
Power consumption management under a low-level
performance constraint in the Xen hypervisor
Rolando Brondolin

DEIB, Politecnico di Milano
Milano, Italy

rolando.brondolin@polimi.it

Marco Arnaboldi
DEIB, Politecnico di Milano

Milano, Italy
marco.arnaboldi@polimi.it

Marco D. Santambrogio
DEIB, Politecnico di Milano

Milano, Italy
marco.santambrogio@polimi.it

Abstract
Virtualization is the main building block of many architec-
tures and systems from embedded computing to large scale
data-centers. Managing e�ciently computing resources and
their power consumption becomes fundamental to optimize
the performance of the workloads running on those systems,
however, hardware tools like Intel RAPL can only intro-
duce power caps without considering performance. �is
paper presents a performance-aware power capping orches-
trator for the Xen hypervisor. �e tool exploits hybrid power
management techniques to minimize power consumption
respecting a given SLA, leveraging RAPL and overcoming
its limitations. Experimental evaluation shows that the pro-
posed approach guarantees good results for almost all the
analyzed benchmarks (e.g. CPU-, memory- and IO-bound).

CCSConcepts •So�ware and its engineering→Virtual
machines; Powermanagement; •Computer systems or-
ganization →Self-organizing autonomic computing;

Keywords Adaptive Systems; Power Management; Virtu-
alization

1 Introduction
Virtualization is currently the standard technology for the
deployment of workloads on a large variety of architectures
and computing platforms. From small embedded systems
[24] to large scale computing infrastructures and cloud data-
centers [21], virtualization provides a clean way to separate
tenants co-located on the same physical platformwhile being
transparent w.r.t. the tenant’s users. Virtual Machines (VMs)
can reach near-native performance thanks to hardware sup-
port and the research in the last years focused on how to run
VMs e�ciently on commodity hardware. �is is not only
related to pure performance per se, but also on how to man-
age power consumption as well. �is is an important aspect,
as power draw accounted directly to the servers represents
' 30% of the power consumption of a cloud data-center [7].

To cope with the increasing pressure on power grids and
on power supplies in general, Intel introduced the Running
Average Power Limit (RAPL) interface since the Sandy Bridge
[9] processors generation: this interface enforces a strong

EWiLi ’19, October 17, 2019, New York, USA.
Copyright held by Owner/Author

and precise limit on the power consumption of a processor,
i.e., the component that contributes the most on the dynamic
power consumption of a server [27]. RAPL uses Dynamic
Voltage and Frequency Scaling (DVFS) techniques to guar-
antee the desired power cap. Although RAPL is a precise
and fast solution to reduce power consumption on Intel pro-
cessors, it is not aware of the impacts that these techniques
have on the performances of the hosted applications. To cope
with this limitation, so�ware techniques can be combined
with RAPL to build hybrid approaches able to manage the
trade-o� between performance and power at runtime. On
the one hand, performance can be maximized under a given
power cap, and interesting examples of this approach are
PUPiL [28] and XeMPUPiL [5]. On the other hand, RAPL can
be used to minimize power consumption while respecting a
given performance constraint. �is approach is extremely
interesting for workloads that should respect strict Service
Level Agreemens (SLAs) to work properly.

In this paper, we propose a hybrid (hardware and so�ware)
power capping orchestrator for the Xen hypervisor based
on the Observe Decide Act (ODA) control loop that aims
at minimizing the power consumption of a physical server
given an SLA to respect. �emain contributions of this paper
are the following:
• we propose an Observe phase that collects a low-level
and generic performance metric like Instruction Re-
tired (IR) without instrumenting the applications;

• we de�ne a Decide phase that deals with virtual re-
sources, assigning them to physical ones to maintain
the given SLA and minimizing power consumption;

• we implement an Act phase that supports the Xen
hypervisor and enforces the results of the previous
phases.

�e rest of this paper is organized as follows: Section 2
introduces the challenges we are going to target within this
work; Section 3 describes the state of the art; Section 4 details
the methodology and the proposed contributions; Section 5
presents the experimental results that validate our approach,
while Section 6 draws the conclusions and presents the future
directions of this work.

