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Field Programmable Gate Arrays (FPGAs) are becoming an appealing technology in datacenters and High

Performance Computing. High-Level Synthesis (HLS) of multi-threaded parallel programs is increasingly

used to extract parallelism. Despite great leaps forward in HLS and related debugging methodologies, there is

a lack of contributions in automated bug identification for HLS of multi-threaded programs. This work defines

a methodology to automatically detect and isolate bugs in parallel circuits generated with HLS. The technique

relies on hardware/software Discrepancy Analysis and exploits a pattern-matching algorithm based on Finite

State Automata to compare multiple hardware and software threads. Overhead, advantages, and limitations

are evaluated on designs generated with an open-source HLS compiler supporting OpenMP.
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1 INTRODUCTION

Over the past years the complexity of hardware designs has constantly increased at an always
faster pace. To manage this growth and reduce time-to-market, Field Programmable Gate Arrays
(FPGAs) look to be a key enabling technology for fast prototyping and design space exploration.
High-Level Synthesis (HLS), using high-level programming languages for hardware synthesis,
speeds up development, enabling software developers to design hardware. One of the advantages
of FPGAs is their intrinsic physical parallelism that allows to speed up computations with low
power consumption. For this reason, they are increasingly used in datacenters [40], High Perfor-
mance Computing, and irregular applications [32]. However, compilers have limited capabilities
of inferring parallelism from high-level languages, and the task of specifying parallel programs
is up to the programmers. For software development, common approaches include programming
languages such as OpenCL [21] and CUDA [38], the use of standard libraries such as POSIX
Threads [1] (pthreads), or language extensions like OpenMP [3].
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Following these practices, several ongoing efforts are trying to bring these programming models
to maturity in HLS frameworks. In software, the support for high-level parallelism is provided by
runtime libraries. For HLS the compiler is in charge to provide this support to give the illusion of
the same underlying computational model.

One of the fundamental aspects for the success of HLS is the support for debugging. Despite
the flourishing interest in hardware synthesis of different parallel programming languages and
threading models, the methodologies for effective debugging in this area are still at their first steps.
Debug support for circuits generated with HLS has received attention, but for designs synthesized
from multi-threaded parallel programs the contributions are scarce. Current approaches focus on
the low-level details of the infrastructure necessary for on-chip debugging [19, 47]. Users need
to explicitly instruct the tools about where to place tracepoints and manually inspect the traces
to spot malfunctions. As HLS frameworks grow in complexity, this can become a real burden,
especially if users have little previous exposure to hardware design and to the HLS internals.

This issue is exacerbated by the fact that HLS tools are growing in complexity, steadily broad-
ening the range of optimizations used to improve the final results. HLS is also increasingly used to
generate complex systems, including third-party Intellectual Property (IP) blocks and hand-written
components described with Hardware Description Languages (HDL). This means that systems
must be thoroughly tested to find bugs in hand-written modules, to avoid problems due to wrong
integration of components, and to rule out unforeseen faults in third-party IPs that may have not
been tested in specific corner cases. Vendors usually provide testbenches and assertions along with
the components, but these only help to detect that there is a bug, not to identify where the bug is,
nor to pinpoint the root cause. Hence, bug identification is very time-consuming and error-prone,
especially in complex systems generated with HLS, including third-party IPs and hand-written
modules. Things are even worse if the original specification is a multi-threaded program and the
HLS tool is trying to generate a parallel architecture for an irregular application.

This work tackles these problems, describing a technique for automated bug identification for
parallel hardware designs generated from high-level specifications described with parallel pro-
gramming languages. The methodology extends an existing approach, called Discrepancy Analysis

and proposed in a previous work [14], that allows to compare the execution of the HLS-generated
hardware (HW) with the software (SW) obtained from the same source code. Compared to the
state-of-the-art and to the previous work [14], this article presents two main contributions: (1) a
novel unified algorithm based on Finite State Automata (FSA) that allows automated comparison of
hardware and software traces with a unified modular approach; (2) the extension of the FSA-based
algorithm to support automated bug identification in HLS-generated multi-threaded hardware.

The proposed debug flow was integrated in an existing open-source HLS framework and eval-
uated on a set of benchmarks using OpenMP parallelization directives. However, the discussion
is kept as general as possible to show that the same technique can be applied to debug hardware
generated with other HLS tools and other parallel programming paradigms. The methodology is
also agnostic about the origin of the execution traces. In this work they were collected with simu-
lation, but the same FSA-based algorithm could be applied with data collected directly from FPGA
as soon as the HLS framework provides support (see for example References [19] and [47]).

In particular, the novelty of the approach presented here is that it is able to provide at the
same time all the following features: (1) trace-based fully automated bug detection without user
interaction; (2) independence of the technique used for collection of the traces, which can be
collected on-chip or with simulation as shown in References [14, 16]; (3) full support for parallel
programming paradigms on FPGAs that does not degrade even in presence of complicated
dynamic mappings between software threads and replicated hardware components. This is
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the first approach that provides all these features on FPGA without being tied on a specific
implementation of hardware/software thread mapping or task-scheduling mechanism.

The rest of the article is structured as follows: Section 2 introduces the motivation of our work,
summarizes the state-of-the-art in the field of hardware synthesis of multi-threaded programs, and
sketches a typical scenario where the methodology proposed in this article is beneficial. Section 3
recaps the necessary definitions and terminology related to traced-based Discrepancy Analysis,
previously introduced in Reference [14]. Section 4 explains how to collect the execution traces
necessary for debugging. Section 5 shows an algorithm for fast pattern-matching of hardware and
software traces, based on Finite State Automata (FSA). This is one of the original contributions of
this work, and it is the fundamental building block used in Section 6 to add support for debugging
circuits generated from multi-threaded irregular applications. Section 7 discusses related works in
the field of debugging methodologies for circuits generated with HLS, comparing them with the
approach described in this work. Section 8 describes a proof-of-concept implementation of a debug
flow using the proposed technique, showing experimental results on the kind of bugs that it can
identify, and on the performance of the method. It also discusses limitations and false positives.
Closing thoughts and future research opportunities are outlined in Section 9.

2 BACKGROUND AND MOTIVATION

This section describes different techniques to perform HLS of multi-threaded programs and moti-
vates the work described in the rest of the article. Section 2.1 describes the state-of-the-art in the
field of hardware synthesis of multi-threaded programs. Section 2.2 outlines the main differences
between the typical use-case for parallel programming languages on FPGAs compared to HPC or
Numerical Analysis due to the different hardware constraints. Section 2.3 shows a motivational
example to explain some of the problems that arise in bug identification on designs generated with
HLS from multi-threaded specification. This example should provide evidence of the necessity of
an approach for automated bug identification and show the scenarios that it must be able to handle
to be truly useful.

2.1 High-level Synthesis of Multi-threaded Programs

As FPGAs become more competitive for the acceleration of parallel workloads, the necessity for
suitable programming models grows. The current trends are investing in high-level programming
languages that are already industry standards for programming parallel general purpose proces-
sors, such as CPUs and GPUs, mostly based on the C programming language. Most of the recent
HLS tools support one or more paradigms among C extensions such as OpenCL [21], CUDA [38]
and OpenMP [3], or C standard libraries like POSIX Threads [1] (pthreads).

