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Abstract

We introduce ReConvNet, a recurrent convolutional ar-
chitecture for semi-supervised video object segmentation
that is able to fast adapt its features to focus on any spe-
cific object of interest at inference time. Generalization
to new objects never observed during training is known
to be a hard task for supervised approaches that would
need to be retrained. To tackle this problem, we propose a
more efficient solution that learns spatio-temporal features
self-adapting to the object of interest via conditional affine
transformations. This approach is simple, can be trained
end-to-end and does not necessarily require extra train-
ing steps at inference time. Our method shows competitive
results on DAVIS2016 with respect to state-of-the art ap-
proaches that use online fine-tuning, and outperforms them
on DAVIS2017. ReConvNet shows also promising results on
the DAVIS-Challenge 2018 winning the 10-th position.

1. Introduction
Semi-Supervised Video Object Segmentation is the task

of segmenting specific objects of interest in a video se-
quence, given their segmentation in the first frame. This
poses an interesting challenge for standard supervised
methods, as the model cannot be trained to discriminate be-
tween a fixed set of classes based on semantics [13], but
rather has to learn to segment unseen objects based on a
single instance. Classic supervised techniques fail to gener-
alize easily to new objects whose traits are potentially very
different from the training data. This problem is known in
the literature as “domain adaptation”.

Most of the proposed approaches cast the problem as a
one-shot learning task: after a first general pre-training on
the entire dataset, at inference time the generic model is
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adapted into an object-specific one by fine-tuning on trans-
formations of the first frame for each test sequence [2, 15].
This procedure is computationally expensive, requiring sev-
eral extra steps of back-propagation for each sequence. Fur-
thermore, it heavily depends on the ability of the data aug-
mentation procedure to produce realistic sequences. Indeed,
generating high-quality sequences is clearly a very hard and
ill-posed task that adds an extra layer of complexity to the
problem.

In this work we propose a system that can adapt to the
specific object of interest at inference time without the need
of an expensive fine-tuning stage. This mechanism is in-
spired by fast-weights [10]. In this framework a slow net-
work generates, on-line, the weights of a second one, called
fast network, to fast adapt to a new task or to a change in the
environment. More recently HyperNetworks [3] propose
to use a network to infer a transformation of the weights
rather than the weights themselves. Similarly, FiLM [8]
proposes an extension of conditional batch-normalization
where a module produces an affine transformation that is
applied to the features of each layer of the main neural net-
work in order to impose a more explicit conditioning.

In the context of object segmentation, features mod-
ulation has been investigated on the DAVIS dataset by
OSMN [17], that extends OSVOS [2] by specializing a part
of the architecture to condition the predictions on the tar-
get object. Specifically, this is achieved by modulating the
activations of the Segmentation Network (SN) via a single
forward pass of a Modulating Network (MN) that outputs
a scale parameter for each channel based on the object fea-
tures, and a shift parameter for each location that acts as a
spatial attention mechanism similar to [12]. Here the SN
learns to perform generic segmentation and the MN fast-
adapts it to attend to the object of interest.

In this paper we introduce ReConvNet, a recurrent convo-
lutional architecture for semi-supervised video object seg-
mentation. Our architecture self-adapts to segment unseen
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Figure 1. ReConvNet architecture. The Segmentation Network (yellow) is a VGG-16-based architecture enhanced with convLSTM
layers. The Visual Modulator (blue) biases the SN to be selective toward the object of interest via a per-channel multiplicative interaction,
while the Spatial Modulator (red) enforces a spatial prior via an additive per-location modulation.

object without the need of extra fine-tuning steps of supervi-
sion. The main contributions of this work are the following:

• We extend the successful OSMN architecture with the
possibility to model highly non-linear intrinsic tempo-
ral correlations between consecutive frames via con-
vLSTM units. This modification outperforms the base-
line.
• On DAVIS2016 we show comparable performance to

methods that make use of online fine-tuning and we
outperform them on the more challenging DAVIS2017.
• We place 10-th in the DAVIS challenge 2018 without

resorting to online fine-tuning or other post-processing
steps.
• We show that features modulation is orthogonal to on-

line fine-tuning and that indeed combining the two re-
sults in a further performance boost.

2. Architecture
ReConvNet is composed of three main components: the

Segmentation Network (SN), the Visual Modulator (VM)
and the Spatial Modulator (SM).
Segmentation Network The original OSMN Segmenta-
tion Network is a Fully Convolutional Network (FCN),
based on VGG-16 [11] layers that are propagated to the de-
coder after upsampling in a hyper-column fashion [4] to re-
cover details at multiple scales. Hence, OSMN processes
each frame independently, often resulting in segmentation
masks that lack temporal consistency and exhibit high vari-
ance across the sequence.

A natural way to incorporate temporal structure into the
model is to add recurrent units. Here we use convLSTM
layers, an adaptation of the original LSTM [5] cell that takes
into account the spatial structure of its input. As proposed
by [16], the LSTM cell can be modified by replacing the
matrix multiplications of each transformation with convo-
lution operations. The convLSTM blocks are interleaved

to the last three VGG-16 layers to endow the network with
multi-scale spatio-temporal processing capability.