2 Problem De�nition and goals
�e leading technique adopted in data-centers to increase
the e�ciency of the physical machines is virtualization. Of



EWiLi ’19, October 17, 2019, New York, USA Rolando Brondolin, Marco Arnaboldi, and Marco D. Santambrogio
Po

w
er

 c
ap

 (W
)

0

20

40

In
st

ru
ct

io
ns

 re
tir

ed

0

2×109

Time (s)
0 20 40 60 80 100 120 140 160 180 200 220

Power cap effects on Virtual Machines

Figure 1. Performance (measured in IR) of a domain in Xen,
running an NPB EP benchmark that is a�ected by increasing
power caps.

course, when hardware resources are a�ected by power con-
straints, the virtualized ones are a�ected as well. �e graph
in Figure 1 shows how di�erent power constraints a�ect
the performance returned by a VM running in a virtualized
environment. �e application running in the VM is a highly
parallel random number generator taken from the NAS Par-
allel Benchmarks (NPB). It is possible to notice that in a
system where no power constrains (region 1) are de�ned,
the performance (measured as the number of IR) is optimal.
�e challenge rises when a power cap must be enforced on
the system as shown in region 2. In this case, it is possible to
notice a slight downgrade in performance. �is behavior is
even more clear when the power cap becomes stricter, like in
regions 3 and 4. In these cases, the performance downgrade
is really signi�cant. However, it is also true that being able
to exploit a power cap technique like the one in the graph (in
this case was used RAPL) ensures a precise and strict power
control of the system.
�e goal of this work consists in the design and devel-

opment of an orchestrator for workloads running in a vir-
tualized environment able to manage at best performance
SLAs and power caps. �e proposed orchestrator should
be: timely, e�cient and workload agnostic. At any change
of the power cap for the system, the orchestrator should be
able to timely enforce it, avoiding any oscillatory behavior.
Depending on the di�erent running workloads in the system,
the orchestrator should be able to identify e�ciently which
is the best resource set to assign to each workload in order
to maximize its performance. Moreover, the system should
be workload agnostic to be as general as possible without
instrumenting code and guest VMs.

3 State of the Art
Power management approaches can be classi�ed into two
families: hardware and so�ware approaches. �e former
ones are built upon the concept of timeliness, enforcing the
cap as faster and stricter as possible exploiting hardware
control circuits. �e la�er ones, instead, are built upon the
concept of e�ciency, searching for the best con�guration
possible to maximize the performance while reducing the
power consumption. Moreover, within these two families,
we can �nd some works that can be de�ned as hybrid, since

they leverage both techniques in such a way that none of
the two approaches is prominent.
All the power capping techniques implying the use of

socket modules or interfaces to enforce a cap can be clas-
si�ed as hardware approaches. In the work proposed by
Deng et al. [10] the authors present MultiScale. �is is the
�rst technique that tries to manage DVFS in systems pre-
senting multiple memory channel, devices, and Memory
Controllers (MCs). �is approach consists into monitoring
workload bandwidth requirements across MCs, under Oper-
ating System (OS) control. �e information retrieved from
the monitoring stage is then used by a heuristic in order to
select the best frequencies combinations. �ese combina-
tions try to minimize the overall system power consumption
while respecting the user-speci�ed per-application perfor-
mance constraints. Instead, in the work of Horvath et al.[19],
the authors address DVFS in multistage service pipelines,
unlike previous works that addressed DVFS on individual
servers and on load-balanced server replicas. Finally, for
what concerns hardware techniques, the survey published in
2012 by the Intel sandy-bridge development team [25] pro-
vides useful information about the new features introduced
in the sandy-bridge processors family. �e Intel developer
manual [15], volume 3B, section 14.9, shows that RAPL can
be de�ned as an interface providing mechanisms to enforce
power consumption limit. �e usage of those interfaces has
huge importance for both client and server platforms.

