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Abstract

Direct monitoring of wild animals’ behavior is challenging and data tampering. Instrument
the animals with collars that embeds sensors, such as tri-axial accelerometer and GPS,
allows obtaining sufficient information for remotely classifying the performed activities. In
this work is presented an accurate and human intelligible framework, designed leveraging
the authors’ skills in machine-learning and data analysis. The system covers all the steps
required to accurately map the raw signals to the activities carried out, grouped in pre-
processing, features extraction and selection, and classification phases.

A case of study consists of a dataset collected by the Crofoot Lab at the Mpala Centre,
in Kenya, instrumenting free-ranging Olive Baboons. This dataset provides both sensors
time-series paired with respective activity labels and unlabeled ones. Labeled data was used
to tune the parameters of the framework phases and to train and test the employed boosted-
trees classifiers, while unlabeled ones were used for further system validations. The average
accuracy obtained on a single activity is 94.5%. At best of the authors knowledge, this is
the first work that aims to solve the problem of direct human monitoring with such high
accuracy, outperforming the state of the art by a lift about 10%.

Another novelty is given by the attention paid to the ethologist’s needs. Together with
the predictions, the framework also returns a ranking for the features considered, based on
their importance in the decision-making process of the classifier. Therefore, the extracted
features are consistent with the logical human path that the ethologist follows in performing
direct monitoring. The produced framework has also been designed consistently with the
ethogram structure to be easily interpretable and to allow activities classification at different
aggregation levels.
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1. Introduction

Animal monitoring is a fundamental phase in the process of understanding individual
behavior and social dynamics that characterize each species. Observing the species of interest
ethologists are able to understand their needs and health status but also to study phenomena
such as habitat utilization [1] or influence of external conditions on their normal behavior
2], [3].

To date, animal monitoring is directly performed by the ethologist. Its task in this phase
is to observe the individuals of the species of interest, annotating over time the activities
carried out, choosing from those proposed by the reference ethogram. An ethogram is defined
as the set of natural behavior for an individual, each with its own description [4]. Direct
observation causes several problems [5], as the presence of man is perceived by the animals
observed. The perceived state of alert causes data tampering, as it involves a deviation from
normal behavior [6]. In addition, periods of prolonged observation are necessary to collect a
consistent dataset, but increase the risk of distraction, not to mention that human reflexes
could introduce a delay in recording transitions from one activity to another [7] and [8]. In
addition, as the number of species observed increases, the number of required ethologists
will inevitably increase, which is a major logistical problem.

Recent developments in wearable tracking technologies and machine-learning algorithms
pave the way for animal automatic remote monitoring systems. The devices used to instru-
ment animals are usually composed of a GPS, for geolocation, and tri-axial accelerometers,
suitable for discriminating the different activities [9]. In literature, the best results are
obtained in the automatic recognition of activities carried out by captive animals, mainly
cattle as cows [10], or sheep [11]. Less satisfactory are the performances of systems for au-
tomatic remote monitoring of wild animals. The different scenario offers major challenges,
such as the inability to instrument the entire area or to repair the sensors in case of damage.
Although good results have been obtained in the discrimination between stationary and
non-stationary activities in free-ranging animals [12], by decreasing granularity and expand-
ing the pool of recognized activities, the accuracy of classification models falls significantly
[13]. At best of the authors’ knowledge, the best performance in wild animal monitoring
activities is between 69.0% [14] and 77.8% [15].

The proposed framework aims to support automatically and effectively the process of
remote animal monitoring, returning to the ethologist accurate prediction, each combined
with an interpretable and comprehensive explanation of the decision-making process that
produced it. In detail, the innovative contributions brought by the work here present are:

e A raw-data pre-processing, conduced both in time and frequency domain. In this step
data analysis techniques as noise filtering and bias removal has been leveraged to ease
the following framework phases;

e Features selection properly designed to match ethologist needs. In fact, all the features
used by the system are coherent with those considered by the ethologist in the direct
performing of animal monitoring. Also, just the minimum number of features has been
selected, taking into account the well-known Curse of Dimensionality Problem [16];
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e An inconsistent observation detector, to augment prediction reliability and robustness
A classifier has been properly trained to identify outliers and anomalies in the data,
for which mislabeling is highly probable;

e Interpretability of the classification model. In fact, it has been structured so as to
be consistent with the ethogram. This also allows to classify activities at different
aggregation level;

e A classifier whose decision-making process is transparent to the ethologist. In fact, each
prediction produced is associated with a ranking of features, based on the importance
they had in the outcome computation.