Efforts on OpenCL are led by the main FPGA vendors Xilinx [49] and Intel [17]. Hosseinabady
and Nunez-Yanez [25] have proposed improvement to the synthesis of OpenCL workgroups in
hybrid ARM-FPGA devices. Owaida et al. [39] have created a Finite State Machine with a Dat-
aPath model suitable for execution of an OpenCL kernel, with a streaming unit to allow fast
access to global data. The main work on CUDA consists of the FCUDA CUDA-to-RTL compiler
(Nguyen et al. [37]) and the efforts to use it in the construction of complete System-on-Chips with
the generation of the necessary interconnections, memory interfaces, and resource management
components. Cabrera et al. [5] extend OpenMP directives to target more closely FPGA-specific
characteristics. OpenMP loops are supported by the bambu compiler [9], based on GCC [43], and
by the LegUp compiler [11], based on LLVM [30], which also supports nested parallelism using
pthreads. LegUp and bambu exploit physical parallelism instantiating duplicated components for
every thread.
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Another idea is to maximize the utilization of a single hardware accelerator, extending its func-
tionality to support hardware threads and hide latencies in pipelined loops. Halstead and Najjar
extend the ROCCC HLS compiler to generate multi-threaded accelerators starting from loops con-
structs [22]. The programming model is similar to OpenMP for loops, and the generated architec-
ture uses hardware context-switches to hide variable latencies due to memory accesses in irregular
applications. The idea is somewhat similar to a more recent work by Tan et al. [45], but the gener-
ated architecture is different. Halstead and Najjar use deep FIFOs to realize context switch, which
results in enforcing in-order termination of threads. Tan et al., instead, give an Integer Linear Pro-
gramming formulation for the problem, and they explore a more general approach to avoid stalls,
enabling out-of-order execution of threads in the pipeline.

There are also other works that are more focused on system integration, on Operating System
supports for hybrid hardware/software threads, and on how to migrate threads to FPGA transpar-
ently in heterogeneous systems. Andrews et al. [2] define Hthreads, a multi-threaded programming
model based on pthreads, where individual threads can be mapped to FPGA and provide the nec-
essary runtime infrastructure in hardware and software for making this possible in a transparent
way. Korinth et al. [29] instead use an OpenCL-like model. These last two works define differ-
ent ways to map high-level thread directives onto instances of hardware accelerators. However,
what is important to our purposes is that they are actually agnostic about this mapping and they
are focused on providing the necessary system-level integration once the mapping is computed.
Wang et al. [48] even consider dynamic reconfigurability for instantiating different hardware ac-
celerators at runtime to run heterogeneous threads. The approach described in this work does not
support dynamic reconfigurability. Another thing not considered here is threading support pro-
vided by means of multi-processors System-on-Chip completely placed on FPGA, as proposed, for
example, by Ma et al. [31]. This kind of approach is actually not even HLS, because threads are not
translated into hardware accelerators, but they run as software on the softcores on the FPGA.

2.2 Peculiarities of Parallel Programming on FPGAs

It is important to stress that parallel programming models on FPGAs are subject to very different
constraints than they typically are in software.

In software, parallel programming models are typically used to squeeze the most performance
out of high-end machines. Having hardware constraints is not a common problem. It is far more
common to be forced to optimize the software to saturate the performance limits of the hardware.

On FPGAs, resources are limited. Complex program logic is translated into hardware compo-
nents that control the design execution, and complex operations are translated into combinatorial
datapaths that perform the computation in parallel. All these components are mapped onto config-
urable blocks, and memory is fragmented in small RAM blocks interspersed with the FPGA fabric.
In this sense, the most scarce resource on FPGA is area, and everything consumes area: program
logic, data processing, memory.

This means that the typical design that is implemented on FPGAs using these programming
models is much smaller than the typical parallel program executed on CPUs.

An interesting consequence of these area constraints is that they restrict the class of algorithms
that can be efficiently accelerated on FPGA. In practice, they tend to be hot loops of parallel pro-
grams. These, by their nature, are very homogeneous loops, in the sense that all the iterations per-
form the same computations on different data. The performance-oriented way to map these loops
on FPGAs is to physically clone the body of the loop in hardware, so loop multiplicity is trans-
lated into physical parallelism. In this scenario, parallel programming directives (such as OpenMP
#pragmas) are used to instruct the compiler to parallelize the loops.
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Given that we propose an FPGA-oriented approach, we will focus our attention on parallel pro-
grams with these properties. Automated bug detection for parallel program on FPGAs is still an
emerging topic, so we do not strive to cover the full expressive power of the mentioned program-
ming models. Such models have been designed and shipped across several years, have a much
wider scope and richer semantics, which not always has a counterpart on FPGA. This article fo-
cuses on improving the current status of debugging techniques on FPGA for such languages.

2.3 Motivating Example

This article proposes an approach for automated bug detection, based on comparison of multi-
threaded hardware and software executions. The main challenge to do this is to find a unified
way to resolve the mapping of software threads onto hardware for the variety of methodologies
described in Section 2.1.

In general, HLS of multi-threaded programs needs to consider the following issues:

Task homogeneity – i.e., if all tasks execute the same function or not. Among the mentioned
programming models, pthreads is the only one able to provide heterogeneous tasks. In
HLS, each thread that executes a separate task is mapped onto a dedicated hardware
component. Nowadays, HLS tools that support pthreads only support specifying this
mapping ahead of time. In practice, these functions execute in parallel, but they do not
pose particular challenges to debugging, because each module is only associated to a
single high-level function. For this reason, in this article, we ignore this model, which can
already be treated with available debugging techniques.

Hard or Soft Threads – i.e., if threads are implemented with duplicated hardware compo-
nents or with dedicated additional logic to suspend and resume multiple logical threads
on the same accelerator to hide memory latencies. Various HLS techniques mentioned in
Section 2.1 use both hard or soft threads. Context switching of soft threads complicates
the mapping between hardware and software executions, so our methodology needs to
handle it.

Static or dynamic dispatch – i.e., whether the assignment of a task to a certain hardware ac-
celerator is decided statically at compile time or dynamically during the execution. Again,
there are some techniques that provide dynamic dispatching of tasks onto hardware com-
ponents to compensate imbalance dynamically and reduce stalls [10]. Dynamic dispatch-
ing complicates the mapping between software and hardware threads, so our approach
needs to support also this scenario.

The remainder of this article focuses on the homogeneous parallelism offered by OpenMP,
CUDA, and OpenCL, where dynamic dispatch, hardware context-switches, and variable latencies
typical of irregular applications complicate the mapping of software tasks onto hardware acceler-
ators, and every task is dynamically associated with some form of task identifier (OpenMP loop
iteration variable, CUDA thread ID, and OpenCL work-item).

From now on, we will adopt OpenMP notation for the examples, but the discussion is valid for
all the other homogeneous parallel programming paradigms.

Consider for example the source code in Figure 1, where function f contains an OpenMP for loop
with memory accesses and multiple calls to the function g without data dependencies. Without
support for multi-threading, a typical HLS tool would generate a component for f and one for g,
instantiating the second in the first. If the alias analysis can tell that the memory accesses on A[i]
and B[i] are on disjoint memory locations, it could duplicate the instances of g and execute them
in parallel inside the loop body. Otherwise, it would generate a single instance of g and serialize
the calls inside the loop. This is clearly suboptimal for performance.
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Fig. 1. C function with an OpenMP for loop. HLS can generate different multi-threaded architectures.

If the HLS has support for OpenMP, instead, there are a number of possible optimizations. The
loop body could be treated as a separate module and physically replicated multiple times, resulting
in physical parallelism. This is what is done by LegUp [11] and bambu [9]. Otherwise, a parallel
architecture could be generated for the loop body, allowing simultaneous executions of different
threads at the same time, exploiting context switching to hide memory latencies due to the ac-
cesses to A[] and B[] in the loop body. This is what is done by the CHAT compiler [22] based on
ROCCC and by Tan et al. [45]. The two techniques could even be used together, physically du-
plicating the loop body, and enabling context-switches on all the duplicate copies, depending on
some design space exploration trade-offs. This gives an idea of the complexity that an approach
for automated bug detection must be able to handle. The most general assumption is that it must
be possible to support physical and hardware-thread parallelism with dynamic scheduling of tasks
onto accelerators.

In such a scenario, the Discrepancy Analysis proposed in Reference [14] would not be able to tell
which execution of what hardware accelerator has to be compared with a given software thread to
understand if the hardware is behaving correctly or not. Other similar approaches for automated
bug detection do not consider the problem of starting HLS from multi-threaded specifications [28],
as discussed in Section 7.

