
Exploiting DPDK in Containerized Environment
with Unsupported Hardware

Leila Askari, Payam Majidzadeh, Omran Ayoub, Massimo Tornatore
Department of Electronics, Information and Bioengineering

Politecnico di Milano, Milan, Italy
E-mail: firstname.lastname@polimi.it

Abstract—Network virtualization is an attractive technique
to deploy new network services in an agile and cost efficient
way. However, since virtualization imposes additional perfor-
mance overhead (e.g., disk input/output virtualization overhead),
which results in higher latency for service deployment, new
virtualization frameworks that accelerate the performance of
virtualized network functions are becoming available. Among
these frameworks, Intel has proposed a set of libraries to
accelerate packet processing and to remove additional delays
caused by context switching from kernel space to the user space
in computing servers. In their current public releases, DPDK
libraries are guaranteed to work only if specific requirements
in terms of supported hardware and Network Interface Card
(NIC) are satisfied. However, the supported physical NICs are
usually found in high performance servers. Therefore, it will be
more cost-effective (and useful for research activities) to be able
to deploy DPDK using any physical NIC.

In this study, we aim at demonstrating that DPDK experi-
mental activities can be run also on unsupported hardware (i.e.,
hardware that is not originally supported by DPDK libraries).
To demonstrate this, we propose various component stack and
implement different testbed setups to exploit DPDK in our lab
environment using generic servers. Results obtained show that,
even on quite outdated and baseline equipment available in our
lab environment, it has been possible to run DPDK and, using
DPDK, we were able to reach the line rate assigning at least two
CPU cores to DPDK application and using packet size greater
than 256 Bytes.

Index Terms—DPDK, container, Unsupported hardware

I. INTRODUCTION

Using Network Function Virtualization (NFV), operators
are able to move their network functions from traditional
dedicated hardware devices (“middleboxes”) to virtual ma-
chine (VM) that can be run on commodity servers. These
servers can then be even co-located with routers and switches,
enhanced with computing capabilities, that allow to agilely
instantiate network functions in several network locations
(usually called NFV-capable nodes). The resulting network
infrastructure must be capable of running network functions
while satisfying stringent requirements, such as processing
packets of virtualized network functions at network speed.
However, NFV has its own disadvantages, mainly in terms
of overhead [1] which limits performance. Recently, container
technology has gained traction as it introduces less overhead,
providing higher performance and easier deployment with
respect to classical virtualization technologies.

As Internet continues to evolve in terms of new services
(e.g., Augmented Reality that has strict requirement in terms of
latency), traditional network devices which consider traditional
methods to process packets and data cannot be anymore
considered. In other words, the traditional traffic processing
methods, using kernel network protocol stack, imposes context
switching delay by constantly switching from kernel to user
space and results in bottlenecks in data transmission.

To avoid the drawback of this context switching, a possible
solution is to move networking functionalities from kernel
space to the user space. As an example, Google SNAP [2], as
a user space networking system, implements various network
functions and enables fast development and deployment of
networking features. Another software tool, that is currently
attracting lot of attention, is the Intel’s Data Plane Develop-
ment Kit (DPDK). DPDK offers a set of user input output
libraries and drivers, and has been demonstrated to enable
packet processing at the line rate. DPDK is able to bypass
the kernel and hence avoids significant system issues that
degrade the performance of packet processing required to
run specific network services. However, DPDK libraries only
support specific Network Interface Cards (NICs) that are
usually found in high performance servers [3]. Therefore, it
is more cost-effective (specially for research purposes) to be
able to deploy DPDK with any unsupported hardware.

In this paper, we first propose a component stack that allows
DPDK to work over unsupported hardware. Then, we imple-
ment this framework in various testbed setups to exploit DPDK
in different settings allocating different amount of resources
(e.g., number of CPU cores) to the DPDK application and
considering different packet sizes. We start from deploying
DPDK inside a single VM. Then, we provide a testbed setup
in which we are able to use DPDK with unsupported physical
NIC to perform layer-two and layer-three packet forwarding.
We demonstrate that DPDK shows a satisfactory performance
in terms of throughput and packet processing when run on
a generic hardware platform (e.g., considering unsupported
NICs).

The rest of the paper is organized as follows. In Section II
we provide an overview of related works. In Section III we
introduce background concepts (focusing on DPDK sample
applications) we used in our testbed setup. In Section IV we
present the component stack that can be used to deploy DPDK
on unsupported hardware and we describe the testbed setups

considered in our analysis. Section V discusses the results
related to our experiments. Finally, in Section VI we conclude
the paper.