The performance the proposed framework outperforms the ones reported in the literature by
a lift about 10%, revealing that it constitutes valid support for the ethologist, accelerating
his work in the identification phase, allowing him to focus more on the phases of inference
and analysis, aware that he can rely on accurate monitoring.

The rest of the document is organized as follows: Section 2 illustrates framework imple-
mentation and explain the choices that have allowed us to overcome the issues related to
wild animal monitoring. Section 3 describes the case study used to validate the produced
framework. Evaluation results are reported in Section 4 and then discussed in Section 5.
Finally, the conclusions are presented in Section 6.

2. Methods

This section describes the three main phases of the proposed framework: pre-processing,
features extraction and selection, and classification. Particular attention is paid to justify
the implementation choices, explaining how they aim to solve the problems related to the
addressed scenario.

2.1. Pre-Processing

The dataset provided consists of time-series measured by the sensors used to instrument
the animals, usually tri-axial accelerometer and GPS. As these sensors use to work at differ-
ent sampling rates, the first pre-processing step consists of the equalization of the frequency
resolution for the time-series provided. Usually, the frequency resolution of the labeling
process is chosen as the reference. Therefore, time-series sampled at a higher frequency are
averaged, while those sampled at lower frequency are interpolated.

Dealing with real data, it is also necessary to handle incomplete, inconsistent and noisy
data. Incomplete data may be due to sensor failures, or even to problems in downloading
data. Among the different solutions proposed in the literature, we decide as a rule for our
framework to drop all the instances that contain one or more missing values, rather than
interpolating the values. This choice was made to avoid introducing further artifacts and
noise.

The superimposed noise component present in the measured time-series represents one of
the main issues to face dealing with free-ranging animal monitoring. This noise is due to pure
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measurement error and is in good approximation composed of high-frequency oscillations.
Although it is difficult to eliminate it, low pass filters are able to reduce it. In particular,
the proposed framework uses two identical second-order Chebyshev low-pass filters, arranged
in a cascade. The choice of the filter family is due to its zero transition band and reduced
ripple amplitude. The use of two filters in cascade is instead necessary to compensate for the
non-linearity of the filter phase, which if applied individually would alter the morphology of
the signal [17]. In addition to the high-frequency components, the zero frequency harmonic
must also be removed. This process is called debiasing because this frequency represents the
bias, i.e. the systematic error that indicates a persistent distortion that the sensor produces
on the measured values.

At this point, inconsistencies are managed. To distinguish anomalous instances and
normal we leverage an event detection algorithm based on the consistency between features
directly interpretable and associated label. In particular, in the proposed framework we have
chosen to consider the speed time-series provided by GPS. This choice was made consider-
ing that a common split among the ethograms of wild animals species consists in dividing
the activities between stationary and non-stationary. The choice to use an event detection
algorithm is due to the excellent results reported in the literature regarding their use in
behavior identification [18]. In our framework, however, this algorithm was not used to per-
form the classification, but as a pre-processing technique to identify inconsistent instances.
The algorithm is based on two thresholds, the value of which is set by the ethologist, based
on his background knowledge. One corresponds to the speed threshold beyond which the
animal cannot longer be considered in a stationary state, while the second corresponds to the
value below which the animal cannot be considered non-stationary. Instances whose label
is related to a stationary state but whose speed value is lower than the minimum threshold
and instances whose label is related to a non-stationary state, but whose speed is greater
than the maximum threshold are considered to be inconsistent. In this scenario, the most
common inconsistencies cause is GPS failures due to connection problems with the satellite.
The output of the algorithm is used to create a new label, based on which a specific classi-
fier is properly trained to recognize the inconsistencies. In fact, the speed values measured
during failures will be inconsistent with other features provided. Therefore it is possible to
train a classifier to recognize these patterns and become robust even to inconsistencies.