As for so�ware techniques, Cochran et al. presented Pack
& Cap [8], a control technique that aims to maximize perfor-
mance while respecting a given power budget. �is goal is
achieved through a system designed to make optimal thread
packing control decisions. �e work proposed by Ho�man
et al. in 2013 [16] showed a detailed analysis over di�er-
ent so�ware heuristics for workloads with deadlines that
can be divided into three families: Race-to-idle, Pace-to-idle
and No-idle depending on the fact that the workloads obtain
the most performing con�guration and reach idle as soon
as possible, the workloads obtain the most energy-e�cient
con�guration able to respect the deadline or the workloads
respect the deadline but never idle respectively. Finally, with
model-based so�ware techniques the goal is to reduce power
in data-center [13, 14, 19, 22, 26] or in embedded systems
[11, 20, 23] by leveraging data-driven models. Models based
on previously observed behavior can predict the power and
the resources required by a new unobserved application to
�ne-tune the resources’ con�guration and save power.

For what concerns hybrid approaches, the work proposed
by Zhang and Ho�mann [28] is the most remarkable one.
PUPiL is an orchestrator for applications in a Linux bare
metal OS. It totally embraces the de�nition of hybrid power
consumption management technique. Its approach is com-
posed by a so�ware part (i.e. an ODA control loop) and a
hardware one (i.e. Intel RAPL interface), having the goal of
maximizing the performance and at the same time strictly



Power management of Xen under a low-level performance constraint EWiLi ’19, October 17, 2019, New York, USA

Figure 2. Overview of the orchestrator architecture with
observe, decide and act phases. �e observe phase collects
data at the hardware and hypervisor level, while the act
phase leverages RAPL to enforce power caps and CPU-pool
and pinning mechanism for resource management.

respecting a given power cap. Even though the approach pro-
posed by PUPiL is e�ective, we identi�ed two non-negligible
limitations of the proposed solution: �rst, the applications
running on the system need to be instrumented with the
Heartbeat framework [17, 18], in order to provide a uniform
metric of throughput to the decision phase; second, the tool
is meant to work with applications running bare-metal on
Linux. To overcome this limitation, Arnaboldi et al. pre-
sented XeMPUPiL[5], which leverages IR as a commonmetric
and supports virtualization in the Xen hypervisor [6]. �is
paper starts from XeMPUPiL and devices an orchestrator
able to guarantee the performance expressed as number of
IR while minimizing the server power consumption.

4 Methodology
In this paper we present a hybrid power-aware orchestrator
that exploits so�ware and hardware techniques to achieve
power control over the system. �is work extends ant takes
inspiration from XeMPUPiL[5], enabling to express a low-
level performance constraint and reducing power consump-
tion whenever possible. We target a virtualized environment
such as Xen, addressing all the problems and the challenges
related to the isolation between the running jobs inside the
guest OS and the virtualized hardware.

4.1 System architecture
�eoverall architecture of the proposed orchestrator is shown
in Figure 2. At the bo�om, there is the hardware layer, where
the physical hardware resources lie. On top of this level, there
is the hypervisor, which is in charge of the virtualization
of the underlying resources for the domains level. In this

last level, the domains (i.e. the VM) are instantiated and can
exploit the virtualized resources provided by the hypervisor.
In this layer, the domains containing the workloads will be
instantiated and executed.

�e orchestrator is built upon an ODA control loop. It ob-
serves the running workloads and how they are performing
in terms of power consumption and performance, thanks to
hardware performance metrics. It then explores the space of
all the feasible con�gurations and decides the one providing
the required SLA (expressed as IRs) while saving as much
power as possible. Finally, it enforces the selected con�gu-
ration through the act stage. To maintain this approach as
portable as possible, we decided to implement the orches-
trator logic at the highest level possible. To this aim, we
in�ated the control logic inside dom0, given that this VM is
the �rst one instantiated in Xen every time the hypervisor is
initialized and provides privileged access to the hypervisor.

4.2 Observe
�e main challenge of the Observe phase consists of avoid-
ing any code or domain instrumentation. In this way we
can obtain an approach as general and portable as possible,
avoiding additional e�ort of the application developers. We
decided to use hardware event counters as low-level metrics
of performance, exploiting the Intel Performance Monitoring
Unit (PMU) to monitor the amount of IR accounted to each
domain in a certain time window. We chose as main metric
the IRs because they measure how many instructions were
completely executed (i.e., that successfully reached the end
of the pipeline) between two samples of the counter, thus
representing a reasonable indicator of performance [1].