However, these programming models are increasingly used and it is unrealistic to delegate to
users the burden of unraveling the complexity of HW/SW thread mapping when the generated
design contains bugs. Bugs could be located in third-party components integrated in the design
with HLS, which may not be suitable for some parallel execution (especially if context-switch is
involved). In this case the end-users need some way to know it without having to understand all
the optimizations performed by the HLS tool in the generation of the design. In theory, some bugs
could even be introduced by the HLS tool itself, either because the original code cannot actually
be parallelized safely or because some of the optimizations performed by the tool make some
assumption that are not true in users’ code. Hence, HLS tools need to provide an environment for
automated bug identification to solve this problem, improve the design experience, and reduce the
time necessary for debugging.

3 FUNDAMENTALS OF DISCREPANCY ANALYSIS

This section introduces some of the fundamental concepts of Discrepancy Analysis, mostly
adopted from Reference [14]. Discrepancy Analysis is founded on the notions of Execution Traces

and of equivalence between SW and HW executions.
Execution Traces are lists of values that can be collected from HW and SW executions with

different techniques and that describe such executions at two levels: control flow level and data level

(also called operation level in the following and in Reference [14]). These traces can be understood
in terms of general high-level representations used in HLS compilers: Control Flow Graph (CFG),
Finite State Machine (FSM), and DataPath.
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Fig. 2. Scheduling relationship between Con-

trol Flow Graph and Finite State Machine. Pur-

ple thick arrows show the hardware and soft-

ware executions.

Fig. 3. Scheduling, binding, and allocation

maps between statements in Basic Block, op-

erations in Finite State Machine, and DataP-

ath components.

The CFG is a directed graph representing the control flow of the original program. It is built by
the compiler frontend, and its nodes are called Basic Blocks (BB). Every BB contains a sequence of
consecutive operations. Every Basic Block also has a single entry point at the beginning and one
or more branching conditions at the end.

The FSM and the DataPath, instead, describe the generated HW and they are created by HLS
tools starting from the CFG after frontend optimizations. The creation typically requires three
tightly related steps: scheduling, allocation, and binding. The whole process can also involve
non-trivial modifications, such as sharing, chaining, pipelining, and duplication of operations in
more than one state. For a given CFG, the scheduling decides, for every operation in a BB, the
state of the derived FSM where it will be executed. What is important for Discrepancy Analysis
is that the HLS engine creates the FSM from the CFG in such a way that every BB is mapped onto
a chain of states in the FSM, with branches only at the end of the chain.

3.1 Control Flow Level

Consider a function f described in a high-level language such as C and its Control Flow Graph after
frontend compiler optimizations. From such a graph, HLS produces an FSM and a DataPath. For
considerations on control flow, only the FSM is necessary. The FSM itself can be represented as a
graph, like in Figure 2. With the appropriate conventions, CFG and FSM can accept the same inputs.
The CFG represents the execution of the software and the FSM the execution of the generated HW.
The two flows have different semantics for operations: sequential in BBs; concurrent or chained
in a state of the FSM. However, from a control flow standpoint, the execution can be described as
an ordered list of nodes visited on the graph, being it BBs for CFG or states in FSM.

Definition 3.1. The Software Control Flow Trace (SCFT) on a given input I is the ordered sequence
of BBs representing the execution of the CFG.

Definition 3.2. We call Hardware Control Flow Trace (HCFT) on the input I the ordered sequence
of states describing the execution of the FSM.

In the following, SCFTs and HCFTs together are called with the general term Control Flow Traces

(CFT). According to the definitions, the CFG can be regarded as a function Scf that associates a
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Software Control Flow Trace Scf (I ) to every input I . In Figure 2 the SCFT is 〈 BB0, BB0, BB1,

BB2, BB3 〉. Similarly, the FSM can be considered as a function Hcf that associates a Hardware
Control Flow Trace to every input I . In Figure 2 the HCFT is 〈 S0_0, S0_1, S0_2, S0_0, S0_1, S0_2,

S1_0, S1_1, S2, S3 〉. Using these concepts, it is possible to define equivalence at control flow level.

Definition 3.3 (Equivalence of Control Flow Traces). Let be fixed an input I for both a
CFG and its associated FSM. Let then be Scf (I ) = 〈BB0,BBk1,BBk2, . . . ,BBK (I )〉 and Hcf (I ) =
〈S0, S j1, S j2, . . . , S J (I )〉 the related Software and Hardware Control Flow Traces. Scf (I ) is equiva-

lent to Hcf (I ) if Hcf (I ) can be produced from Scf (I ) substituting (BBk ) with the states associated
to it by scheduling.

3.2 Data Level

Discrepancy Analysis at the control flow level cannot find bugs that do not alter the control flow
and cannot locate their root cause even if they affect control flow. To overcome this limitation
it is necessary to refine the granularity at the data level, considering also HLS information from
binding and allocation. This means integrating information from the FSM and from the DataPath.

Figure 3 shows how the list of statements in a BB can be reordered and assigned to operations
scheduled in different states of the FSM. The dashed arrows on the right represent how the opera-
tions are bounded to allocated components in the DataPath. Note that the mapping of operations
on HW components is many-to-one, meaning that components can be shared by multiple oper-
ations if their execution does not overlap. Instead, there is a one-to-one mapping between the
statements in a BB and all operations scheduled in the related states.

The fundamental assumption for the definition of execution traces at the data level is that every
statement cannot be scheduled twice in a chain of states representing a single BB. In hardware
synthesis it is common practice to speculate an operation and to schedule it in more than one
state in the FSM to reduce the execution cycles. However, the states where it is scheduled must be
distinguishable from a control flow standpoint. Another way to state this is that all the duplicated
copies must be executed under different conditions, even with speculation and guard conditions.
If this was not true (so that two copies were executed under the same conditions) the behavior
would not be consistent with the high-level specification, where the operation was executed only
once.

With this assumption it is possible to define execution traces at the data level: OpTraces (OT).

Definition 3.4. Let Oi be an operation in a Basic Block. The Software OpTrace (SOT) of Oi is the
list of the results s1,i , . . . , sk (i ),i of the operation across all the execution.

Definition 3.5. Let Oi be the same operation scheduled in a state S (Oi ) of the associated FSM.
Let also C (Oi ) the component in the DataPath that was allocated and bounded in HLS to execute
operation Oi . The Hardware OpTrace (HOT) of Oi is the list of values of the output signal(s) of
C (Oi ) collected during hardware execution when the FSM was in state S (Oi ).

Notice that OpTraces were defined per Basic Blocks in Reference [14], but for the purposes of this
work the definition is formulated with a finer granularity: one OpTrace for every single operation.
The definition is consistent with Reference [14], because a BB is just a list of operations. Hence,
what is called OpTrace in Reference [14] for a Basic Block is just a set of OpTraces as defined here
for a single operation.

Definition 3.6 (Equivalence of OpTraces). LetOi be an operation in a Basic Block BB (Oi ) of a CFG.
Consider a Finite State Machine constructed from the CFG during the HLS process and call S (Oi )
the state where Oi is scheduled. Let also C (Oi ) the component in the DataPath that was allocated
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and bounded in HLS to execute operation Oi . The Software OpTrace Sop (Oi ) and the Hardware
OpTrace Hop (Oi ) are equivalent if they are equal through some equality function.

Notice that the equality function can be as simple as bitwise equality for plain integer data, but
it can be complicated in case of floating points or custom data formats, up to involving context-
dependent address translation tables for pointers and addresses [15].

3.3 Equivalence of Execution Traces

Equivalence between hardware and software is defined in terms of equivalence at the two levels.

Definition 3.7 (Software Traces). A Software Trace (ST) for a CFG on a given input I is a pair
S (I ) = [Scf (I ), Sop (I )], where Sop (I ) is the set of Software OpTraces Sop (Oi ) such that Oi is an
operation in one of the Basic Blocks in Scf (I ).

Definition 3.8 (Hardware Traces). A Hardware Trace (HT) for an FSM on a given input I is a pair
H (I ) = [Hcf (I ),Hop (I )], where Hop (I ) is the set of Hardware OpTraces Sop (Oi ) such that Oi is an
operation scheduled in one of the states in Hcf (I ).