II. RELATED WORK

DPDK has recently received a lot of attention in litera-
ture. Ref. [3] proposes a packet-capture method using DPDK
to reduce packet loss and improve packet-processing rate.
However, since DPDK has specific requirement in terms of
hardware, e.g. NICs, their experiment is implemented on
a high performance server. In Ref. [4], a custom transport
protocol, is implemented over DPDK to improve the transport
protocol performance. The results obtained show performance
improvement achieved thanks to DPDK with respect to stan-
dard Linux network stack, however, since the protocol is
not able to exploit full DPDK capabilities, the line rate is
not achieved. Ref. [5] designs and implements a network
emulator based on DPDK which is able to emulate packet
loss in the network and has higher accuracy with respect
to NetEm which is a popular network emulator in Linux.
Ref. [6] proposes an evaluation framework for Active Queue
Management (AQM) which tries to improve the performance
of network. The AQM algorithms are described in P4 language
and are compiled with a DPDK-based P4 compiler. Ref. [7]
proposes a DPDK-based framework to achieve elastic scaling
of computing resources allocated to network functions using
a single commodity server while Ref. [8] implements a Deep
Packet Inspection (DPI) network function using DPDK and
compares its performance with the scenario in which DPI is
installed over Linux kernel network stack. Experimental results
demonstrate a better packet throughput performance obtained
using DPDK. Moreover, Ref. [9] demonstrates a design that
improves the VM-to-VM communication performance using
port mirroring in DPDK-enabled Open vSwitch (OvS), and
Ref. [10] proposes a DPDK-based service chaining framework,
which improves the performance of service chain by a factor
of two. DPDK is also used to build architectures [11] and
frameworks [12] and to perform experiments in a number
of works in the literature. As an example, in Ref. [13] a
system is implemented to build virtual network functions from
reusable loosely-coupled components, implemented as DPDK
processes. In this system DPDK is used to provide packet
input/output and memory sharing between the components.

However, in all these existing studies, DPDK is imple-
mented over high performance servers and implementation
over unsupported hardware is not investigated. In our work, we
provide different testbed setups to evaluate the performance of
DPDK deployed over unsupported hardware.

III. BACKGROUND CONCEPTS ON INTEL’S DPDK

DPDK offers libraries designed to accelerate the processing
of packet workloads running on different CPU architectures.
The key features of DPDK is to receive and send packets
within the minimum number of CPU cycles, design fast packet
capture algorithms (tcpdump-like) and run third-party fast path
stacks. For example, many packet processing capabilities have

been optimized for up to a hundred million frames per second
using 64-Byte packets with a PCIe NIC [14].

DPDK also comes with some pre-developed sample appli-
cations which are designed to test its capabilities and can be
used in test environments like ours. Some of these sample
applications are [14]:

• pktgen (Packet Generator), a software based traffic gen-
erator powered by DPDK fast packet processing.

• testpmd application, that can be used to test DPDK in a
packet-forwarding mode.

• l3fwd a simple example of packet processing that per-
forms layer-3 forwarding.

A. Container Technology and DPDK

Container technology is a method for packaging an ap-
plication and its dependencies in such a way that it can
be run isolated from other processes. Container technologies
with specific container software (including the popular choices
of Linux Container, Docker, Apache Mesos, rkt) have been
embraced by major public cloud providers such as Amazon
Web Services, Microsoft Azure and Google Cloud Platform.
Containers put together software and its dependencies (e.g.,
libraries, binaries, and configuration files) in a package (the
“container”) that can be migrated to another machine as a unit.
This will allow avoiding incompatibility issues when running
the application on different operating system or different
hardware [15]. Since containers are more efficient than VMs
in terms of resource usage and deployment time, it is more
cost effective to implement network functions inside contain-
ers. However, containers also use Linux kernel networking
stack, hence, they also experience context switching delay. To
overcome this drawback, DPDK can be used inside containers
to accelerate container networking by bypassing Linux kernel
network stack.