�ere are three challenges that we should address in this
context: (i) provide precise a�ribution of hardware events
to virtual tenants; (ii) be agnostic to the mapping between
virtual and physical resources, hosted VMs and scheduling
policies; (iii) add negligible overhead. To address these chal-
lenges we leveraged and modi�ed XeMPower [12], a tool
already part of Xen developed by Politecnico di Milano in
collaboration with the SwarmLab at UC Berkeley. We in-
strumented the Xen scheduler in order to read IRs for each
domain from the hardware registers and to empty them at
each context switch. �enwe exploited the daemon provided
by XeMPower to gather the information coming from the
scheduler, aggregating data per domain and storing them
in a shared-memory region read by the observe phase. Fi-
nally, the data is sent to the Decide phase to drive the current
decision policy.

4.3 Decide
During this step we work with the concept of resource, de�n-
ing how to assign di�erent resources to a workload. A re-
source is a computational asset which can modify the perfor-
mance of the observed applications. In our case, we will man-
age as a resource the number of virtual CPUs (vCPUs) pinned



EWiLi ’19, October 17, 2019, New York, USA Rolando Brondolin, Marco Arnaboldi, and Marco D. Santambrogio

over the physical CPUs (pCPUs). We made two assumptions
during the development of this work: the performance func-
tion is a concave function and the power consumption is
a convex function. �e �rst assumption ensures to �nd a
global maximum, hence a unique point of termination. �e
second one ensures to �nd a global minimum.

To �nd the con�guration that allows to guarantee a given
level of IRs for a given domain while saving power, the
following procedure is adopted: (i) a domain is executed
without imposing a power cap, (ii) the decide phase �nds
the resource con�guration for the workloads providing the
best performance, (iii) the decide phase reduces the power
consumption until the SLA is respected.

When the decide phase starts, we set all the possible con-
�gurations as not explored and we set up a binary search.
Initially, we explore always three con�gurations: (i) the one
with minimum resources, (ii) the one with maximum re-
sources and (iii) the one with an average amount of resources.
For each of them, we observe the behavior of the workload,
then we de�ne the best lower and upper bound for the next
iteration of the binary search. A�er testing these con�gura-
tions, the search continues until the upper and lower bound
are the same (convergence) or the performance of the new
bounds are worse than the ones of the previous iteration.
In this second case, the best between the previous ones is
de�ned as the convergence con�guration.
For what concerns the allocation of resources to each

domain, we chose to work at a core-level granularity: on the
one hand, each domain owns a set of vCPU, while, on the
other hand, we have a set of pCPU present on the machine.
Each vCPU is mapped on a pCPU for a certain amount of
time, while it may happen that even multiple vCPU can be
mapped on the same pCPU. We wanted our allocation policy
to be as fair as possible, covering the whole set of pCPU if
possible; given a workload with M virtual resources and an
assignment of N physical resources, to each pCPU we assign:

vCPUs (i ) =



M −
i−1∑
j=0

vCPUs (j )

N − i



(1)

where i is an integer between 0 and N − 1, i.e., it spans
over the set of pCPU. �is formula represents the following
behaviour: if the system has 3 pCPU and a workload has 8
vCPU, (1) leads to a pinning of the vCPUs over the pCPUs
of 3-3-2: three vCPU pinned on the �rst, three on the second
and two over the third pCPU.

4.4 Act
�e act phase is the step of the ODA loop where the hy-
brid approach is �nally enforced, and essentially consists
in: (i) se�ing the desired power cap; (ii) actuating the se-
lected resource con�guration. On the one hand, we decided

to implement the same hardware technique proposed by
PUPiL and XeMPUPiL to set the power cap, i.e., exploiting
the Intel RAPL interface. �is provides a fast and strict re-
sponse to power oscillations, cu�ing the frequency and the
voltage of the whole CPU socket and ignoring the perfor-
mance of the applications running on the system. On the
other hand, we support the knobs made available by the
hypervisor to assign resources to each domain. �is second
step allows �ne-tuning of the resources to improve domains
performance, but it is, of course slower than the hardware ac-
tuation in responding to power variations. �is is the reason
why we use both the approaches to provide a fast response
and a precise power capping.