Visual Modulator The visual modulator is in charge of
biasing the activations of the segmentation network to target
the object of interest. This strong conditioning is achieved
by a VGG-16 network that takes as input the first frame
cropped around the target object and resized to 224 × 224,
and produces a set Γ of vectors of scaling coefficients – one
for each of the last three convolutional layers of the SN. In
addition to the coefficients computed by OSMN, we also
compute those for the convLSTM modules. All the visual
modulation coefficients are multiplied to the feature maps
fi = γi � fi, where � indicates channel-wise multipli-
cation. This has the effect of enhancing the maps related
to the target object and suppressing the least useful, poten-
tially distracting ones, allowing the segmentation network
to quickly adapt to the object of interest without resorting
to expensive steps of back-propagation at inference time.

Spatial Modulator To help discriminating between mul-
tiple instances of the same object and, more generally, to
provide a loose prior on the location of the target object, the
network is also enriched with a spatial attention mechanism.
A rough estimate of the position of the target object can be
obtained by fitting a “gaussian blob” on the segmentation
predicted at time t and fed to a Spatial Modulator compo-
nent. This, in turn, produces a set of shift coefficients β, one
for each of the last three VGG layers, via a 1×1 convolution
applied on the blob downsampled to the layer’s resolution.
Note that, as opposed to the VM case, we do not generate
modulation coefficients for the convLSTM layers. The spa-
tial coefficients are summed pixel-wise to the activations of
the corresponding layers, therefore shifting the focus on the
parts of the image where the object is more likely located.
The combination of VM and SM, fi = γi � fi + βi, is then
applied to the features.



3. Experiments
In this section we describe the experimental settings used

to evaluate the ReConvNet model.
Experimental setting To ensure a fair comparison be-
tween ReConvNet and the OSMN baseline we initialize the
components of the OSMN model in our architecture with
the pretrained weights as provided by the authors. This is
done on both DAVIS2016 and DAVIS2017, to ensure that
any improvement can be clearly attributed to the introduc-
tion of a recurrent architecture.

For the initialization of the remaining modules, in an ef-
fort to minimize the factors of variations with respect to the
baseline, the extra channels of the visual modulator are ini-
tialized as in [17] and, similarly, the input-to-hidden con-
volutions in the convLSTM layers use the same initializa-
tion as the convolutional layers in the baseline. Lastly, the
hidden-to-hidden convolutions are initialized to be orthog-
onal [9].

The model is trained with a lower learning rate for the
non-recurrent than for the recurrent component, namely
10−6 and 10−5 respectively. We found it beneficial to train
with the Lovasz loss [1] that directly optimizes the IoU
measure. Finally, to prevent overfitting we employed early-
stopping and data augmentation [14] of the inputs of the vi-
sual and spatial modulators with random shift, scale, and ro-
tation transformations. When online fine-tuning is used, the
model is trained on each test sequence with random trans-
formation of the first frame for 300 iterations and learning
rate 10−6 for all components.
Pretraining In order to make use of the relative abun-
dance of segmented static images for pre-training, we split
the training process in two phases. First, we train the non-
recurrent components of the model on MSCOCO [6] to
learn segmentation coupled with modulation, then we train
the full network on DAVIS2017 to account for the spatio-
temporal recurrent component as well as to make use of the
modulation to focus on the target object throughout the se-
quence.

The single frame pre-training procedure proved to be
an essential proxy to bootstrap the temporal-consistent seg-
mentation. In fact, DAVIS contains only a few examples for
most semantic classes, making it very easy for the network
to overfit on the training examples.

As it can be expected, the problem is exacerbated by
models with high capacity, and even more by those that
exploit a visual modulator to tackle semi-supervised seg-
mentation. As shown in [17] the set of parameters Γ, pro-
duced by the visual modulator, pushes the model to learn
a semantic mapping in an embedding space where visually
similar objects are close in `2 distance. Learning this map-
ping requires a large enough amount of diverse examples.
We choose the MSCOCO [6] dataset for its wide range of
classes and intra-class variations.

3.1. Single Object Segmentation

We first evaluate our model on DAVIS 2016, that focuses
on single objects. This is a hard task that allows us to val-
idate the model and to compare with the OSMN baseline.
As shown in Table 1, thanks to the combination of spatio-
temporal consistency given by the convLSTM units and
their features modulation, ReConvNet outperforms OSMN
by 5.4 points on the mean IoU (J -mean) metric and is 4-th
in the leaderboard of the semi-supervised approaches1 when
comparing on the average between the J and F scores.

It is important to highlight that OSVOS [2], OSVOS-S
[7] and onAVOS [15] perform online fine-tuning on the first
frame of the video sequence at inference time. Moreover,
OSVOS utilizes a boundary snapping approach, onAVOS
makes use of a CRF post-processing step, and OSVOS-S
incorporates instance-aware semantic information from a
state-of-the-art instance segmentation method to further im-
prove the performance.