Definition 3.9. Let S (I ) = [Scf (I ), Sop (I )] be a Software Trace for a Control Data Flow Graph and
H (I ) = [Hcf (I ),Hop (I )] be the Hardware Trace of the associated Finite State Machine generated
during HLS. S (I ) and H (i ) are equivalent if both the following conditions are satisfied:

(1) equivalence at the control flow level — Scf (I ) is equivalent to Hcf (I ) according to Defini-
tion 3.3.

(2) equivalence at the operation level — there is a bijective relationship ≡ between Sop (I ) and
Hop (I ) such that Sop (Oi ) ∈ Sop (I ) ≡ Hop (O j ) ∈ Hop (I ) ⇐⇒ i == j and Sop (Oi ) is equiva-
lent to Hop (O j ) according to Definition 3.6.

The key insight of these definitions is that Control Flow and Operation levels describe the two
different ways in which the hardware execution can differ from the original specification. At the
operation level, all the assignments are checked. The only constructs that are not checked directly
at the operation level are control flow instructions (branches, function calls, and return statements)
that are handled at the control flow level. For branches, the evaluation of the branching condition
is checked at the operation level. The CFTs are used to verify that the correct branch has been
taken. Function calls and return statements are treated similarly. Calls are scheduled in states of
the FSM, so the control flow is enough to check their start and end. OpTraces are involved as well,
since they are used to check that the passed parameters match those used in software. Return
statements, even if they are not checked directly in the returning function, are checked in the
OpTrace of the caller. In this way all the instructions are either directly checked at the operation
level or indirectly checked using both control flow and data information.

4 GENERATION AND COLLECTION OF THE TRACES

The definitions of Section 3 do not explain how to extract the traces from hardware and software
execution. This is good, because they do not depend on the specific method used to generate and
collect the traces, making them suitable to use with simulation-based methodologies as well as
with traces directly collected from FPGA trace buffers. In this section, we describe the methods
used in our proof-of-concept to generate and collect the traces, along with a method for automatic
identification of the necessary signals in the generated hardware. This is necessary to understand
the rest of the discussion and the main contributions of this work.

Software Traces. The high-level code is instrumented to generate the Software Traces when
executed. Instrumentations are added directly in the IR to have a finer granularity and control on
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compiler temporary variables introduced for optimizations. Then the IR with instrumentations is
printed back in C. The code generator is designed to structure the instrumented code like the CFG.
It starts from the IR of the compiler in Static Single Assignment form (SSA [13]), and it prints it back
in C, splitting SSA’s ϕ operations as described in Reference [4]. In this way all the operations that
are not control flow instructions can be printed as assignments. In SSA, every variable is assigned
only once, and every printed statement assigns only one variable. In this way, to generate the SOTs
it is enough to print the value of every variable (which has a unique identifier) after its assignment
in SW. To generate the SCFTs a print instruction is placed at the beginning of every BB to dump
the identifier of the BB itself each time it is executed. Concretely, the obtained SCFTs are lists of
the identifiers of the BBs traversed at runtime. Similarly, SOTs are the lists of results of assignment
statements. None of the software traces contains timing information.

Hardware Traces. To generate Hardware Traces, the relevant signals must be identified in the
design. This is entirely possible without user interaction, because all the necessary information
is already available in the HLS engine. First, the clock source of the design must be extracted.
This is necessary to drive the whole comparison, to understand the timing and the duration of all
the other signal variations. This signal is named clock in the following. Hardware Control Flow
Traces are lists of states traversed by the FSM during execution. Hence, the signal used to produce
them is basically the state signal of the FSM. It is denoted as state in the remainder of this work.
Handling the execution of a function typically requires two other signals: one, asserted by the
caller, to start the execution; the other, asserted by the called function, to notify the caller that
the execution ended. The signals involved in this handshaking mechanism are called start and
done, respectively. Usually every functional module stays in its initial state when it is not executed.
Then it is necessary to check for start and done to have the full information on the execution. The
necessary signals to produce HCFTs are state, start, and done, for all the synthesized functions.

For OpTraces the identification of the signals relies heavily on the binding information coming
from HLS. According to the definitions in Section 3, HOTs are composed by the values of the
output signals of the HW components in the DataPath used to implement the operations in the
FSM, which in turn are associated with operations in the CFG. But these things are part of what
is computed in HLS during binding and allocation. The details of the signal naming are strictly
implementation-dependent and change from an HLS tool to another, but every HLS compiler must
know this particular piece of information. The only additional signals to be traced are the start
and done signals used for the handshaking mechanism of Variable Latency Operations (VLO).

Once all the necessary signals have been detected in the design, it is possible to generate the
Hardware Traces. The proof-of-concept described in this article relies on simulation, because it is
the easiest way to provide full observability on the selected signals and registers without altering
the design. However, not all the signals must be traced during the execution, as explained above.
This allows to reduce the volume of the traces to make them more manageable even for larger
designs and longer simulations. Moreover, the approach described in this work could be applied
to traces directly collected on-chip (like for example in Reference [16]), as long as it is possible to
provide observability on the necessary signals. With simulation, the design is executed with the
same input as the C program, and the signal variations are dumped in compressed Value Change
Dump format (VCD). The necessary signals are just a small portion of the total and are selected
automatically, reducing the VCD only to what is really needed for the Discrepancy Analysis. This
yields a considerable reduction of the VCD size, with obvious benefits for I/O time.

5 COMPARING EXECUTION TRACES USING FINITE STATES AUTOMATA

This section describes how to compare the traces to check for equivalence. The comparison
can be performed separately on control flow and data level, using a unified pattern-matching
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Fig. 4. FSA for the comparison of the traces.

algorithm. Separating the two levels makes the algorithm easier to understand, while using the
same algorithmic template makes the whole approach mode modular and allows to easily extend
it to multi-threaded code in Section 6. The method used here is based on Finite State Automaton
(FSA), and it represents one of the novelties of this work compared to Reference [14]. Please
bear in mind that the term Finite State Automaton is purposely used to avoid confusion with the
Finite State Machine of the hardware controller. In the remainder of the article, the word status is
always referred to the FSA, while the word state always refers to the FSM.

5.1 Finite State Automaton for the Comparison of the Traces

Despite the fundamental semantic difference between control flow and data traces, the basic algo-
rithm for their comparison can be based upon a Finite State Automaton with the same structure.
An FSA of this kind works on a pair of associated traces: one for hardware and one for software,
and is depicted in Figure 4. The possible statuses of the FSA are represented by rectangular nodes:
INIT, READY, NODISCR, FAIL_C_END, FAIL_C_CONT, AFTER, and FOUND. There are three
kinds of statuses represented by different type of nodes: (1) gray with dotted borders – the FSA
has not yet checked the next entry in the traces looking for a discrepancy; (2) green – success (only
NODISCR), the FSA completed the analysis of the traces and no mismatches were found; (3) red
with dashed borders – ending state representing failures, i.e., a discrepancy was detected. Among
this last group, FOUND is when an actual mismatch between Hardware and Software Traces is
actively detected. FAIL_C_CONT is when the Software Trace continues even if the Hardware ter-
minates and FAIL_C_END is when C ends prematurely, while HW keeps going. In the figure, the
blue diamond-shaped nodes are functions that manipulate the traces. These are the only parts of
the automaton that operate differently for control flow and data (see Section 5.2).

For every couple of hardware and software traces the FSA starts in status INIT and operates as
follows: UPDATE slides through the traces, selecting the next value available in the software trace.
It then uses them with HLS information to compute the next relevant time when the hardware
trace must be compared with software. Remember that the software trace is untimed, while the
hardware trace has timing information. UPDATE returns ERR when some of the data necessary for
the evaluation of the mismatch cannot be computed. In this case the kind of error is determined
and the FSA terminates. Otherwise, the FSA becomes READY. If the timing of the next entry in the
hardware traces is later than another discrepancy previously detected by another automaton for
another couple of traces, the FSA suspends the checks, entering in AFTER. Indeed, if a discrepancy
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Fig. 5. Relationship between Control Flow Traces. The HCFT is represented by the first four signals, while

the SCFT is the list of Basic Block identifiers. The traces are referred to the CFG and FSM shown in Figure 2.

