1 = −rn+1
k with zn+1

k+1 = zn+1
k + δzn+1

k+1, (3.20)

for k = 0, . . . , until ‖rn+1
k ‖L2 < εNtol, where εNtol is a given tolerance. Jn+1

EM,k is

the Jacobian matrix of (3.19), evaluated in zn+1
k , and is endowed with the following

block structure:

JEM =
J11 J12 0 0

J21 J22 0 J24

J31 0 J33 J34

0 0 J43 J44 (3.21)



94 L. Dede’ et al.

while the residual is defined as rn+1
k = bn+1

EM − An+1
EM (zn+1

k ). In (3.21) we high-
light the diagonal blocks corresponding to the electrophysiology, the mechanical
activation, and the mechanics, respectively. We use the preconditioned GMRES
method [72] to solve problem (3.20). We exploit a lower block triangular Gauss–
Seidel right preconditioner PEM introduced in [28], a generalization of the FaCSI
preconditioner of [23, 24, 27]. PEM is obtained by dropping the upper triangular
blocks of matrix JEM , namely J12, J24, and J34, and then by substituting the
diagonal blocks with black-box Algebraic Multigrid (AMG) and Additive Schwarz
preconditioners. With this strategy, we are able to exploit the information of the
core problems at the block level, that is we use a preconditioner that exploits the
“physics” of the coupled problem.

While (IIEIAIMI) is “numerically” stable and convergent as long as the initial
guess zn+1

0 in (3.20) is, at each time, “sufficiently” close to the solution, it also
requires to use the same timestep for the time discretization of each core model.
Hence, even if the electrophysiology and the mechanics feature very different time
scales, the former dictates our choice for the timestep of the fully monolithic
problem.

3.4.2 Partially Segregated Strategy (IIEIAI)–(MI)

We break the strong coupling between the electrophysiology and the mechanical
activation (IIEIAI) and the tissue mechanics (MI). We hence evaluate the terms

K(d
n+1

) and �(wn+1, γ n+1
f ,d

n+1
) of Eq. (3.18) in the extrapolated variable d

∗

instead of d
n+1

, thus obtaining two separated problems which are solved in a
segregated fashion. This strategy is equivalent to the application of a (first order)
Godunov splitting scheme [32] to the monolithic problem. We notice that the
(IIEIAI) problem is still fully coupled, while it is decoupled from the (MI) block,
hence the denomination (IIEIAI)–(MI).

This approach allows to use a smaller timestep for the (IIEIAI) problem, which
we denote by τ , with respect to the one used for the mechanics (MI): we set in
particular

τ = �t

Nsub

,

where Nsub ∈ N is the number of intermediate substeps; τ is the timestep size of

(IIEIAI) and �t that of (MI). This implies that τ ≤ �t and t
n+ m

Nsub = tn+mτ for
m = 1, . . . , Nsub. Nsub can also be regarded as the ratio of the timestep lengths used
for the mechanics and for the electrophysiology and activation. The overall time
advancement is represented in Fig. 3.3. Another clear advantage of this approach
is that, in the isovolumic phases, only the mechanics problem needs to be solved,
contrarily to the fully monolithic one where Eq. (3.18) has to be solved at each
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Fig. 3.3 Graphical representation of the time advancement for (IIEIAI)–(MI) and
(ISIESIASI)–(MI)

subiteration. Problem (IIEIAI) from tn to tn+1 reads:

(IIEIAI ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϑ I

0

τ
+ U(vn+

m
Nsub )

)
wn+ m

Nsub − Q(vn+
m

Nsub ) = 1

τ
wI,

(
ϑ I

0

τ
M+K(d

∗
)

)
v
n+ m

Nsub + Iion(v
n+ m

Nsub ,w
n+ m

Nsub )= 1

τ
MvI = MIapp(t

n+ m
Nsub ),

(
ϑ I

0

τ
M+ εK(wn+ m

Nsub )

)
γ
n+ m

Nsub

f + �(wn+ m
Nsub , γ

n+ m
Nsub

f , d
∗
) = 1

τ
Mγ I

f ,

(3.22)

for m = 1, . . . , Nsub, where the terms wI, vI, and γ I
f (defined in Eq. (3.14)) are

evaluated by using the variables at times tn, tn − τ, . . . , tn − (σ − 1)τ . As in
the case of the implicit electromechanics, we use the Newton method to solve
problem (3.22), and the block structure of the correspondent Jacobian matrix JEA
is:

JEA =
J11 J12 0

J21 J22 0

J31 0 J33. (3.23)

We exploit the same preconditioning technique that was outlined in Sect. 3.4.1 for
the (IIEIAIMI) strategy, but we restrict it to the block (IIEIAI). After solving
Eq. (3.22) for Nsub steps, we solve at tn+1 the implicit mechanics problem (MI ):

(MI ) :

(
ρs

ϑ II
0

(�t)2 M3 + ϑ ′
0

�t
F+G

)
d
n+1 + S(d

n+1
, γ n+1

f )

= ρs
1

(�t)2
M3d

II + 1

�t
Fd

I + pendo(tn+1)− S0,

(3.24)
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by means of the Newton method. We notice that the vector γ n+1
f in Eq. (3.24) is

already known, since it is given after the last step of Eq. (3.22) (i.e. for m = Nsub).

3.4.3 Partially Segregated Strategy (ISIESIASI)–(MI)

By considering now the semi-implicit scheme (subscript SI) for the time discretiza-
tion, the (ISIESIASI) problem reads:

(ISIESIASI ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϑ I

0

�t
+ U(v∗)

)
wn+ m

Nsub = 1

τ
wI + Q(v∗),

(
ϑ I

0

�t
M+K(d

∗
)+ I

ion
v (v∗,w∗)

)
vn+

m
Nsub + I

ion
w (v∗,w∗)wn+ m

Nsub

= 1

τ
MvI + Ĩion(v∗,w∗)+MIapp(tn+

m
Nsub ),

(
ϑ I

0

τ
M+ εK(w∗)+ Pγf (w

∗, γ ∗
f ,d

∗
)

)
γ
n+ m

Nsub

f = 1

τ
Mγ I

f + �̃(w∗, γ ∗
f ,d

∗
),

(3.25)

for m = 1, . . . , Nsub. In this case, the block pattern of the matrix AEA, stemming
from the linear system (3.25), is:

AEA =
A11 0 0

A21 A22 0

0 0 A33

.

(3.26)

As in the case of the (IIEIAI) strategy, after solving Eq. (3.25) for Nsub steps, we
solve the implicit mechanics problem (MI ) (3.24).

3.4.4 Fully Segregated Strategy (ISI)–(ESI)–(ASI)–(MI)

Finally, we further segregate the (ISIESIASI) block: that is instead of solving
schematic (3.25) in a single shot, we solve the three subproblems sequentially. In
Fig. 3.4 we show a representation of the time advancement in this case. At each time
tn, the algorithm amounts to perform, for m = 1, . . . , Nsub, the following steps, in
order:
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Fig. 3.4 Graphical representation of the time advancement for (ISI)–(ESI)–(ASI)–(MI)

1. find w
n+ m

Nsub by solving:

(ISI ) :
(
ϑ I

0

�t
+ U(v∗)

)
wn+ m

Nsub = 1

τ
wI + Q(v∗); (3.27)

2. use w
n+ m

Nsub , obtained with Eq. (3.27), to find v
n+ m

Nsub by solving:

(ESI ) :

(
ϑ I

0
�t

M+K(d
∗
)+ I

ion
v (v∗,w

n+ m
Nsub )

)
v
n+ m

Nsub

= 1

τ
MvI + Ĩion(v∗,w

n+ m
Nsub )− I

ion
w (v∗,w

n+ m
Nsub )w

n+ m
Nsub +MIapp(t

n+ m
Nsub );

(3.28)
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3. use w
n+ m

Nsub and v
n+ m

Nsub , obtained from Eq. (3.27) and Eq. (3.28), to find

γ
n+ m

Nsub

f by solving:

(ASI ) :

(
ϑ I

0

τ
M+ εK(w

n+ m
Nsub )+ P

γf (w
n+ m

Nsub , γ ∗
f ,d

∗
)

)
γ
n+ m

Nsub

f

= 1

τ
Mγ I

f + �̃(w
n+ m

Nsub , γ ∗
f ,d

∗
).

(3.29)

After Nsub steps, we solve once again problem (3.24) and finally obtain d
n+1

.

3.5 Numerical Results

In this section we first briefly describe the procedures used to obtain the geometries,
the fiber and sheet fields, and the prestress, then we test the three segregated schemes
on benchmark problems in both idealized and subject-specific LV geometries. The
idealized mesh features 1827 vertices and 6500 tetrahedra, while the subject-specific
mesh features 126,031 vertices and 637,379 tetrahedra. We use finite elements of
order r = 1 and BDF of order σ = 1 (i.e. Backward Euler) and σ = 2 for the time
discretization to ensure A-stability [63].