Most of these methods introduce expensive computation
steps at inference time that are normally not needed when
resorting to features modulation. Nothing prevents though
to pair this technique with online fine-tuning or CRF post-
processing to improve performance. Indeed, with a few
steps of fine-tuning at inference time ReConvNet gains 6.9
points on the J&F-mean placing itself 0.5 points below
onAVOS, which scored 2nd in the public leaderboard.

3.2. Multiple Objects Segmentation

DAVIS2017 The most recent version of DAVIS intro-
duces the challenging task of multiple objects segmenta-
tion. On this dataset ReConvNet has been trained by feeding
the visual modulator with one randomly picked object from
the scene at a time and using the segmentation of the same
object in the current frame as target. Table 1 shows that
ReConvNet adapts very well to the multiobject task outper-
forming the baseline OSMN by 10.9 points on the J&F-
mean metric. Remarkably, our method also outperforms
the state-of-the-art OSVOS and onAVOS by 5.4 and 0.3
points, respectively, without the need of expensive online
fine-tuning. Introducing online fine-tuning, theJ&F-mean
improves by 4.5, that is 2.2 points more than OSVOS-S,
the current state of the art in the public leaderboard on the
DAVIS2017 validation set.

DAVIS Challenge 2018 We participated to the DAVIS
Challenge 2018 retraining on the training set augmented
with the validation set. Our preliminary evaluation on the
test-dev set scored 52.7 and 62.9 on J&F-mean without
and with online fine-tuning respectively, placing us 8-th in
the test-dev public leaderboard.

1https://davischallenge.org/davis2016/soa_
compare.html

https://davischallenge.org/davis2016/soa_compare.html
https://davischallenge.org/davis2016/soa_compare.html


DAVIS2016 DAVIS2017
Method FT J&F J F J&F J F

M ↑ M ↑ R ↑ D ↓ M ↑ R ↑ D ↓ M ↑ M ↑ R ↑ D ↓ M ↑ R ↑ D ↓
OSMN (2nd) [17] 7 - 74.0 - - - - - 54.8 52.5 60.9 21.5 57.1 66.1 24.3
ReConvNet (ours) 7 78.1 79.4 89.6 7.7 76.8 86.6 7.7 65.7 62.7 70.5 21.6 68.7 77.3 21.6
OSVOS [2] 3 80.2 79.8 93.6 14.9 80.6 92.6 15.0 60.3 56.6 63.8 26.1 63.9 73.8 27.0
onAVOS [15] 3 85.5 86.1 96.1 5.2 84.9 89.7 5.8 65.4 61.6 67.4 27.9 69.1 75.4 26.6
OSVOS-S [7] 3 86.6 85.6 96.8 5.5 87.5 95.9 8.2 68.0 64.7 74.2 15.1 71.3 80.7 18.5
ReConvNet (ours) 3 85.0 85.4 95.9 8.5 84.6 93.9 12.1 70.2 66.6 75.4 28.1 73.7 83.1 29.6

Table 1. Comparisons of our approach vs OSMN baseline and top-3 state-of-the-art algorithms on DAVIS 2016 and 2017 validation sets.
Legend. FT: Online fine-tuning on the first frame; M: Mean; R: Recall; D: Decay.

On the test-challenge set ReConvNet scored 54.5 J&F-
mean, and 51.8 and 57.2 J -mean and F-mean, respec-
tively, ranking 10-th in the final DAVIS Challenge 2018
evaluation. This is an encouraging result considering that
no online fine-tuning was employed: by adding gradient
steps at inference time it is reasonable to expect a perfor-
mance boost similar to the one consistently witnessed in the
previous experiments.

4. Conclusions and Future work
We presented ReConvNet, a powerful and efficient recur-

rent convolutional model to perform semi-supervised video
object segmentation. The model is able to learn spatio-
temporal features that self-adapt to focus on the object of
interest without the need of extra fine-tuning at inference
time. ReConvNet outperforms the baseline by a consider-
able margin, proving the effectiveness of incorporating tem-
poral consistency into the model. Our results reinforce the
conjecture that features modulation is a valid approach to
semi-supervised video object segmentation. We plan to per-
form a more in-depth analysis of the interaction between the
temporal components and the features modulation, since we
believe it is crucial to better understand the potential of the
proposed model.

Acknowledgements
We thank Jürgen Schmidhuber and Imanol Schlag for

helpful discussions on fast weights and Razvan Pascanu for
insightful comments on the model. We are also grateful to
AGS SpA for providing the NVIDIA 1080Ti machine to run
all the experiments. Finally, our thoughts go to Aaron, Adri-
ana and Michal, for giving the initial thrust to this work.

References
[1] M. Berman, A. R. Triki, and M. B. Blaschko. The lovász-

softmax loss: A tractable surrogate for the optimization
of the intersection-over-union measure in neural networks.
arXiv preprint arXiv:1705.08790, 2017. 3

[2] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé,
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