4.4.1 Hardware Power Cap
To support hardware power cap, we leveraged the actua-
tion step of XeMPUPiL . �e power cap is enforced through
RAPL by writing data into the MSR RAPL POWER UNIT and
MSR PKG RAPL POWER LIMITModel Speci�c Registers (MSRs)
of the processor. �e �rst register contains data about time,
energy and power units. �e second register is used to write
a limit on the power consumption of the socket, where the
values are scaled based on the contents of the �rst register.

XeMPUPiL and XeMPower provide two hypercalls that
allow to read and write MSRs from dom0, operation that
was previously not supported by Xen. �e two hypercalls
are "xempower rdmsr" and "xempower wrmsr", where the
�rst one allows to read, while the second one allows to
write a speci�c MSR from dom0. We then set two Xen built-
in functions as callbacks for the hypercalls: wrmsr safe
and rdmsr safe. Finally, we leveraged the Command Line
Interface (CLI) tools xempower RaplSetPower to set and
xempower RaplPowerMonitor to read the power consump-
tion of the socket.

In a single socket architecture it is straightforward to set
the correct value in the right MSR, since it is ensured that,
independently from which core the hypercall is executed,
the core will belong to the socket. Hence, the MSR hypercall
will control the entire socket. However, in a multi-socket
environment, it is impossible to predict on which core the
hypercall management routine will be executed. For this rea-
son, we modi�ed the "xempower wrmsr" hypercall routine
to execute the hypercall on all the online CPUs. We then
de�ned the function that writes the MSR as a tasklet. In Xen,
tasklets are dynamically-allocatable tasks run in either vCPU
context (speci�cally, the idle VCPU’s context) or in so�irq
context, on at most one CPU at a time. We then exploited a
Symmetric MultiProcessing (SMP) call to launch a tasklet on
each pCPU. SMP involves a multiprocessor computer hard-
ware and so�ware architecture where two or more identical
processors are connected to a single, shared main memory,
have full access to all I/O devices, and are controlled by a
single operating system instance that treats all processors
equally, reserving none for special purposes. �is allowed



Power management of Xen under a low-level performance constraint EWiLi ’19, October 17, 2019, New York, USA

us to continue the hypercall on a given CPU with hypercall
privileges, ensuring the correct update of the MSR.

4.4.2 So�ware resource management
�emain tool we leverage for so�ware resourcemanagement
is cpupool, which is a Xen tool part of the xl CLI. �is tool
allows to create clusters of CPUs and to put them into pools.
When we declare a pool, a Xen domain can use it. In this
case, the hypervisor instantiates a new scheduler to manage
the pool. At this point, the domain vCPUs can be scheduled
onto the pCPUs inside the pool. When a new allocation is
de�ned by the decide phase, we leverage cpupool to add or
remove pCPUs accordingly and we pin the vCPUs of the
domain to the pCPUs to increase workload stability.

5 Experimental Evaluation
In this section we will present the results obtained with the
proposed orchestrator. We studied its behavior by looking
at the resources assigned to the di�erent workloads and the
power consumption obtained for the system. We de�ned
di�erent level of SLAs, which correspond to fractions of the
best performance de�ned as the number of IRs obtained a�er
the convergence of the maximization process.

5.1 Experimental setup
For the benchmarking activity, we decided to exploit four
di�erent benchmarks, each one representing a possible fam-
ily of computational workloads having some bounds directly
related to the resources of the system. In particular, we de-
cided to investigate the following families: (i) CPU-bound,
(ii) memory-bound, (iii) IO-bound and (iv) CPU-mem-bound
workloads. Two of them are part of the set of benchmarks
provided by the National Aeronautics and Space Administra-
tion (NASA), the NPB version 3.3 [3]: Embarassingly parallel
(EP) and Block Tridiagonal solver (BT). �e former provides
estimates for the upper achievable limits for �oating point
performance. �is can be de�ned as a CPU-bound workload.
�e la�er, instead, is a pseudo application. In detail, it pro-
vides solution of di�erent, independent system of block tridi-
agonal, non-diagonally dominant equations. �is application
is both parallel and memory bounded. A third benchmark
used to represent the IO-bound family is IOzone [2], a tool
for benchmarking �le-systems. A variety of �le operation
is measured and generated by this benchmark. Finally, the
fourth benchmark is Cachebench [4], a test designed to stress
memory and cache bandwidth performance.