For all the simulations we use LifeV,1 an open-source finite element library for
the solution of problems described by PDEs in a High Performance Computing
framework.

3.5.1 Preprocessing

Image segmentation locates regions of interest (ROI) in the form of a subset of pixels
[35], and amounts to assign different flags to regions containing different types of
tissues and/or fluids. In this work, to obtain the subject-specific mesh, we used a
manual procedure exploiting the brightness of the pixels of a 3D MRI image;2 see
Fig. 3.5.

Fibers and sheets field distributions in the myocardium are not tipically extracted
from MRIs, unless special procedures are applied [65]. For this reason, several

1https://cmcsforge.epfl.ch.
2The MRI images are provided by Prof. J. Schwitter (Chief physician at the Centre Hospitalier
Universitaire Vaudois CHUV, Lausanne) and Dr. P. Masci (CHUV) in the framework of the
collaboration CMCS@EPFL–CHUV.

https://cmcsforge.epfl.ch
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Fig. 3.5 From left to right: the MRI from which the subject-specific geometry was segmented, the
mesh, the fibers field, and the sheets field

mathematically rule-based definition of these fields have been used [33, 45, 50, 70],
which attempt to construct their orientation. At the epicardium and at the endo-
cardium, the fiber direction f0 is tangential to the boundary, while the sheet direction
s0 belongs to the plane identified by the normal and the ventricle centerline (i.e. the
line passing through the center of the ventricle). In the most general case, angles
αendo, αepi , βendo, and βepi , representing the inclination of the fibers and the sheets
with respect to the base plane, are assigned. The direction of fibers and sheets inside
the myocardium is determined by a transmurally linear mapping. Here we consider
the rule-based algorithm proposed in [87] and further developed in [68]; we set
αendo = −60◦, αepi = +60◦, βendo = βepi = 0◦. In Fig. 3.5, we show the fields
obtained by applying the algorithm to the subject-specific mesh.

Regarding the prestress, we solve problem (3.12) by means of a continuation
method. More precisely, given the EDP value pendo

EDP and an integer S representing
the number of steps, we first define a pressure ramp increment in the form: pk =
k
S
pendo
EDP , k = 1, . . . , S. For each k = 1, . . . , S, we set p = pk in Eq. (3.4)

and solve the nonlinear system (in d) by using the Newton method to obtain an
increasingly accurate approximation of P0,k, i.e. the prestress corresponding to the
pressure pk . We refer the reader to [28] for more details.

3.5.2 Benchmark Problem with Idealized Geometry

In order to assess the properties of the proposed segregated schemes and to evaluate
their behavior for different timestep sizes, we set up and solve a benchmark problem
by using the idealized geometry. The contraction is triggered by applying a current
in three distinct points at the endocardium while keeping the pressure at the
EDP value pendo

EDP = 10 mmHg. We choose this setting so that the volume of the
idealized LV halves during the simulation, from the initial value of approximately
136 mL to around 68 mL, thus attaining a deformation which is comparable with
physiological data. We set T = 0.1 s and τ = 1, 2, 4, 8, 12, 16, 24, 32×10−5 s, with
Nsub = 1, 2, 4, 8, 16 for the segregated strategies (being �t = Nsubτ the timestep
size for the mechanics), while �t = τ for the monolithic strategy. The absolute
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Fig. 3.6 Idealized LV and magnitude of the displacement field at different times, compared with
the reference domain �0, for the benchmark problem

tolerances for the Newton method and the GMRES solver are set to εNtol = 10−4

and εGtol = 10−8, respectively. For all the numerical simulations of this benchmark,
6 cpus are used.

In the following, we denote by v̂τh and d̂τh the potential and the displacement
solutions, respectively, obtained with (IIEIAIMI) and timestep τ , while we set
τ̂ = 10−5 s (the smallest timestep size used). We use the solution generated by the
monolithic approach (IIEIAIMI) with (τ = τ̂ ) as a reference one (a manufactured
“exact” solution). Indeed, since no exact solution for the electromechanics problem
is available, the error analysis with respect to the timesteps is carried out by using
a reference solution on the same mesh, effectively disregarding the error due to the
space discretization. In the monolithic case, all the coupling conditions between
the core models are enforced in the extradiagonal blocks of the monolithic system
matrix. However, as we will show, this accuracy comes at the price of a large
computational cost. In Fig. 3.6 we report the deformation and the displacement field
of the ideal geometry obtained by solving the problem with (IIEIAIMI) compared
with the reference domain �0.