Dashed lines between state and BB ID represent the scheduling relationship between states and basic

blocks.

is detected on an operation, the following are likely affected, so only the first discrepancy is
important. Skipping checks on traces with higher timestamps makes the comparison faster. If no
prior discrepancy was found, the CHECK function tells if the two traces actually match. If they
do, the cycle restarts with the next entries, otherwise the FSA enters FOUND and terminates.

5.2 Algorithms for Comparison of the Traces

Here, we detail two high-level algorithms for trace comparison, explaining how the UPDATE and
CHECK functions in the FSA operate for Control Flow Traces and OpTraces, respectively.

Control Flow. The comparison of Control Flow Traces is performed one function at a time.
The HCFT for a single function consists of four signals: clock, start, done, and state. The SCFT
for the same function is simply a list of Basic Block identifiers. An example is shown in Figure 5
on traces referred to Figure 2. From the figure, it is straightforward to understand how the CFTs
can be compared. In this case the UPDATE and CHECK functions can be coalesced in a single one,
which operates in the following manner: First, it considers the next BB ID in the SCFT, and it uses
the scheduling map computed during HLS to obtain the list of states in the FSM associated to that
basic block. This mapping is depicted with a red dashed arrow in the figure. Finally it checks that
the state signal in the hardware trace are coherent with the identifiers computed from scheduling.
The clock, start, and done signals are used to ensure that the FSM is actually in execution.

Operations. The analysis of the OpTraces is performed one operation at a time. Figure 6 shows
an example of CFG and FSM with the traces related to two operations (op1 and op2). These are
the data manipulated by the FSA for the comparison of OpTraces. The comparison is depicted in
Algorithm 1.

It works on HW and SW traces, and it fills a map of discrepancy reports for every operation.
The main loop works on a single variable at a time, selecting HW and SW traces and passing
it to the FSA described in Section 5.1. In line 6 of Algorithm 1 the FSA is called as if it was a
function. The meaning is that the FSA associated to the traces is executed on the traces up to
termination. The result of the execution of the FSA on the traces of an operation is a terminating
status cur_status, representing information on the discrepancies for that operation. At the end of
the analysis of all the operations, if even a single element in discr_status_map reports a mismatch
the bug is reported to the user.

The UPDATE function updates the traces using different strategies for Fixed Latency Operations
(FLO) and Variable Latency Operations (VLO). FLOs can be simple operations, chained operations,
and also pipelined modules. Their execution time is fixed, known at compile time, and used by
the scheduling algorithm to decide how to structure the FSM. VLOs are typically used to model
function calls, external memory accesses, or operations with long execution times. Long operations
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Fig. 6. Visualization of Hardware and Software Traces, with the CFG and FSM used to generate them.

could be treated FLOs but, unless there are plenty of other operations without data dependencies,
it would require several waiting states, increasing the area of the FSM. For VLOs the execution
time is assumed to be unknown, so they are handled with a handshaking mechanism involving a
start and a done signal, which are part of the OpTraces for these kind of operations.

The UPDATE function is described in Algorithm 2. It flows through the SOT to get the next
assigned value in C (line 1) and through the HCFT to get the start_time of the new HW execution
(line 2). Lines 3 to 5 perform sanity checks on the new start time and on the SOT. If the SOT is empty
there is nothing to compare the HW execution with. Moreover, if the detection of the start_time

fails, it means that the HCFT of the FSM never enters in a starting state for the operation again.
This means that the operation is executed in C but not in HW, so it is marked as an error. From
lines 6 to 13, the end_time in HW of the newly started operation is computed. This is needed
to compare the output signal with the SW value only after the operation is complete. For FLOs,
execution time is fixed, so it is simply added to start_time (lines 6–8). For VLOs the done port must
be checked (lines 9–11). If it is never asserted, UPDATE returns ERR, otherwise OK.

The algorithm on its own may not be enough to understand how the checker FSA works in
practice. A simple example can be demonstrated with the traces sketched in Figure 6. Consider
op1. It is in BB0 and it is scheduled in S0_0, so S0_0 is a starting state for op1. Assume it is a
FLO with execution time of two cycles. The FSA starts in state INIT. It then runs the UPDATE

function. The SOT of op1 is not empty, and its first value is 1. The start_time is computed looking
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ALGORITHM 1: Discrepancy Analysis for OpTraces

Input: Hardware and Software Traces

Output: discr_status_map

1: discr_status_map[] = empty;

2: for all (Oi operations in the program) do

3: select the following:

f – the function where Oi belongs

CH – Hardware Control Flow Trace for f
CS – Software Control Flow Trace for f
OH – Hardware OpTrace for Oi

OS – Software OpTrace for Oi

4: cur_status = NODISCR;

5: repeat

6: cur_status= FSA(CH ,OH ,CS ,OS );

7: until (cur_status != NODISCR and

cur_status != FOUND and

cur_status != FAIL_C_END and

cur_status != FAIL_C_CONT and

cur_status != AFTER)

8: discr_status_map[vi ] = cur_status;

9: end for

ALGORITHM 2: Pseudocode for the UPDATE function

Input: Same as the FSA

Output: OK if ready for next comparison, ERR otherwise

1: select next value in SOT;

2: start_time = time of the next starting state for operation;

3: if (no starting state was found or SOT is empty) then

4: return ERR;

5: end if

6: if (is FLO) then

7: end_time = start_time + exec_time;

8: else

9: end_time = (first time after start_time when done = 1);

10: if (done is never asserted) then

11: return ERR;

12: end if

13: end if

14: return OK;

at the HCFT. S0_0 starts at t=0, but given that it is the initial state, the real computed start_time

is t=1. Adding the execution time the end_time results 3. Then the value of out_op1 is checked
at time t=3. The binary value (0001) is is compared with the SOT, using the CHECK function. In
this case the comparison is straightforward and MATCH is returned. Then the UPDATE function is
called again, iterating this process other three times to check all the four assignments. The fourth
time the UPDATE function is called, it returns ERR, since the SOT is empty and there are no new
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Fig. 7. Structural layout of the parallel microarchitecture generated from the C code in Figure 1.

starting states in the HCFT. The FSA enters the NODISCR status, and the analysis of this trace
ends. The same operations are performed on all the other traces to completion. If at a certain point
in hardware execution one of the operations gives a wrong result, the comparison with software
will fail, detecting a bug. For example if out_op2 at t=3 was (1,010) instead of (1,110) the algorithm
would have detected a mismatch. The same holds if one of the hardware traces ends earlier than
software or vice versa.

6 DEBUGGING CIRCUITS GENERATED FROM MULTI-THREADED PROGRAMS

The Discrepancy Analysis described in Section 5 does not support multi-threading, actually not
even procedure cloning [46]. The reason is that Sections 3, 4, and 5, always make the assumption
that there is a one-to-one mapping between software and hardware traces. This is equivalent to
the assumption that there is always only one hardware accelerator for every high-level function
and that every accelerator only executes one task to its completion before starting a new one. But
this is not what happens when HLS starts from parallel programming directives.

Consider again the motivational example reported in Section 2.3 in Figure 1, and suppose that
the HLS tool instantiates two physical copies of the loop body (body0 and body1) like in Figure 7.
Suppose then that the memory accesses are recognized as separate memory locations and the tool
also instantiates two physical copies of g inside every copy of the loop body. In addition, suppose
that the assignment of iterations of the loop onto body0 and body1 is not statically assigned but
decided at runtime from some kind of component implementing dispatch policy. Finally, suppose
that both the copies of the loop body support dynamic context switching, so they can request
another iteration to the dispatcher if the currently executed iteration stalls waiting for variable
memory latencies on accesses to A[] or B[]. For example, it could happen that iterations 0, 4, and
7 of the loop are assigned to body0, while iterations 1, 2, 3, 5, and 6 are assigned to body1. Let
us focus on body0. With dynamic scheduling and context switch it may be possible that iteration
0 starts, it stalls on memory request for A[i] and B[i], and it is context switched to yield the
DataPath to iteration 4. The same stalls happen then for iterations 4 and 7, for example, because
the memory for A[] and B[] is off-chip and has irregular latency. For the same reason it may
happen that the requests of these iterations are served out-of-order and that the context switch
logic decides to wake up the three iterations in reverse order to mask latencies. An example of this
reordering is shown in Figure 8(a).