2.2. Features Extraction and Selection

Once processed, time-series are used to extract new features. Perform this procedure
starting from the raw time-series would be deleterious because they could amplify the mea-
surement errors contained. In this phase, we have chosen to extract the minimum number
of features necessary to allow the classifier to extract effective patterns to perform its task.
In fact, increasing the number of features does not necessarily improve the performance of
the classifier, but rather increases the risk of overfitting. This phenomenon is well-known
in literature as The Curse of Dimensionality [16]. Bedised, as a selection criterion for a
feature, it is required to be significant for the ethologist, i.e. consistent with direct animal
behavior monitoring and reasonably related to the activities to identify.



2.3. Classification

In many machine-learning problems, the output of a single classifier is not enough for the
results obtained to be reliable [19]. This has led to the development of ensemble algorithms.
Our framework leverages an algorithm based on boosted tree, which involves combining
several weak learners sequentially, where each one is constructed in such a way as to minimize
the classification error committed by the previous one. The function used to define the first
tree is

F,(x) = argmin., Z L(yi,7) (1)
i=1
where gamma is an introduced term to allow the model to generalize, preventing overfitting.
The following trees are computed according considering each m sample as

Fin(2) = Fina(2) + i () (2)

The function that defines the single tree is defined considering the first derivative of the loss

function
rim = —a[ g ) )

Where y is the target variable and « is the learning rate. The result, shown in Figure 1 is
a classifier composed of many interpretable and shallow trees. This is important in order
to be able to estimate the importance of each feature in the decision-making process. Each
tree is also defined by several hyperparameters, the most important of which are learning
rates and the maximum depth, which are calibrated during the fine-tuning phase.
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Figure 1: Boosting Tree Algorithm Pipeline. Boosted trees algorithm leverages many
shallow tree, sequentially combined so that each one minimizes the classification errors
produced by the previous one.

In particular, as a boosted tree algorithm XGBoost was chosen, state of the art among
the boosting algorithms in the literature, thanks to the parallelization of the computation
and the techniques of regularization properly designed for preventing overfitting [20]. As
a metric to estimate the importance that each feature has assumed in the decision-making
process was chosen instead F-score, expressed as the ratio between the number of times that
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a feature is used as a criterion of split and the total of the splits in each boosted trees-based
classifier.

In this work, more boosted tree-based classifiers have been combined recreating the
structure of the reference ethogram for the species of interest. This results in a hierarchical
model, where each split node corresponds to a classifier. This choice has been made to make
the model as much as possible interpretable by the ethologist, following his logical path in
performing direct animal monitoring. Also, it allows classifying activities at different levels
of aggregation.

3. Experimental Framework

In this section are described the dataset employed as a case study and the implementation
of the developed framework to perform the proposed classification.

3.1. Dataset Structure and Related Issues

The analyzed dataset was collected between the 15 of August and the 4" of September
2012 at The Mpala Research Centre, in Laikipia County, Africa. The Crofoot Lab was
responsible for both the data collection and labeling process. The dataset is retrievable at
[21]. It contains the time-series measured by instrumenting 26 Olive baboons with collars
equipped with tri-axial accelerometer and GPS, for a total recording period of 220 hours.
The first sensor provides a time-series for each of its axes, while GPS measures speed,
heading, latitude, and longitude. During the entire duration of the experiment, the animals
are left free in their natural state. The combination of the hostile environment and the poor
battery life of the collars is a limiting factor for data collection. The number of active collars
decreases over time, starting from 26 on the first day and reaching 1 on the last. Animal
monitoring always occurs during the day, namely from 6am to 6 p.m., while the night hours
have been used to download data, accessible remotely via Bluetooth connection.