We first numerically verify that in the (IIEIAIMI) case the errors in L2(�0) and
L∞(�0) norms of the potential and of the displacement magnitude decay as τ and
τ 2 when using BDF with σ = 1 and σ = 2, respectively. With this aim, we display
in Fig. 3.7 the errors ||̂vτh − v̂τ̂h || and ||̂dτh − d̂τ̂h|| against the timestep τ = �t . The
converge rate is indeed coherent with the order σ of the BDF scheme under use.

Before analyzing the convergence rates against τ for the segregated schemes,
we investigate the role of the splitting scheme on the mechanical feedback in the
monodomain equation, which is realized by the dependence of the diffusion tensor
on the deformation gradient F. To this aim, we display in Fig. 3.8 the errors, at times
T = 24, 48, 96 ms, made using (IIEIAI)–(MI) with τ̂ for different values of the
parameterNsub. That is, we use τ = τ̂ for the electrophysiology and the activation—
the same timestep used to obtain the reference solution—while using �t = Nsubτ

for the mechanics. We first of all observe that, in all cases, the convergence rate
is linear with respect to Nsub (equivalently, with respect to �t); this behavior is
expected since the Godunov splitting scheme used in the segregated algorithm is
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Fig. 3.7 Errors in L2(�0) (left) and L∞(�0) (right) norms of the potentials v̂τh (top) and of
the displacements d̂τh (bottom) obtained by solving the problem with the monolithic scheme
(IIEIAIMI), at times T = 24 ms (blue), T = 48 ms (red), and T = 96 ms (yellow), in logarithmic
scale against τ . The results for both BDF1 and BDF2 are reported

first order accurate. Furthermore, while the magnitude of the error of the potential
v̂τh is negligible when compared to the errors in Fig. 3.7, the same does not hold for
the displacement dτ̂h. This is also expected since, in Fig. 3.8, the value of τ is fixed
while �t is not, nonetheless this clearly shows that, for transmembrane potential,
the splitting error is several orders of magnitude smaller than the one introduced
when using a larger τ .
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Fig. 3.8 Errors in L2(�0) (left) and L∞(�0) (right) norms of the potentials vτ̂h (top) and of the
displacements dτ̂h (bottom) at time T = 96 ms obtained by solving the problem with the segregated
scheme (IIEIAI)–(MI) and timestep τ , in logarithmic scale against Nsub

We then analyze the errors introduced when using (IIEIAI)–(MI),
(ISIESIASI)–(MI), and (ISI)–(ESI)–(ASI)–(MI) for varying τ and Nsub. We
do not report the ones for the case Nsub = 1 against τ (as previously done for the
monolithic strategy) neither for (IIEIAI)–(MI) nor for (ISI)–(ESI)–(ASI)–(MI)

since no appreciable differences are visible with respect to (IIEIAIMI)
and (ISIESIASI)–(MI), respectively. In Fig. 3.9 the errors for the scheme
(IIEIAI)–(MI) at time T = 96 ms are reported for different choices of Nsub. As
previously mentioned, only first order accuracy is granted by the considered splitting
schemes, however the error on the potential vτh converges even quadratically (it is
superconvergent). On the other hand, the error on the displacement dτh converges
linearly, unless the values Nsub = 1, 2 are employed.

By considering now the (ISIESIASI)–(MI) strategy, we report in Fig. 3.10 the
errors made for the potential and the displacement at times T = 24, 48, 96 ms.
We observe that the error significantly increases for τ > 8 × 10−5 s, in particular
for the potential vτh . This is due to numerical instabilities occuring when using the
semi-implicit case, which is “not guaranteed” to be stable for an arbitrary choice
of τ . Nonetheless, these instabilities are “non-destructive” since the error on dτh is
not significantly affected by them. However, in both cases, we observe again that
the errors are superconvergent for Nsub = 1 and τ ≤ 8 × 10−5 s as they decrease
quadratically. We conclude our error analysis by reporting in Fig. 3.11 the errors
against �t at time T = 96 ms when using (ISIESIASI)–(MI), for different choices
of Nsub. We conclude that, similarly to the (IIEIAI)–(MI) case, the errors converge
at least linearly, as expected by the splitting schemes employed.
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Fig. 3.9 Errors in L2(�0) (left) and L∞(�0) (right) norms of the potentials vτh (top) and of
the displacements dτh (bottom) at time T = 96 ms obtained by solving the problem with
(IIEIAI)–(MI) and Nsub = 1, 2, 4, 8, 16, in logarithmic scale against τ