The top portion of the figure represents the hardware. The dashed vertical lines marked by the
small arrows on the bottom (t=1, 2, 3, 6, 8, 10, and 11), are the instant where body0 performs a
context switch. The taskid represents the iteration in execution at any given moment. The other
six lines, grouped in two blocks of three with the same background, represent the start, done,
and output signal of each instance of g inside body0. We can see that the executions of g0 g1 in
the same iteration can overlap, as in g0 at time t=4, where g1 starts even if g0 has not yet finished.
Also, the execution of g0 and g1 can be suspended if the iteration is context switched, and they
are resumed later when the proper iteration returns in execution. As an example of this pattern,
see the call to g1 of iteration 7 is started at t=7, suspended at t=8 and finally terminated at t=10.
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Fig. 8. Visualization of the comparison of the traces generated by the code of Figure 1 and the circuit of

Figure 7.

The lower part of Figure 8(a) portrays what happens in software. In this part there is no timing
information, the actual number of threads in execution is different, and the assignment of tasks
to threads is not the same as in hardware. With all these differences, the key information to
perform the Discrepancy Analysis is the task ID (or iteration ID). In software, it is the iteration
that is executed by a certain thread at a given moment and it can be dumped during execution
with additional dedicated instrumentation. In hardware, it is the task currently executed by
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an accelerator and it can be extracted with an appropriate signal selection guided by HLS, by
inspecting the components that manage the assignment of the tasks and the context switch. Using
this information, the traces are preprocessed before the Discrepancy Analysis. The preprocessing
is different for hardware and software. The software traces are merged and filtered according
to the sequence of task ids, as shown in Figure 8(c). In this way it is possible to obtain a single
trace from all the traces scattered across the different software threads. The hardware traces are
filtered, again using the task ID. In this phase if there are some task IDs that are executed in
software but not in hardware it is already possible to detect a bug. If all the task IDs executed in
software are also executed in hardware, instead, a single hardware trace is extracted for every
executed task ID. The result, shown in Figure 8(c), is that we have a single software trace to be
compared with a set of hardware traces. Hardware traces have lost part of the timing information,
but they maintain consistency of the internal ordering. They just happen to have “jumps forward”
in time, when the task was suspended and another one was in execution on the accelerator. With
this setup, the algorithm described in Section 5 can be adapted, instantiating a separate FSA for
every task ID. This FSA works only on its filtered vision of the hardware trace, but the inner
functioning is exactly as described in Section 5. The comparison starts from the software trace,
looking for the iteration ID and using it to decide which FSA has to handle the next comparison.
Given that the FSAs are stateful, it is not a problem if the trace associated to a certain task ID
is not checked consecutively from beginning to end. When the software trace ends, the analysis
reports the detected errors as well as if there are still some values in the hardware traces to be
checked, meaning that the hardware has executed more operations than the software.

7 RELATED WORK

There are several different ongoing efforts to endow HLS frameworks with effective support for
debugging, both in academia and in industry [20, 36, 44]. The approaches are very varied and focus
on different aspects of the infrastructure necessary for debugging, but very few currently take into
consideration code generated from high-level threading directives.

Some approaches analyze architectures and compiler support for automatic and efficient gen-
eration of components for on-chip debugging. Monson and Hutchings [34] use source-level trans-
formations for the insertion of tracing logic (Event Observability Port and Buffers) for the output
signals of operations, but they do not consider multi-threaded code. Goeders and Wilton generate
dedicated debugging components, reducing the memory footprint of the traces on FPGA, han-
dling compiler temporary variables [18, 28] and multi-threaded code [19]. Their main goal is to
provide a software-like debug framework, where users can inspect the traces after execution or
suspend the hardware to analyze its state. They do not provide automated bug detection, unlike
what is proposed in this work. They also note that suspending the execution may break interac-
tions with other components of the system, potentially introducing other bugs. For this reason in
multi-threaded hardware the analysis of the traces is performed offline [19]. Finally, due to the
specific architecture of their thread-shared trace buffers, the methodology is not beneficial in case
of homogeneous threads, like for example OpenMP for loops or pthreads executing the same
function. In contrast, the methodology proposed here does not have these limitations, and it is
specifically designed to handle homogeneous multi-threading gracefully.

Another trend in on-chip debugging is to synthesize ANSI-C assertions, generating checker
circuits. In this field there are works that focus on the architecture of the assertion checkers
[12, 23, 41], as well as on how to physically place them on FPGA without affecting latencies
[26]. These methodologies are effective, but they can only check malfunctions foreseen by the
developers, because assertions must be manually inserted in the original C specification. This
fails to spot bugs that are not guarded by assertions, whereas the methodology proposed in
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this article provides visibility on such bugs and automated identification of their root cause. In
addition, none of the discussed works on assertion-based verification for HLS mention support
for coarse-grained parallel programming paradigm.

Another big group of methodologies similar to Discrepancy Analysis provides automated bug
detection comparing the execution of the circuits generated with HLS and of the software obtained
from their original high-level specifications, with simulation or directly on-chip. Campbell et al.
[8] focus on Application Specific Integrated Circuit. They generate both a golden reference for the
hardware execution from HLS IR and a set of components that are used to extract the equivalent
execution traces (which they call hardware signatures) from the circuit. The golden reference and
the hardware signature are then compared at the end of the execution and bugs are automatically
detected. Campbell et al. [7] use the same methodology to FPGA, but differently from Reference [8]
they rely on simulation for the generation of the hardware signatures. Yang et al. [50, 51], instead,
actually use the golden reference obtained from the IR to generate the RTL instrumentations, but
the whole debugging flow still relies on simulation. However, differently from References [7] and
[14], the comparison between hardware behavior and software behavior is not performed at the
end of the execution, but is executed concurrently by the RTL instrumentation during simulation;
Carrion Schafer in Reference [42] does the same. On the contrary, Calagar et al. [6] analyze the dis-
crepancies online, during the executions of hardware and software. Their proposed work exploits
both simulation and on-chip debugging. They do not generate the golden reference, but instead
they use a conventional debugger to observe the software on the fly, Application Programming In-
terfaces of the simulator to the simulator APIs to analyze the simulated RTL, and Altera SignalTap
for in-circuit debugging. Their work, however, does not support most of the compiler optimiza-
tions performed during the HLS, and the use of SignalTap causes a high memory usage for the trace
buffers, as reported also in Reference [33]. Iskander et al. [27] propose an approach composed by
two parts: a High-level Validation and Low level Debug. For the High-level Validation they run the
golden reference software on a softcore on the FPGA, saving the results and comparing them with
the results obtained from the accelerators. The main intent of this stage is to create a workflow
that is easily embeddable in automated regression testing and unit testing. The Low-level Debug,
instead, uses partial reconfigurability to provide observability, insert breakpoints, and provide a
software-like debugging experience. The main big limitation of all these approaches for automated
bug detection, as well as of our previous work [14], is that they do not consider multi-threaded
programs and they cannot cope with the large variety of hardware/software thread mappings to
properly compare the executions.

As for methodologies for debugging hardware generated from multi-threaded programs, one of
the few contributions (besides the work of Goeders et al. mentioned above [19]) is a work of Verma
et al. [47] targeting OpenCL for FPGAs. The authors describe open-source debug components,
modeled both in the OpenCL language and in Verilog Hardware Description Language (HDL),
that can be used for manual inspection of OpenCL kernels running on FPGA. The work focuses
on the architecture and on providing these components as a key enabling technique for increasing
visibility on signals during execution. They do not discuss if and how the information collected
with their method can be analyzed automatically for bug detection and source-level backtracking.