The labeling process was conducted by majority voting by a group of biologists, observing
video recordings of the animals, acquired synchronously to the sensors measurements. The
labeled data constitute 4 hours of recording and are related to just 10 of the 26 baboons
in 10 of the 35 days of total observation. Also, they are all related to a time span between
3 pm. and 5 p.m. . This is an issue, as only this small percentage of the available data
can be used for classifier training. The labels were assigned according to two ethograms,
supplied together with the dataset and shown in Figure 2. These ethograms are related to
the individual positional state and the individual activity assumed by the animal. The first
one distinguishes between stationary and non-stationary status. The stationary state is in
turn distinguished in sitting and standing at rest, while the non-stationary state in walking
and running. As for the activity state, instead, the individual can be in a state of feeding
or not feeding.

A balance analysis of the dataset reveals that the individual activity states are equally
represented by 51.0% of observations related to feeding and 49.0% related to non-feeding.
However, individual positional states distribution appears strongly unbalanced. The non
stationary states are only 13.9%, and the running class constitutes 0.9% of the total of the
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Figure 2: Ethograms for Individual Positional States and Individual Activity States
for Olive Baboons. This figure shows the ethogram for the individual positional state,
on the left, and for the individual activity state, on the right. They are referred to
Olive baboons and have been produced and used by the biologists of Crofoot Lab to
provide the ground truth for the video recordings.

observations. This is an extremely important issue, as some distinguishing factors of the
less represented classes can be hidden by the preponderance of the most frequent classes,
making it difficult for the classifier to identify them. The distribution is strongly unbalance
for both individual positional and activity states if we consider the observations recorded
per baboon. Even more, some baboons have been monitored just in some of the states.
These results are shown in Table 1 and in Table 2. Moreover, the dataset is also unbalanced
considering the amount of observations recorder per day of observation and per individuals
monitored. This issue is fundamental to overcome to build a classifier capable of generalizing
the results obtained on individuals never proposed in the training phase.

3.2. Framework Implementation

First of all, we removed from the dataset the features not related to classification pur-
poses. Therefore heading, latitude and longitude were discarded. Subsequently, according
to our framework design, we standardized the temporal resolution of the time-series. In fact,
the sampling frequency of the accelerometer used is 12Hz, while that of GPS is 1Hz. The la-
beling process was performed assigning a label for every second of recording, so its frequency
is also 1Hz. The time-series measured by the accelerometer were then averaged, reducing
the frequency resolution from 12 to 1Hz. At this point, the time-series were low-pass filtered
and debiased.

Subsequently, the thresholds of the event detection algorithm for inconsistencies detection
were tuned. The minimum threshold below which an activity can no longer be considered
non-stationary has been set to 0.2, while the maximum threshold above which an activity
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Table 1: Baboons Individual Positional State Label. This table shows the strongly unbalanced distribution
of the individual positional state label for each monitored baboon.

Collar ID Individual Positional State
Sitting  Standing at Rest Walking Running

2426 51.55% 29.15% 17.33% 1.97%
2427 77.09% 7.11% 14.46% 1.34%
2428 58.82% X 41.18% X
2436 95.75% 3.30% 0.95% X
2443 80.40% 6.46% 13.14% X
2447 100.00% X X X
2449 76.34% 2.23% 20.09% 1.34%
2451 60.07% 18.90% 20.41% 0.62%
2454 54.29% 10.00% 31.90%  3.81%
2457 86.64% 3.31% 9.11% 0.94%

Average  68.5% 13.0% 17.6% 0.9%

Table 2: Baboons Individual Activity State Label. This table shows the strongly unbalanced distribution
of the individual activity state label for each monitored baboon.