We now investigate the efficiency of the schemes as a function of τ and

Nsub. In Tables 3.1 and 3.2 we report the average number of Newton (N
N

)

and GMRES (N
N

) iterations required for the solution of the monolithic prob-
lem with (IIEIAIMI), and for the solution of the mechanics problem with the
(IIEIAI)–(MI), (ISIESIASI)–(MI), and (ISI)–(ESI)–(ASI)–(MI) strategies. As

expected, both N
N

and N
G

increase significantly as τ gets larger and larger.
Otherwise, the required wall time T W dramatically drops with a speed-up of
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Fig. 3.10 Errors in L2(�0) (left) and L∞(�0) (right) norms of the potentials vτh (top) and of
the displacements dτh (bottom) obtained by solving the problem with (ISIESIASI)–(MI), at times
T = 24 ms (blue), T = 48 ms (red), and T = 96 ms (yellow), in logarithmic scale against τ , for
Nsub = 1

almost 300 times when using the strategy (ISI)–(ESI)–(ASI)–(MI) and timestep
τ = 32 × 10−5, with respect to (IIEIAIMI) with timestep τ = 1 × 10−5.

We can now better compare the efficiency of the different strategies by displaying
in Fig. 3.12 the errors of the displacement in L2(�) norm against the total wall time
T W , and hence establish which strategy is the most efficient for a given tolerance on
the error. The first clear conclusion that can be drawn is that, whatever the tolerance,
it is more convenient to use the (IIEIAI)–(MI) strategy with Nsub = 1 rather than
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Fig. 3.11 Errors in L2(�0) (left) and L∞(�0) (right) norms of the potentials vτh (top) and
of the displacements dτh (bottom) at time T = 96 ms obtained by solving the problem with
(ISIESIASI)–(MI) and Nsub = 1, 2, 4, 8, 16, in logarithmic scale against τ

the monolithic (IIEIAIMI) one; this is in agreement with our previous observations
on the magnitude of the splitting error introduced by using the (IIEIAI)–(MI)

strategy. More in general, we observe that the proposed segregated strategies
represent a better alternative with respect to the monolithic one if a larger error on
the displacement is deemed to be acceptable. We conclude that the chosen strategy
represents a trade-off between the efficiency of the simulation and the accuracy
of the approximated solution. If the goal is that of reducing the computational
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Table 3.1 The average

number of Newton (N
N

) and

GMRES (N
G

) iterations for
the solution of the monolithic
problem (IIEIAIMI), and
the total wall time (T W , in
minutes) for the benchmark
simulations, for each
τ (= �t) considered

τ (= �t) (IIEIAIMI)

N
N

N
G

T W

10−5 s 2.1 8.5 363′

2 × 10−5 s 2.4 8.1 188′

4 × 10−5 s 3.0 7.8 101′

8 × 10−5 s 3.5 7.7 54′

12 × 10−5 s 3.6 7.9 36′

16 × 10−5 s 4.0 7.6 28′

24 × 10−5 s 4.7 7.9 22′

32 × 10−5 s 5.2 9.2 18′

cost, the (ISI)–(ESI)–(ASI)–(MI) strategy should be the matter of choice, although
its accuracy drops for larger timestep sizes. On the other hand, if accuracy is the
driving factor, (IIEIAI)–(MI) has to be preferred to (IIEIAIMI) thus avoiding the
extremely long wall times needed by the latter.

3.5.3 Subject-Specific LV: The Full Heartbeat

We use the subject-specific mesh of Fig. 3.5 for the simulation of a full heartbeat by
modeling the pressure as detailed in Sect. 3.3.2.1 and by setting T = 0.8 s. Basis
functions of degree r = 1 are employed, thus obtaining a system of size M =
8 × N

dof
1 = 1,008,248 in the monolithic case, together with BDF of order σ = 2.