IV. TESTBED SETUP

One of the main limitations in deploying DPDK in a phys-
ical network is the necessity of using DPDK-supported NICs.
This means that, currently, implementing and running network
functions with DPDK is restricted to specific hardware. A
number of paravirtualized NICs are introduced by DPDK
[14] to solve this issue, however, they are only designed for
performing tests inside a VM. Therefore, running and testing
DPDK applications in a physical network using paravirtualized
NICs are challenging tasks as paravirtualized NICs are not
designed to be bounded to physical NICs. In this study, we
describe how we succeeded in deploying paravirtualized NICs
over physical NICs which are not supported by DPDK. More
specifically, we test the performance of DPDK applications
(as testpmd) in our lab environment using generic hardware
and with unsupported common NICs. The source code of our
testbed can be found in [16].

We performed our evaluations in three different scenarios.
In all the scenarios, a VMware ESXi hypervisor is run on
top of our bare metal server and a VM running Ubuntu is
installed on top of it. In the first scenario (“single-host”),

Fig. 1: Single-host scenario

we deploy DPDK in a totally virtualized environment. In
the second scenario (“dual-host scenario”), we run DPDK in
different physical hosts connected via unsupported NICs. In
the third scenario (“DPDK in Chain”), we run two different
DPDK applications on one host, and we then connect the two
DPDK applications in a “chain of applications” to other two
applications running in another host. In this scenario, we aim
to mimic the deployment of DPDK applications at the edge
of the network.

A. Single-host scenario

In the single-host scenario, we compare the line rate
achieved by virtualized functions over two testbed setups each
relying on a different virtual switch technology to connect
the containers running the DPDK applications: i) one based
on DPDK-enabled OvS and ii) one based on ESXi vSwitch.
As the former natively supports the fastpath DPDK, we will
use it as a reference in our evaluations. However, to be able
to use unsupported NICs, we introduce the component stack
using ESXi vSwitch (the virtual switch of VMware vSphere).
Note that, the virtual network adaptor of VMware vSphere
(VMXNET3) is defined as one of the supported virtualized
network adaptors by DPDK. In the following, we first give a
high level description of each testbed setup, and then explain
in detail the steps followed to realize them. Note that, we
used different containers for each DPDK application to achieve
isolation of containers.

1) Single-host Scenario with OvS-DPDK: The setup of this
testbed is shown on the right hand side of Fig. 1, and it is
inspired from a series of videos from the Intel software github
project [17], but with some required modifications to make
it comparable with the other testbed setups of our study. The
steps followed to realize this configuraton are as follows:

1) Build DPDK and OvS, and allocate system resources
by allocating hugepages 1 and inserting user-space IO
driver into kernel. Note that, since the CPU we used
has Page Size Extension flag, hugepages of size 2M are
supported [14] and we used 1024 of hugepages to run
each application.

2) Configure and initialize the OvS database, set OvS
parameters and launch it.

1Pages are physical and virtual contiguous blocks of memory, and
hugepages are big pages that DPDK relies on to improve performance.

3) Create OvS bridge and ports and add flows between the
virtual ports of the bridge.

4) Two containers are built and two DPDK applications,
namely “pktget”and “testpmd”are instantiated providing
them access to poll mode drivers (PMDs)2. We allocate
two CPU cores for each application and 4 memory
channels for testpmd. Note that, for each application we
assigned a CPU core as the master core for command
line parsing purposes.

5) Run DPDK applications inside containers that are run-
ning in privileged mode and each has access to the host
hugepages and two of virtual NICs (vNICs) assigned
to the VM. After that, packets are forwarded to port0
of testpmd container through the OvS-DPDK. Then,
testpmd forwards the received packets to its other port
that is connected through OvS-DPDK to port1 of pktgen.

2) Single-host scenario with ESXi: In this setup we exploit
DPDK in lab environments with unsupported hardware while
keeping a fair comparison between OvS with native support of
DPDK and ESXi vSwitch technology. The key difference in
this scenario with respect to the former one is the use of ESXi
vSwitch instead of OvS vSwitch, and therefore the difference
lays in the structure of these two virtual switches. Alongside
with the fact that OvS has a native support for DPDK, the
boldest differences between these two virtual switches is that
OvS runs on top of operating system and DPDK, while ESXi
vSwitch runs on top of a hypervisor, with the support of DPDK
PMD (VMXNET3 vNIC). A high level scheme of this setup
is shown in Fig. 1 to the left. Unlike OvS, ESXi does not
support Openflow, hence, we are not able to separate the flows
using Openflow. However, it is possible to build two different
vSwitches with no uplinks to have separate switches that work
in an isolated network with internal access. We build a VM that
hosts two Docker containers and the containers communicate
with each other through the ESXi vSwitches. Note that, in both
vSwitches, the promiscuous mode, i.e., a mode that requests
the NIC to pass all received traffic to the CPU, should be
enabled.