Collar ID Individual Activity State
Feeding Non-Feeding

2426 83.24% 16.76%
2427 66.47% 33.53%
2428 X 100%
2436 2.83% 97.17
2443 71.05% 28.95
2447 X 100%
2449 37.50% 62.50%
2451 30.82% 69.18%
2454 98.10% 1.90%
2457 45.38% 54.62%
Average  51.00% 49.00%

can no longer be considered stationary is 1.757. The thresholds have been chosen in such
a way as to guarantee a wide margin, going to identify only the instances with extremely
anomalous characteristics. A new label was then produced, with a value of 1 in case the
event detection algorithm recognized the instance as inconsistent, 0 otherwise. Basing on it,
a classifier is properly trained in order to distinguish inconsistent observations. This step is
also fundamental to solve the problems related to the unbalancing of the dataset, without
performing undersampling, which is the technique most employed in literature [22]. This
is extremely important, as undersampling would have drastically reduced the size of the
available data, which would have lead to classifiers not be sufficiently reliable.
During the features extraction phase, four new features were calculated

e Acceleration norm

jaf = \laa |2 + lay |2 + |a[2 (4)



e Acceleration ratios
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Then, correlation between features and labels has been calculated. Since all appeared highly
correlated, none was discarded.

As explained in Section 2, the classification model is arranged according to the ethogram
structure. Since two ethograms have been provided, two classification models have been
designed. These two models were trained on all the labeled observations provided to recog-
nize the individual positional state label and the individual activity state label, respectively.
The first, shown in the Figure 3, is composed of the hierarchical combination of four clas-
sifiers. The first one separates the observations between consistent and inconsistent, and
it is trained basing on the labels provided as the output of the event detection algorithm.
The second further divides the consistent observations between those related to the station-
ary and non-stationary state. A third classifier distinguishes the observations classified as
stationary between sitting and standing, while the last one separates those related to the
non-stationary state between walking and running. Each classifier works using XGBoost.
To identify the best parameters, fine tuning using grid search was performed. This lead us
to set the learning rate equals to 0.03,the maximum depth to 40, a number of estimators
equals to 13, the subsample ratio of columns when constructing each tree equals to 0.8 and
a, the L1 regularization weight, to 10.
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Figure 3: Individual Positional State Classifier. This figure shows the design of the
classifier aimed at identifying individual positional states.

4. Results

In this section are reported the validation techniques leveraged and the obtained results
related to the case study under analysis.
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Figure 4: Individual Activity State Classifier. This figure shows the design of the
classifier aimed at identifying individual activity states.

The holdout k-fold cross-validation whit k equals to 10 was used as a validation technique
to assess the classification models’ performance. We arbitrarily chose to train each classifier
over 70% of the data and to test it over the 30% left. The split was performed leveraging
stratification to lock the distribution of classes in train and test sets to face classes unbalance.
The procedure was iterated 10 times to ensure the reliability of the results, changing the
composition of training and test sets from time to time. The metrics measured were

e Accuracy, i.e. the percentage of positive classifications that are correct

tp +in

acc =
tp+ fp+ fn+tn

e Recall, i.e. percentage of positive elements that have been classified as positive

tp
et 7
ree Jn+tp (M)

e Specificity, i.e. percentage of negative elements that have been classified as negative.

tn

tn+ fp ®)

spe =

Although accuracy is the most widely used metric to evaluate the performance of a classifier,
in the case of an unbalanced dataset, recall and precision are fundamental, as they allow
to assess if even the less represented classes are correctly recognized. The results obtained
are reported in the Table 3. Considering individual positional states, it turns out that the
average accuracy at first aggregation level is 99.9%, while on the single activity is 94.5%.
For what concerns individual activity states, the average accuracy is 87.9%. The classifier
tasked to recognize inconsistent samples achieves an average accuracy of 89.0%. This result
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is satisfactory considering that the inconsistent observations constitute just 17.5% of the

labeled data.

Table 3: Performance Evaluation of the Produced Classifiers. This Table reports the performance, in terms
of accuracy, recall and specificity of the produced classifiers respect to holdout validation.