The timestep is set equal to τ = 5 × 10−5 s while �t = Nsubτ with Nsub =
1, 5, 10 for the segregated strategies. All the numerical simulations were carried out
using Piz Daint, a Cray XC50/XC40 supercomputer installed at the Swiss National
Supercomputing Center (CSCS),3 and 72 cores were used for each simulation.4

As for the previous test, a current is applied at the endocardium at three distinct
points for 3 ms in order to trigger the cardiac rythm. We show the results obtained in
Fig. 3.13, where the transmembrane potential at times T = 10, 20, 40 ms is depicted
together with the activation time (AT). The latter is defined, in each point, as the time
at which the electric potential reaches a threshold value vthr (we set in particular
vthr = 10 mV) [56, 81]. The activation time is in good agreement with experimental

3http://www.cscs.ch.
4Unfortunately the maximum wall time allowed on the Piz Daint supercomputer is set to 24 h,
thus making it impossible to complete a simulation of a full heartbeat in all cases—most notably
for the (IIEIAIMI) strategy, which is the most computational demanding. We hence run two sets
of simulations: in the first case, we set T = 0.8 s thus obtaining the pressure-volume loops of
Fig. 3.16; in the second one, we set T = 0.073 s (the maximum time reachable in 24 h with the
(IIEIAIMI) strategy) thus obtaining the results of Fig. 3.16.

http://www.cscs.ch
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Table 3.2 The average number of Newton (N
N

) and GMRES (N
G

) iterations for the solution of
the mechanics problem and the total wall time (T W , in minutes) for the benchmark simulations,
for each segregated strategy, τ (in 10−5 s), and Nsub considered

τ (IIEIAI)–(MI)

Nsub = 1 Nsub = 2 Nsub = 4 Nsub = 8 Nsub = 16

N
N

N
G

TW N
N

N
G

T W N
N

N
G

TW N
N

N
G

T W N
N

N
G

TW

1 2.5 4.4 300′ 2.7 4.7 221′ 2.8 5.6 178′ 3.3 5.4 156′ 3.6 7.0 144′

2 2.7 4.7 144′ 2.8 5.6 101′ 3.3 5.4 81′ 3.6 7.0 69′ 4.1 10.3 63′

4 2.8 5.6 70′ 3.3 5.4 50′ 3.6 7.0 38′ 4.1 10.2 32′ 4.5 14.5 29′

8 3.3 5.4 38′ 3.6 7.0 26′ 4.1 10.3 20′ 4.4 14.6 16′ 5.2 18.7 15′

12 3.4 6.2 26′ 3.8 8.8 18′ 4.4 12.6 13′ 4.8 17.2 11′ 5.4 21.9 10′

16 3.6 7.0 20′ 4.2 10.2 14′ 4.4 14.6 10′ 5.2 18.7 9′ 5.5 24.7 8′

24 3.8 8.9 15′ 4.4 12.6 10′ 4.8 17.2 8′ 5.4 21.9 6′ 6.0 28.8 6′

32 4.2 10.3 12′ 4.5 14.6 8′ 5.3 18.7 6′ 5.5 24.8 5′ 6.0 33.2 5′

τ (ISIESIASI)–(MI)

Nsub = 1 Nsub = 2 Nsub = 4 Nsub = 8 Nsub = 16

N
N

N
G

TW N
N

N
G

T W N
N

N
G

TW N
N

N
G

T W N
N

N
G

T W

1 2.5 4.4 258′ 2.7 4.7 179′ 2.8 5.6 137′ 3.3 5.4 115′ 3.6 7.0 107′

2 2.7 4.7 123′ 2.8 5.6 81′ 3.3 5.4 59′ 3.6 7.0 48′ 4.1 10.2 42′

4 2.8 5.6 60′ 3.3 5.4 39′ 3.6 7.0 27′ 4.2 10.2 21′ 4.5 14.5 18′

8 3.3 5.4 32′ 3.6 7.0 20′ 4.1 10.2 14′ 4.5 14.5 10′ 5.2 18.6 8′

12 3.4 6.2 22′ 3.9 8.8 13′ 4.4 12.5 9′ 4.8 17.1 7′ 5.4 21.8 5′

16 3.5 7.0 16′ 4.1 10.2 10′ 4.4 14.5 7′ 5.2 18.6 5′ 5.5 24.6 4′

24 3.7 8.7 11′ 4.3 12.3 7′ 4.7 16.9 4′ 5.3 21.5 3′ 6.0 28.4 2′

32 3.8 9.9 8′ 4.3 13.9 5′ 4.8 18.5 3′ 5.3 23.9 2′ 10.6 23.9 2′

τ (ISI)–(ESI)–(ASI)–(MI)