The steps to set up this testbed are very similar to those in
Single-host Scenario with OvS-DPDK, however, in addition to
replacing OvS with ESXi vSwitch, there are three differences:
i) after the first step, we need to specify the kernel module
through which we launch VMXNET3 PMD to DPDK; ii) con-
tainers need to be launched granting them access to the Linux
devices (specifically to the PMDs of the NICs allocated to each
container); and iii) before running the DPDK applications at
the last step, we need to configure containers to be connected
to different vSwitches through different vNICs.

B. Dual-host scenario

In this section, we illustrate how to enable the same connec-
tivity between applications seen in the single-host setup, but
now in two remote hosts interconnected through unsupported

2A Poll Mode Driver consists of APIs, provided through the BSDdriver
running in user space, to configure the devices and their respective queues

Fig. 2: Dual-host scenario with unsupported hardware

NICs. Fig. 2 shows the high-level scheme of this setup. As
shown in the Fig. 2, we launch pktgen container in the first
host, and testpmd container in the second one.

The difference between this setup and the previous ones
(Single-host Scenario with OvS-DPDK and Single-host sce-
nario with ESXi) is that in this setup we need to manage the
uplinks of the vSwitches, in which we have the connectivity
between the ESXi hypervisors. We connect ESXi vSwitch1
from both hosts to the first DPDK-unsupported physical NIC,
and ESXi vSwitch2 to the second DPDK-unsupported physical
NIC. After that, we follow the same steps as those mentioned
in previous section to run testpmd on one host and pktgen on
the other host.

C. DPDK in chain scenario

In this scenario we are going to use two DPDK l3fwd
containers that operate as virtual routers at the endpoint of
each host and communicate with pktgen. Fig. 3 illustrates a
high level scheme of this setup. Packets are generated in pktgen
container in host1 with assigned IP address of “192.18.0.2”.
ESXi vSwitch1 is connected to pktgen’s port 0 (the only
port of this container) and to port 0 of l3fwd container. At
the same time, port2 of this container is connected to ESXi
vSwitch2 of host 1, and the vSwitch has a DPDK-unsupported
uplink to ESXi vSwitch2 of host2. The second port of this
vSwich is connected to port 0 of the container running l3fwd
function in host 2. These two l3fwd containers emulate a
virtual router. After that, port 1 of l3fwd container in host2 is
connected to pktsink3 container with IP address “192.18.1.2”of
the same host through ESXi vSwitch3. In this scenario, the
ESXi vSwitch2 of each of the hosts has the uplink with
“unsupported NICs”, and it simulates the logical connection
of two separated networks. ESXi vSwitch1 in host1 and ESXi
vSwitch3 in host2 are without uplinks and they just manage
the host internal networks.

The steps followed to set up this testbed are identical
to those of the dual-host scenario, however, with two main
differences. In this scenario, we need to run pktgen container

3pktsink have a similar behavior to pktgen however we have used different
names since in this setup, the network function is used to sink packets.

Fig. 3: DPDK in Chain scenario with unsupported hardware

with access to just one vNIC and the l3fwd container instead
needs to have access to two vNICs, in which each port is
pinned with queue 0 and is assigned a CPU core.

V. EXPERIMENTAL RESULTS

In this section, we present some numerical results obtained
performing evaluations on the testbeds described in previous
sections. All the results presented are obtained averaging the
metrics over ten evaluations considering a confidence level of
95% with at most 5% confidence interval. The performance is
measured in terms of throughput in Mpps, which represents
the number of packets processed and forwarded.

Table I lists the different components used in our testbed
setups. Note that, we used an unlicensed version of VMware
ESXi to setup our testbeds. In all experiments, traffic is sent
from transmitter port of the pktgen container at line rate of
1 Gbps, i.e., at the maximum bit rate that can be transmitted
from the port, while varying the packet size. For example,
transmitting packets of 1024 Bytes at 1 Gbps, 0.12 Mpps are
transmitted with a packet arriving every 8350 ns, while for
a packet size of 64 Bytes, 1.49 Mpps are transmitted with
a packet arriving every 672 ns. In all cases, we plot the
throughput, measured in terms of Mpps of each setup and
compare it to the line rate.