Behavior Metrics

Accuracy (%) Recall(%) Specificity (%)
S e Dzt s
Standing st P90F07T G008 Bsits
Ruming P0E10 000117 syaii
Nonfeedng 904 olor  srrrg
meomsiment 9009 706506 S5t

The Table 4 reports a comparison between the results achieved by our framework and
the state of the art solutions proposed in the literature. It turns out that the lift in accuracy
respect to the identification of stationary and non-stationary activities is 14.25%, while for
the recognition of the single positional state it is 11.6%. For the recognition of the positional
activity state, the accuracy lift is 1.6%.

Table 4: Gold Standard Comparison. In this figure, the results, in terms of accuracy, achieved leveraging
the proposed approach are compared to the gold standards’ ones, respect to holdout validation.

Recognized behavior Accuracy
Our Approach Wang et al. [14] G.Muscioni [15]
Stationary vs Non-Stationary 100% X 85.75%
Sitting, Standing at Rest, Walking, Feeding 94.50% 69.00% 82.90%%
Feeding vs Non-Feeding 87.90% 63.70% 86.30%%

The Table 5 shows the results obtained in terms of F-score for the different classifiers.

Table 5: F-Scores. This figure shows the F-Score that characterized each features for all the designed

classifiers.
Considered Classifier Features
Speed  |al ay ay a,

Qg Qg ay

ay a; a;

Consistent vs Non-Consistent  97.0% 17.4% 17.0% 17.3% 174% 17.3% 17.5% 17.5%
Stationary vs Non-Stationary 98.4% 1.4% 12% 14% 14% 14% 12% 1.1%
Sitting vs Standing at Rest  33.3% 97.6% 52.0% 59.2% 59.5% 62.2% 92.5% 70.5%
Walking vs Running 98.1% 41.9% 36.2% X 19.4% 12.8% X 25.9%
Feeding vs Non-Feeding 98.2% 334% 29.5% 274% 451% 90.0% 31.0% 39.0%
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5. Discussion

In this section, we will discuss the results exposed in Section 4. In addition, a practical
application of the proposed framework for automatic remote animal monitoring will be
shown considering the unlabeled data.

The results obtained in terms of accuracy demonstrate that the proposed methodology
is effective to perform automatic remote animal monitoring. Both models produced allow to
obtain better results than those reported in the literature. To allow for a fair comparison, we
select works aimed at developing frameworks for automatic remote wild animal monitoring
from the time-series measured by a tri-axial accelerometer and a GPS. Moreover, the activ-
ities that they intend to recognize are the same identified in the case of studies we analyze
in Section 3. As the number and type of classes recognized vary, the comparability of the
results is no longer reliable. The performances in accuracy obtained by the inconsistencies
detection classifier have not been compared with other works, as it is a novelty introduced
by our approach. At the best of the authors’ knowledge, no work in the literature includes a
similar classifier in their frameworks. Its accuracy is certainly high, but the results obtained
in terms of recall and sensitivity are affected by the class unbalancing and could be improved
by training the classifier on a consistent and balanced dataset. Performing undersampling
on available data would not be considered as a solution, as the final amount of information
left will not be sufficient to train a reliable classifier. The performance assessed by the
classification model for the individual positional states reveals that it is able to accurately
recognize all the activities contained in the reference ethogram. Even running, which ap-
peared to be poorly represented within the dataset, is identified with a 100% recall and a
83.3% specificity. The most challenging split related to sitting and standing at rest. The
cause of this difficulty is probably related to the placement of the sensors as, in both states,
it is fair to assume that the patterns in time-series measured at neck level are very similar.
Finally, the classification model for the recognition of individual activity states has slightly
lower performances than the others, although higher than those reported in the literature.
This could be because instrumenting the neck alone is not sufficient to better recognize
this activity. Probably, having an accelerometer also on one of the front limbs would give
additional information to the system and would allow obtaining better performances.