Nsub = 1 Nsub = 2 Nsub = 4 Nsub = 8 Nsub = 16

N
N

N
G

T W N
N

N
G

TW N
N

N
G

T W N
N

N
G

TW N
N

N
G

T W

1 2.5 3.2 242′ 2.7 3.6 159′ 2.8 4.4 118′ 3.3 4.4 97′ 3.6 5.8 84′

2 2.7 3.6 114′ 2.8 4.5 71′ 3.3 4.5 50′ 3.6 5.8 38′ 4.1 8.5 32′

4 2.8 4.5 57′ 3.3 4.5 36′ 3.6 5.8 24′ 4.2 8.5 18′ 4.5 12.2 14′

8 3.3 4.5 31′ 3.6 5.9 18′ 4.2 8.6 12′ 4.5 12.2 8′ 5.2 15.9 7′

12 3.4 6.0 21′ 3.8 8.0 13′ 4.4 11.1 8′ 4.8 15.2 6′ 5.4 19.6 4′

16 3.5 7.0 16′ 4.1 10.1 10′ 4.4 14.3 6′ 5.2 18.3 4′ 5.5 24.3 3′

24 3.7 8.2 11′ 4.3 11.6 6′ 4.6 15.7 4′ 5.4 20.2 3′ 6.0 26.7 2′

32 3.8 8.5 8′ 4.3 12.0 5′ 4.8 15.9 3′ 5.4 20.5 2′ 9.8 28.7 1′

data obtained from healthy patients [10, 83], since the complete activation of the
myocardium takes around 40 ms.

In Fig. 3.14 we show the displacement magnitude on the deformed myocardium
�, compared with the reference geometry �0, at the times T = 100, 200, 300 ms. A
significant thickening of the myocardium walls takes place, which is in accordance
with experimental observations [64]. The model, however, only produces a moderate
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Fig. 3.12 Errors in L2(�) norm of the displacement at time T = 96 ms against the total wall
time T W for the (IIEIAI)–(MI), (ISIESIASI)–(MI), and (ISI)–(ESI)–(ASI)–(MI) strategies for
Nsub = 1, 2, 4, 8, 16, compared to the error for the (IIEIAIMI) strategy

Fig. 3.13 Transmembrane potential at different times (top row) and activation time (bottom row)
for the subject-specific simulation

rotation of the LV: in [58] the authors suggest that this behavior is related to the
choice of the incompressibility constraint, the bulk modulus B magnitude, and to
the boundary conditions. In order to better appreciate the behavior of the employed
model, we also estimate the components of the stress tensor in the fibers and sheets
direction σff = (Pf0)f and σss = (Ps0)s. With this aim, we solve the following
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Fig. 3.14 Deformed subject-specific geometry and displacement field at different times, compared
with the reference domain �0, for the full heartbeat simulation

L2-projection problem: find σff such that

∫

�0

σff ψi =
∫

�0

(Pf0)fψi,

for i, . . . , Ndof
1 , and analogously for σss . In Fig. 3.15 we show the two fields

obtained at the same time instants considered in Fig. 3.14; we highlight that
T = 200 ms corresponds approximately to the time at which the LV pressure
attains its maximum (around 120 mmHg). The values assumed by σss mostly
fall in the physiological range [39, 76, 86, 88] and match the pressure value at
the endocardium. Nonetheless the stress value peaks in the region close to the
myocardium base; we believe that this is due to the thickness of the septum wall
which, in this subject-specific geometry, was reconstructed as particularly thin.
Regarding the stress σff , the model reproduces much larger values with respect
to those indicated in [6, 39, 88], thus overestimating them by almost an order of
magnitude especially where the myocardium wall is (much) thinner. We remark,
however, that the available medical data used in [39] to fit the strain energy function
are obtained with in vitro loading tests, hence accounting only for the passive
component of the stress.

Finally, we compare in Fig. 3.16 the pressure-volume (pV) loops obtained with
the different numerical coupling strategies. A close up of the pV loops in the ejection
phase is also reported to better assess the differences among them. We observe
that, as in the benchmark test, the difference between the results obtained with
(ISIESIASI)–(MI) and those obtained with (ISI)–(ESI)–(ASI)–(MI) is negligible.
We conclude that the main deviation among the pV loops is caused by the choice
of different timestep lengths �t = Nsubτ for the mechanical model. Specifically,
during the last part of the first isovolumic phase, the endocardial pressure increases
very rapidly, while the change of the phase (as detailed in Sect. 3.2.4) takes place
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Fig. 3.15 Stress components σff (top) and σss (bottom) depicted on three slices of the deformed
domain at three different times