Automated bug detection has attracted much interest, as demonstrated by the variety of different
flavors described above. Unfortunately, these works do not consider the problem of debugging
hardware generated from multi-threaded parallel programs. This scenario introduces a number of
challenges when trying to put into relationship the execution of the multi-threaded software with
the execution of the parallel hardware implementation generated with HLS. The reason is that the
number of threads and the actual mapping between task and threads can be different in software
and in hardware. Depending on the configuration and the optimizations implemented by the HLS
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tool, two tasks that are executed by the same thread in the original software could be mapped
onto two physically distinct instances of the HW component. However, the software could launch
a large number of threads, while the design generated from HLS could throttle physical parallelism
to contain area consumption on FPGA.

All these problems are not taken into account by the approaches discussed above and are exac-
erbated with irregular applications, where the hardware/software task mapping patterns are much
harder to predict. In References [19] and [47], the task of unraveling this complexity is delegated
to users that have to figure out the particular thread mapping decided by HLS. Things are compli-
cated by the fact that for certain programming models the thread mapping in software is decided
by the language runtime and is not deterministic. The approach described in this work specifically
targets thread parallel programming models, trying to tackle these problems. Unlike References
[19] and [47], it does not focus on the architecture of the debugging components but it describes
an efficient methodology for automated bug detection and source-level backtracking, specifically
designed to handle circuits generated with HLS from parallel programs.

The fact that there have been so many recent contributions in the field of bug detection on
FPGA shows that it is an interesting open problem. The approach presented here advances the
state-of-the-art of bug detection on FPGA, specifically for parallel programming paradigms whose
precise debugging have long been neglected on FPGA, as testified by the fact that very few of
the mentioned techniques tackle this problem, and the few who do also degrade heavily when
debugging OpenMP programs.

In particular, the novelty of the approach presented here is that it is able to provide at the same

time all the following features: (1) trace-based fully automated bug detection without user inter-
action; (2) independence of the technique used for collection of the traces, which can be collected
on-chip or with simulation as shown in References [14, 16]; (3) full support for parallel program-

ming paradigms on FPGAs that do not degrade even in presence of complicated dynamic map-
pings between software threads and replicated hardware components. This is the first approach
that provides all these features on FPGA without being tied to a specific implementation of hard-
ware/software thread mapping or task-scheduling mechanism.

8 CASE STUDIES AND RESULTS

This section describes a proof-of-concept implementation of the described methodology and eval-
uates it on OpenMP benchmarks to show advantages and limitations of the approach.

8.1 Proof-of-concept Implementation

The implementation has been developed as part of the PandA open source framework for HW/SW
co-design, developed at Politecnico di Milano. The framework includes an HLS compiler, bambu
[35], which can generate Verilog or VHDL code starting from C specifications with support for
OpenMP pragmas, and that can automatically instrument the code and detect bugs using the de-
scribed approach. For the purpose of this work, the bambu debug flow depicted in Figure 9 has
been extended to extract and handle the additional information necessary for the comparison of
the traces coming from multi-threaded programs and the resulting hardware designs. The portion
involving the software traces is in blue on the left. The C code with instrumentations and restruc-
tured in SSA is compiled and executed for the generation of the Software Traces. GCC-4.9 is used
for compilation. The portion involving hardware traces is on the right in orange. Then the RTL
generated by bambu is simulated with cycle accuracy for the generation of the Hardware Traces.
The results shown in the following have been generated using ModelSim SE-64 10.5 from Mentor
Graphics for simulation, but there is nothing specific to this simulator in the process. The green
part in the middle shows information flowing from HLS to the Discrepancy Analysis bug detection
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Fig. 9. Outline of the Discrepancy Analysis debug flow.

step. This last step collects the traces and analyzes them without user interaction. If a mismatch is
detected, information regarding the failing operations and the involved threads in hardware and
in software is provided to the user. This flow has been tested to locate bugs in circuits generated
by bambu for a set of OpenMP benchmarks.

8.2 Benchmarks

We evaluated our methodology on a set of benchmarks composed of seven C programs that use
parallel programming directives.

This specific set of benchmarks has been selected for two main reasons. First, because it has
already been used to evaluate HLS of OpenMP programs in other research work targeted to FPGAs
(e.g., Choi et al. [11]). Second, because it is representative of the real current use of the OpenMP
programming model on FPGA.

As mentioned in Section 2.2, FPGAs are very resource-constrained platforms compared to the
typical HPC machines where parallel programming languages are mostly used, which do not have
severe limits on memory nor on power consumption. In contrast to the typical HPC use, OpenMP
on FPGAs is mostly used for offloading to hardware small kernels, which can be easily parallelized
to exploit physically parallel computation on FPGA. This can be very beneficial for performance
and for power consumption.

The benchmarks are the following:

• Black-Scholes (bs): fixed point computation for option pricing with Monte Carlo approach.
• Division (div): divides a set of integers in an array by another set of integers.
• Floating Point Sine Function (dfsin): adopted from the CHStone benchmark suite [24], it

implements a double-precision floating-point sine function using 64-bit integers.
• Hash (hash): uses four different integer hashing algorithms to hash a set of numbers and

compares the number of collisions caused by the four different hashes.
• Line of Sight (los): uses the Bresenham’s line algorithm to determine whether each pixel in

a two-dimensional grid is visible from the source.
• Mandelbrot (mb): an iterative mathematical benchmark that generates a fractal image.
• MCML (mcml): light propagation from a point source in an infinite isotropic medium.

Some of the benchmarks contained a mix of OpenMP and pthreads directives in Reference
[11], but we adapted them to only use OpenMP. We used bambu with its default parameters to
generate Verilog designs for all the benchmarks, adding the -fopenmp flag to enable OpenMP. In
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particular, the generated architecture dynamically dispatches the tasks onto the various copies
of the accelerators. In addition to this, we used dedicated components to simulate accesses
with variable latency during the operations of the algorithms to inject more irregularity in the
computations. The default target device is a Xilinx Zynq-7000 xc7z020-1clg484, with a frequency
of 100 MHz. We ran the integrated co-simulation flow to ensure that the generated hardware was
working properly. Then, we manually injected different kinds of bugs (see Section 8.3) to see if
they could be detected. We also ran the bug detection on the unmodified designs to check for
false positives and to measure its overhead.

8.3 Bug Detection

We tested the method manually inserting three different kinds of bugs. The first class is composed
by bugs located in a single hardware thread. For these bugs, the capabilities of the bug detection are
the same as for the regular Discrepancy Analysis for single-threaded programs. This means that it
finds bugs affecting each single thread with the same accuracy of the single-threaded version, even
if the application is irregular and the generated design is multi-threaded and independently of the
HW/SW task mapping. This holds both for control flow bugs and for faults involving single op-
erations. For custom data types, the approach can use special comparison functions, for instance,
considering Unit in Last Place for floating points or considering the HW/SW address mapping for
pointers (see Reference [15]). The approach can also isolate bugs in libraries of external compo-
nents used as elementary operators in HLS.

The second class of bugs involves communication between threads via shared memory. The ex-
tended Discrepancy Analysis detects situations where thread accelerators’ reads of writes wrong
values to or from memory, as well as when thread accelerators access memory at wrong locations.
One example is when an accelerator accesses a portion of the shared memory that is reserved
for another thread. Another example is when an accelerator accesses a global data structure in-
stead of its own thread-private copy. Our proof-of-concept was always able to find these bugs
when injected. Other reported communication bugs are caused by thread synchronization and
non-deterministic locking order. This last class of bugs is actually a false positive and is discussed
in Section 8.5.

The third class of bugs was caused by missed or multiple executions of tasks. The Discrepancy
Analysis detects if a given task is executed a different number of times in hardware and in software.
This may happen due to bugs in the logic of the component that decides which task has to be
executed on a given physical copy of the thread accelerator. The detection works if a given task
is dispatched multiple times on different copies of the thread accelerator, as well as on the same
copy. It is also able to detect if a given task executed in software is never executed in hardware.