The results returned in terms of F-Score, fully satisfy the objective of producing a model
whose decision-making process was clear and intelligible for the ethologist. The key feature
in the decision-making process of the inconsistencies detection classifier is speed. As for the
classification model aimed at recognizing individual stationary states, it seems reasonable
that speed is the key feature considered in distinguishing stationary activities, while it is
minimally considered to distinguish sitting from standing. It is also interesting how for the
split between walking and running, even if the speed is a key feature, also the accelerations
become determinant. This makes sense considering that some speed ranges may be common
to running and walking, but the difference between the two behaviors is given by the different
locomotor mechanism, which results in different for the acceleration trends measured by the
sensors. Therefore, an accurate distinction between the two activities must consider the
combination of these features. In all the classifiers that compose this model, the acceleration
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norm appears to be a relevant feature in the decision-making process. Analyzing this feature
trend, it emerges that it has higher values for stationary activities than for the non stationary
ones. We can deduce that, once in motion, the animal tends to keep its neck stable. In the
decision-making process for the recognition of individual activity states, both speed and
acceleration are relevant. The importance of speed suggests that as the speed of the animal
increases, it becomes less likely that the resulting motion is compatible with the feeding
activity. The importance of acceleration trends is related to the repetitive neck motion
performed by the animal while eating. This pattern can be learned by the classifier during
its training phase and used in the decision-making process. These considerations show that
results returned in terms of features importance are easy to interpret and offer important
information about the species under analysis.

5.1. Automatic Remote Animal Monitoring

Once we assessed the effectiveness of the produced framework, we used it for automatic
remote animal monitoring considering the unlabeled data available, which we could not
use in the training and testing phase. The predictions were then analyzed. First of all, it
emerged that the distribution of the classes is consistent both with the distribution of the 4
hours labeled data and with the real behavior of the Olive baboons, that behave to minimize
the energy spent [23]. In fact, it turns out a clear preponderance of stationary activities.
Moreover, sitting is preferred over standing at rest, while walking is preferred over running.

Besides, we compared the characteristic speed ranges of walking and running for the
different baboons observed. The Figure 5 shows the results obtained for running. It is clear
that speed values for running range from 2 ** to 4 ", with an average value of 2.5 ™. The
fastest baboon, with collar ID 2434, has an average speed of 25% faster than his teammates.
The slowest baboon, on the other hand, with collar ID 2430 runs at 2.1 ™* on average, which
is 17.5% slower than the others. For walking, the speed values range from 0.15 2 to 0.6 2,
and the average speed is 0.36 .

Finally, we represented the positional state assumed by the baboons hour per hour on
the different days, shown in the Figure 6. Each column represents the frequency for the four
individual positional assumed on average by the animals during the considered hour. It turns
out that animals tend to behave according to repetitive patterns day after day. This seems
reasonable, considering that during the observation period no particular external trigger
was recorded that should have caused deviation from their normal behavior. Moreover, it
is evident that the most represented activity is sitting, in light blue, considering stationary
states, and walking, in orange, considering non-stationary states. Standing at rest, in green,
and running, in red, are instead infrequent.

6. Conclusion

In this work, an accurate and intelligible framework for automatic remote monitoring of
wild animals has been proposed.

The entire system is designed to be consistent with the logical human path followed by
the ethologist in the monitoring process. At best of author knowledge is the first time that
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Figure 5: Running Speeds of Observed Baboons. This figure shows the speeds grouped for each
baboon of those observations whose individual positional state’s prediction is running.
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Figure 6: Daily Individual Positional State’s Pattern for a Single Baboon. This figure shows the individual
positional state assumed by the considered baboons hour by hour, during the different observation days.
Each plot represents an observation day, while each column represents an hour of observation.Y-axis ranges
from 0% to 100% while X-axis ranges from 7 a.m. to 6 p.m. and each column refers to one hour. Notice
that in columns that do not reach the 100% the missing percentage is referred to missing or corrupted data.

interpretability is considered as a parameter to be optimized in the creation of a framework
for animal monitoring. Moreover, our system is more accurate than the ones presented in
the literature.

The developed framework is therefore valid for automating the process of animal moni-
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toring, allowing the ethologist to devote himself to the phase of analysis and inference.
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