�e experiments were carried out on a dual-socket Intel(R)
Xeon(R) CPU E5-2680 v2@ 2.80 GHz with 10 physical thread
per socket and hyper-threading enabled. We leveraged Xen-
4.6 as the base hypervisor. Each benchmark runs isolated
inside a VM and we carried out the evaluation using one VM
per experiment. �e VMs run a 32-bit version of Debian, and
for this reason, the maximum amount of vCPUs that the VM
is able to manage is up to 8.

5.2 Experimental results
To evaluate our approach, we de�ned three SLAs: 90%, 80%,
and 70%, since we noticed that at these steps it is possible
to see a measurable decrease in power consumption. �e
meaning of these values corresponds to the percentage of the
maximum performance that must be at least returned. For
instance, given amaximum performance of 1000 IRs obtained
thanks to the maximization phase, de�ning for it a SLA of
80% means trying to minimize the power consumption until
the performance downgrades under an absolute value of 800
IRs. Recalling Section 4, the tests on the four benchmarks
were conducted as follows:

1. �e power cap is imposed to default value. In this way
is like imposing no power cap, since the maximum
consumption for the sockets of the system is around
160W;

2. �e maximization of the performance in a NO-CAP
con�guration is ran in order to �nd the resource con-
�guration for the workloads providing the best per-
formance;

3. �e minimization of the power consumption is exe-
cuted in order to respect the given SLA.

In Table 1 the results obtained for the EP benchmark are
shown. It is possible to notice that in all the SLA cases, the
maximization phase tends to converge to a con�guration
that assigns all the available resources to the VM. In these
cases it is possible to notice that trying to respect a small SLA
will result in a greater standard deviation for what concerns
the converged performance percentage, meaning that the
orchestrator tends to disrespect the SLA de�ned in case it
is too small. A similar behavior can be noticed from Table 2
with BT. In this test case, the application is at the same time
computational intensive and memory intensive and this is
why fewer cores are assigned to it. �is leads to trying to
assign to it less pCPUs, due to the memory intensive nature
of the application.
Instead, in Table 3 and 4 two benchmarks respectively

memory and IO intensive are presented (e.g. Cachebench
and IOzone). In this cases, our methodology tends to assign
fewer cores to the VMs. And it also possible to notice that
the power consumption is decreased signi�cantly. On the
other hand, these results present a huge standard deviation.
�is is due to the IR metric adopted in order to evaluate the
performance, since is really a low-level measurement, very
sensitive to each phase of the running application, even the
smallest one. One last consideration regards the time needed
in order to converge to the solution. �is value is pre�y
stable for all the benchmark classes and it is required only
once for each iteration. Furthermore, this time can be further
decreased since at the moment a time window of 2 seconds
is le� to the workloads to stabilize when the performance
maximization phase is completed.



EWiLi ’19, October 17, 2019, New York, USA Rolando Brondolin, Marco Arnaboldi, and Marco D. Santambrogio

Table 1. Minimization results obtained for the EP benchmark. Maximum power consumption 160W.

SLA Cores
assigned

Power
consumption (W)

Maximization
time (s)

Minimization
time (s)

Objective Obtained
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

90 0,97 0,07 7,93 0,25 140,17 40,38 3,73 0,32 5,51 0,78
80 0,94 0,12 7,97 0,18 139,00 42,76 3,57 0,36 5,33 0,58
70 0,82 0,23 7,87 0,43 112,83 54,94 3,61 0,30 5,28 0,67

Table 2. Minimization results obtained for the BT benchmark. Maximum power consumption 160W.

SLA Cores
assigned

Power
consumption (W)

Maximization
time (s)

Minimization
time (s)

Objective Obtained
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

90 0,99 0,04 7,10 0,92 159,17 4,56 4,40 0,43 5,86 0,86
80 0,96 0,12 7,00 1,23 154,67 18,71 4,39 0,62 5,85 1,09
70 0,91 0,17 7,10 0,92 147,17 32,13 4,51 0,51 5,95 0,94

Table 3. Minimization results obtained for the CacheBench benchmark. Maximum power consumption 160W.