It is worth to notice that with multi-threaded Discrepancy Analysis the strong guarantee that the
detected bug is the first is lost. One reason is that, in absence of a serial execution and with possibly
different thread models in hardware and in software, it is possible to give different definitions of
“first.” The other reason is that with the trace mangling described in Section 6 the absolute global
timeline of the simulation is scattered through the filtered traces. Timing information is preserved,
but every filtered trace maintains only part of it. The result is that at first it is only possible to
identify the first mismatch for each task. Then the global timestamps of each mismatch for each
task have to be compared to decide which happened first in hardware.

8.4 Performance and Other Advantages

The performance of multi-threaded Discrepancy Analysis was evaluated measuring its execution
time when the generated design was bug-free. This enabled to measure the real execution time of
the algorithm, because in presence of bugs the comparison of each trace is skipped after the first
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Fig. 10. Time overhead of the Discrepancy

Analysis, compared to the simulation time.

Fig. 11. Correlation between length of execution

traces and execution time of the Discrepancy

Analysis.

mismatch. Without bugs, the debugger is forced to analyze all the traces to the end. The results are
obtained from the designs generated by bambu on the set of benchmarks described in Section 8.2.
The simulation was executed with ModelSim SE-64 10.5 from Mentor Graphics. To measure the
overhead of this debugging approach, we compared the execution time of the bug detection to
the simulation time. The results are reported in Figure 10. The simulation times for the evaluated
benchmarks were always in the order of a few tens of minutes, so the overhead of the bug detection
was acceptable. However, it is evident that there is a large variance depending on the benchmark.
On div and hash the overhead is only about 10%. For bf, dfsin, los, and mcml, instead, it grows
above 100% up to about 225%. There are various reasons for these differences, but they are to be
attributed to two main causes.

The first is that bambu generates very different architectures for the parallel constructs due to
optimizations. In particular, there is a very different degree of resource sharing. Accelerators with
multiple duplicated components generate a larger number of hardware traces, while for accelera-
tors with heavy sharing this number is limited. With a larger number of traces the work that the
debugger has to perform is much bigger, hence the great increase in the overhead.

The second reason is related to the memory architecture. For benchmarks with larger memories
and a higher number of shared variables the number of memory accesses and pointer operations
is also higher. This triggers the address Discrepancy Analysis algorithm implemented by bambu
and described in Reference [15]. This algorithm is more complicated, because it keeps track of
context-dependent memory locations of stack-allocated variables in software to build tables that
are queried by the Discrepancy Analysis to resolve matches and mismatches on pointer operations.
This is the second cause of the large variance in overhead.

However, a large overhead is not necessarily to be interpreted as a negative outcome. Given that
large overheads are measured on complicated designs, this overhead actually measures the amount
of work that a designer should perform manually to find bugs in such designs. The automated
bug detection is clearly an advantage in these cases, because it avoids user interaction and it is
suitable for continuous integration and regression testing. It is also interesting to see how the
Discrepancy Analysis scales in case of long runs. To measure it, we executed it on multiple runs
of the same designs, varying the workload of the multi-threaded part. Figure 11 reports data on
how the execution time increases with the increase of the multi-threaded workload. In general, the
execution time grows roughly linearly with the workload, with slightly different slopes depending
on the design.

Another advantage of the Discrepancy Analysis is that it automatically selects the signals
necessary to generate the Hardware Traces. Without it, developers have to dump the complete
traces of all the signals in the design and inspect them manually. This often leads to waveform
files of unmanageable size. With Discrepancy Analysis only the necessary signals are actually
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Fig. 12. Reduction of VCD size and simulation time when Discrepancy Analysis is enabled.

printed, decreasing the impact of the I/O operations on the simulation. Figure 12 reports two
datasets: (1) the reduction of the size of the VCD files with Discrepancy Analysis; (2) the reduction
of simulation time. Both the data come from simulations with ModelSim SE-64 10.5 on the designs
generated by bambu for the evaluated benchmarks. As we can see, the reduction of VCD size
is always at least 50%, with peaks of more than 80%. In some cases this makes the difference
between GBytes and MBytes and allows to analyze executions that are otherwise too long. The
reduction of VCD size is reflected by the reduction of simulation times. The correlation between
the two values is not always evident, such as for div and dfsin. The reason is that the simulator
is able to optimize the design before simulation. Excluding the time spent in I/O for the creation
of VCD, the simulation has some other fixed cost for initialization, static optimization, and other
similar operation. These fixed costs are more significant on smaller benchmarks and cannot be
avoided with signal selection. In fact, the benchmarks whose simulation is sped up more are the
biggest. For those cases the fixed costs are less significant, and the advantages of signal selection
are heavier. This is good for scalability, because the speedups are greater for bigger designs.

8.5 False Positives and Other Limitations

The major limitation of the approach is that the algorithm for debugging multi-threaded code de-
scribed in Section 6 assumes that tasks assigned to each physical or logical thread are uniquely
identified by a possibly dynamic task identifier. This is reasonable with homogeneous parallelism
such as with OpenMP for loops, OpenCL NDRanges, and CUDA warps, but it is not always true in
high-level multi-threaded parallel programs. Imagine a scenario with a single producer and multi-
ple consumers, where the producer enqueues non-unique data to be processed by the consumers.
The time necessary to process each element is not known in advance and can vary. In software as
in hardware, thread IDs are not enough to know which thread is actually doing what, even with
runtime data. The reason is that, depending on the latencies, each element in the queue could be
processed by any thread, both in hardware and in software. To know which hardware and software
threads are processing a specific element in the queue, one should not rely on thread IDs. Task IDs
are not even present, so the only way to know it is to look at the actual data being processed. If
the data in the queue are not unique, this is not possible with the approach described in Section 6.

The same holds in presence of synchronization directives, such as locks and critical sections with
non-deterministic outcomes, such as a shared counter incremented atomically by every thread. In
this case, the order of the increments is irrelevant for the correctness, as long as all the increments
are actually atomic and the final value of the counter matches. This practically means that the
results of the increments in hardware and software are not required to match for correctness,
but Discrepancy Analysis has no way to know it. A simple workaround with OpenMP is to use
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local counters with the reduction clause as in Figure 1, or with user-defined reduction. For more
complex use cases this may not be entirely possible and is definitely worth further investigation.

These limitations practically limit the applicability of the proposed methodology to large
OpenMP programs with rich semantics. However, as mentioned in Section 2.2, the real-world use in
HLS and on FPGA of parallel programming models practically boils down to well-isolated kernels,
which do not suffer these limitations. The current state-of-the-art of HLS for parallel program-
ming directives still does not support richer behaviors and still does not cover the full expressive
power of OpenMP semantics. Until HLS tools actually support synthesizing programs with richer
semantics, it is premature to try to extend the proposed approach to support them, because no
assumption on the actual hardware implementations can be done yet.

9 CONCLUSION AND FUTURE WORK

As HLS gains traction and FPGAs become interesting in massively parallel application, a growing
number of HLS tools have started to provide support for high-level parallel programming lan-
guages. The work presented here describes a methodology for automated bug detection in hard-
ware generated with HLS from parallel programs. The proposed approach allows to perform fast
and effective Discrepancy Analysis between hardware and software with operation granularity
and independently of the number of threads. The effectiveness of the methodology has been tested
on parallel OpenMP benchmarks, but the discussion of the approach has been taken at a higher
level to encompass a large class of high-level languages and threading directives. The proof-of-
concept developed to evaluate the approach has proved to be valuable, finding several different
classes of bugs involving errors in single threads, communication between threads, and wrong
dispatch of thread iterations. The implementation proposed here is based on simulation to demon-
strate the approach, but the technique is also usable with traces collected on-chip. However, de-
bugging multi-threaded code is hard and there is room for improvement, avoiding false positives
or extending support for programming models. These directions will be explored in our future
research.
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