Fig. 3.16 LV internal volumes (top left) and endocardial pressures (bottom left) versus time,
with pV loops (right) for the subject-specific simulations with all the strategies considered (the
parameter Nsub used is indicated in legend with a subscript)
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Table 3.3 The mechanics
timestep �t (in 10−5 s), the
average number of Newton

(N
N

) and GMRES (N
G

)
iterations, and the total wall
time (T W , in minutes) for the
simulation of the heartbeat
with final time T = 0.073 s
with the subject-specific
mesh, using the four
strategies considered and
Nsub = 1, 5, 10

Strategy Nsub �t N
N

N
G

T W

(IIEIAIMI) – 5 3.3 18.7 1440′

(IIEIAI)–(MI) 1 10 4.4 40.8 723′

(IIEIAI)–(MI) 5 25 5.1 71.8 284′

(IIEIAI)–(MI) 10 50 5.8 93.6 259′

(ISIESIASI)–(MI) 1 10 4.4 40.8 543′

(ISIESIASI)–(MI) 5 25 5.0 72.1 136′

(ISIESIASI)–(MI) 10 50 5.7 93.7 130′

(ISI)–(ESI)–(ASI)–(MI) 1 10 4.4 37.7 582′

(ISI)–(ESI)–(ASI)–(MI) 5 25 5.1 66.1 148′

(ISI)–(ESI)–(ASI)–(MI) 10 50 5.7 86.4 93′

when the condition pendo ≥ pao is satisfied. Hence, when using a large timestep �t

for the mechanical core model, the value of the pressure is higher when the ejection
phase begins.

We conclude our analysis of the subject-specific simulations by reporting in

Table 3.3 the values of N
N

, N
G

, and T W , for the simulation of the heartbeat with
final time set to T = 0.073 for all the strategies used. We observe that, even if in
this case the number of Newton and GMRES iterations increases significantly with
respect to the benchmark simulation case, the segregated schemes, and in particular
the staggered schemes, allow to greatly reduce the computational costs for the
subject-specific simulations too. Indeed, a speed-up of up to 16 times is obtained
when using the (ISI)–(ESI)–(ASI)–(MI) strategy with Nsub = 10, compared to
(IIEIAIMI) used with the same timestep size τ .

3.6 Conclusions

We proposed several segregated strategies for the solution of the integrated elec-
tromechanics problem for the LV. We formulated the continuous model by coupling
the monodomain equation, the ionic minimal model, the activation model for the
fibers contraction, and the myocardial mechanics in the active strain framework.
We approximated the mathematical model in space by means of the Finite Element
method, and in time with both implicit and semi-implicit schemes based on BDF;
then, we formulated segregated strategies for its solution, considering the more
general case of staggered time discretizations arising from the choice of different
timestep sizes for the electrophysiology and mechanical activation from one side,
and for the mechanics from the other side.

The proposed segregated strategies were used with an idealized geometry for the
simulation of a free contraction benchmark. The error on the results were evaluated
against the solution obtained with (IIEIAIMI) and τ = 10−5 s, here assumed to
be almost “exact”. We concluded from our error analysis that an approach based
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on segregating the mechanics from the rest of the problem allows to significantly
reduce the computational cost of the simulation while providing accurate results:
in the benchmark setting, it was possible to reduce the wall time for a 0.1 s long
contraction approximately from 6 h with (IIEIAIMI), to 2.5 h with (IIEIAI)–(MI)

and Nsub = 16. Using a semi-implicit time scheme for the electrophysiology and
the activation allows to further cut the time required for the simulation, but at
relatively large timesteps—for which the semi-implicit scheme is not stable—the
accuracy significantly drops. Then, we showed that if also the electrophysiology
and the activation are solved sequentially by segregating the ionic model, the
monodomain equation and the mechanical activation, the computational cost is
further reduced while the accuracy is preserved. With this approach, by using
(ISI)–(ESI)–(ASI)–(MI) and Nsub = 16, we were able to solve the problem in
less than 1.5 h.

Finally, we showed that the same integrated model can be used for large scale
simulations with subject-specific geometries. We used the proposed strategies for
the simulation of a full heartbeat and showed that physiological values for the
pressure and the volume, are obtained. Segregated algorithms exhibit a significantly
improved efficiency in this case too, when compared to the monolithic one. We
conclude that segregated strategies are preferable if a relatively low temporal
accuracy is acceptable, while the monolithic strategy should be preferred if the
required accuracy is extremely high.
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