SLA Cores
assigned

Power
consumption (W)

Maximization
time (s)

Minimization
time (s)

Objective Obtained
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

90 1,00 0,05 5,60 2,40 147,17 35,40 4,51 0,50 6,04 0,79
80 0,99 0,12 5,43 2,28 135,50 46,37 4,62 0,50 6,27 0,93
70 1,00 0,05 5,10 2,09 147,67 35,10 4,68 0,44 6,48 0,99

Table 4. Minimization results obtained for the IOzone benchmark. Maximum power consumption 160W.

SLA Cores
assigned

Power
consumption (W)

Maximization
time (s)

Minimization
time (s)

Objective Obtained
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

90 0,93 0,11 6,70 1,62 133,33 42,23 4,82 0,55 6,38 1,48
80 0,84 0,18 6,13 2,13 126,33 45,45 4,83 0,43 6,37 0,98
70 0,83 0,26 6,67 1,65 126,00 48,63 4,81 0,49 6,53 1,41

6 Conclusion and Future works
In this paper we presented a performance-aware power cap-
ping orchestrator for the Xen hypervisor. We extended the
current implementation ofXeMPUPiL[5] to guarantee a given
SLA expressed as IRs while reducing power consumption in
a virtualized environment based on the Xen hypervisor. �e
methodology proposed in this work leverages three main
concepts: (i) e�ciency, (ii) timeliness, and (iii) lack of work-
load instrumentation. Within the experimental campaign we
showed that the proposed work is able to reduce power con-
sumptions in almost all the benchmark classes tested (e.g.,
CPU-, memory- and IO-bound ones). Future work of this
paper will address the development of an improved decision
algorithm able to reduce the duration of the decide phase.
In particular, it would be interesting to study how di�erent
decision policies may in�uence the convergence time of the
so�ware approach to the con�guration providing the highest
performance.

References
[1] Clockticks per instructions retired (cpi). h�ps://so�ware.intel.com/

en-us/node/544403. Accessed: 2016-06-01.
[2] Iozone. h�p://www.iozone.org. Accessed: 2017-03-15.
[3] Nas parallel benchmarks. h�p://www.nas.nasa.gov/publications/npb.

html#url. Accessed: 2017-03-15.
[4] Openbenchmarking.org. h�ps://openbenchmarking.org/test/pts/

cachebench. Accessed: 2017-03-15.
[5] M. Arnaboldi, M. Ferroni, and M. D. Santambrogio. Towards a

performance-aware power capping orchestrator for the xen hypervi-
sor. ACM SIGBED Review, 15(1):8–14, 2018.

[6] P. R. Barham, B. Dragovic, K. A. Fraser, S. M. Hand, T. L. Harris, A. C.
Ho, E. Kotsovinos, A. V. Madhavapeddy, R. Neugebauer, I. A. Pra�,
and A. K. War�eld. Xen 2002. Technical report, 2002.

[7] L. A. Barroso, J. Clidaras, and U. Hölzle. �e datacenter as a computer:
An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture, 8(3):1–154, 2013.

[8] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda. Pack & cap: adap-
tive dvfs and thread packing under power caps. In Proceedings of the
44th annual IEEE/ACM international symposium on microarchitecture,
pages 175–185. ACM, 2011.

https://software.intel.com/en-us/node/544403
https://software.intel.com/en-us/node/544403
http://www.iozone.org
http://www.nas.nasa.gov/publications/npb.html#url
http://www.nas.nasa.gov/publications/npb.html#url
https://openbenchmarking.org/test/pts/cachebench
https://openbenchmarking.org/test/pts/cachebench


Power management of Xen under a low-level performance constraint EWiLi ’19, October 17, 2019, New York, USA

[9] H. David, E. Gorbatov, U. R. Hanebu�e, R. Khanna, and C. Le. Rapl:
Memory power estimation and capping. In International Symposium
on Low Power Electronics and Design (ISPLED), 2010.

[10] Q. Deng, D. Meisner, A. Bha�acharjee, T. F. Wenisch, and R. Bianchini.
Multiscale: memory system dvfs with multiple memory controllers.
In Proceedings of the 2012 ACM/IEEE international symposium on Low
power electronics and design, pages 297–302. ACM, 2012.

[11] M. Ferroni, A. Cazzola, D. Ma�eo, A. A. Nacci, D. Sciuto, and M. D.
Santambrogio. Mpower: Gain back your android ba�ery life! In
Proceedings of the 2013 ACM conference on Pervasive and ubiquitous
computing adjunct publication, pages 171–174. ACM, 2013.

[12] M. Ferroni, J. A. Colmenares, S. Hofmeyr, J. D. Kubiatowicz, and M. D.
Santambrogio. Enabling power-awareness for the xen hypervisor.
ACM SIGBED Review, 15(1):36–42, 2018.

[13] M. Ferroni, A. Corna, A. Damiani, R. Brondolin, J. A. Colmenares,
S. Hofmeyr, J. D. Kubiatowicz, and M. D. Santambrogio. Power con-
sumption models for multi-tenant server infrastructures. ACM Trans-
actions on Architecture and Code Optimization (TACO), 14(4):38, 2017.

[14] M. Ferroni, A. Corna, A. Damiani, R. Brondolin, J. D. Kubiatowicz,
D. Sciuto, and M. D. Santambrogio. Marc: A resource consumption
modeling service for self-aware autonomous agents. ACMTransactions
on Autonomous and Adaptive Systems (TAAS), 12(4):21, 2017.

[15] P. Guide. Intel® 64 and IA-32 Architectures So�ware Developer�s Man-
ual, 2011.

[16] H. Ho�mann. Racing and pacing to idle: an evaluation of heuristics
for energy-aware resource allocation. In Proceedings of the Workshop
on Power-Aware Computing and Systems, page 13. ACM, 2013.

[17] H. Ho�mann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal. Application heartbeats: A generic interface for expressing per-
formance goals and progress in self-tuning systems. In 4th Workshop
on Statistical and Machine learning approaches to ARchitecture and
compilaTion (SMART), 2010.

[18] H. Ho�mann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal. Application heartbeats for so�ware performance and health.
Technical report, August 2009.

[19] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu. Dynamic voltage
scaling in multitier web servers with end-to-end delay control. IEEE
Transactions on Computers, 56(4), 2007.

[20] M. Kim, M.-O. Stehr, C. Talco�, N. Du�, and N. Venkatasubramanian.
xtune: A formal methodology for cross-layer tuning of mobile em-
bedded systems. ACM Transactions on Embedded Computing Systems
(TECS), 11(4):73, 2012.

[21] R. Kumar and S. Charu. Comparison between cloud computing, grid
computing, cluster computing and virtualization. International Journal
of Modern Computer Science and Applications, 3(1):42–47, 2015.

[22] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch.
Power management of online data-intensive services. In Computer
Architecture (ISCA), 2011 38th Annual International Symposium on,
pages 319–330. IEEE, 2011.

[23] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, N. Du�, R. Gupta,
A. Nicolau, S. Shukla, and N. Venkatasubramanian. A cross-layer
approach for power-performance optimization in distributed mobile
systems. In Parallel and Distributed Processing Symposium, 2005. Pro-
ceedings. 19th IEEE International, pages 8–pp. IEEE, 2005.

[24] D. Rossier. Embeddedxen: A revisited architecture of the xen hyper-
visor to support arm-based embedded virtualization. White paper,
Switzerland, 2012.

[25] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Ra-
jwan. Power-management architecture of the intel microarchitecture
code-named sandy bridge. Ieee micro, 32(2):20–27, 2012.

[26] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen. Power
containers: An os facility for �negrained power and energy manage-
ment on multicore servers. In IEEE 3rd International Conference on
Cyber-Physical Systems, Networks, and Applications. IEEE, 2015.

[27] C. Xu, Z. Zhao, H. Wang, and J. Liu. On the interplay between net-
work tra�c and energy consumption in virtualized environment: An
empirical study. In 2014 IEEE 7th International Conference on Cloud
Computing, pages 392–399, June 2014.

[28] H. Zhang and H. Ho�mann. Maximizing performance under a power
cap: A comparison of hardware, so�ware, and hybrid techniques.
pages 545–559, 2016.


	Abstract
	1 Introduction
	2 Problem Definition and goals
	3 State of the Art
	4 Methodology
	4.1 System architecture
	4.2 Observe
	4.3 Decide
	4.4 Act

	5 Experimental Evaluation
	5.1 Experimental setup
	5.2 Experimental results

	6 Conclusion and Future works
	References