TABLE I: Hardware and software details

Component Description
Processor Type Intel Core i7-6700 CPU@3.4GHz
Motherboard Asus H110M-A/M.2

Logical Processors 8 logical cores
Memory 32 GB

Hypervisor VMware ESXI, 6.7.0, 14320388
Operation System Ubuntu Server 19.04

Memory Allocated to VM 24 GB
Container Docker version 18.09.7, build 2d0038d

DPDK dpdk-19.05
vSwitch for ESXi ESXi Standard vSwitch, 6.7.0
vSwitch for OvS Open vSwitch 2.6.1
vNIC for ESXi VMXNET3 and virtio (for OvS)
vNIC for OvS virtio

pNIC TP-Link TG-3468 1Gbps
Packet Generator Application pktgen-dpdk-pktgen-19.10.0

64 128 256 512 1024 1500
0

0.5

1

1.5

Packet size (Bytes)

Th
ro

ug
hp

ut
(M

pp
s)

OvS-DPDK ESXi vSwitch Linerate

Fig. 4: Single-host scenario, OvS-DPDK vs. ESXi vSwitch

A. Single-host scenario: ESXi vs. OvS

We first compare the two single-host scenarios. Fig. 4 shows
the throughput in Mpps obtained for each of the single-host
scenarios, i.e., of OvS-DPDK and of ESXi vSwitch, assigning
2 CPU cores to testpmd application with respect to packet
size (in Bytes). Results show that, for packet sizes equal to
128 Bytes and larger, both setups reach the line rate. Only for
a packet size of 64 Bytes, which is the most challenging case
due to the high number of packets that need to be processed,
the line rate is not reached. We speculate that more CPU cores
are needed to be allocated to process this high number of
packets. Moreover, we note that ESXi performs slightly better
than OvS-DPDK.

We now compare the performance of the single-host sce-
nario with ESXi vSwitch in two cases, when allocating 1
CPU core and when allocating 2 CPU cores for the testpmd
application, with the objective of evaluating impact of CPU
resources in the performance of our testbed. Figure 5 plots
the throughput (in Mpps) for the two cases with respect to
packet size. Results show that for packet sizes of 64 and 128
Bytes, assigning 2 CPU cores results in a better performance
than assigning only one, showing the importance of assigning
two CPU cores to avoid excessive packet loss. For a packet
size of 256 Bytes and larger, both core assignments show the
same performance and reach the line rate. This means that for

64 128 256 512 1024 1500
0

0.5

1

1.5

Packet size (Bytes)

Th
ro

ug
hp

ut
(M

pp
s)

Testpmd-1core Testpmd-2cores Linerate

Fig. 5: Comparison of Testpmd with 1 and 2 CPU cores in
single-host scenario with ESXi vSwitch

64 128 256 512 1024 1500
0

0.5

1

1.5

Packet size (Bytes)

Th
ro

ug
hp

ut
(M

pp
s)

Testpmd-1core Testpmd-2cores Linerate

Fig. 6: Throughput comparison of Testpmd with 1 and 2 CPU
cores in Dual-host scenario with unsupported hardware

such packet sizes, and therefore for such overall number of
packets, allocating one core is enough to guarantee optimal
performance. Moreover, the experimental results demonstrate
that, for 1 Gbps throughput, ESXi vSwitch merged by DPDK
is powerful enough to boost the packet processing by reaching
line rate speed with packets size higher than 128 Bytes in the
case where two CPU cores are assigned to DPDK application,
and higher than 256 Bytes when only 1 CPU core is assigned.

B. Dual-host scenario with ESXi: 1 CPU core vs. 2 CPU cores

We now evaluate the importance of assigning more re-
sources in terms of CPU cores to DPDK applications in a
dual-host scenario settings. Fig. 6 plots the throughput in
Mpps for the two cases. Results show that line rate can be
reached for packet size greater than 128 Bytes when assigning
2 CPU cores, however, by assigning only 1 CPU core, line
rate can be reached only for packet size greater than 256
Bytes. This shows that assigning more CPU cores to the DPDK
applications in a dual host scenario can improve throughput.

Therefore, one of the bottlenecks in achieving higher
throughput is lack of enough CPU resources to process the
packets received by DPDK application. Nevertheless, the
results obtained demonstrate that a reasonable throughput is
achieved in this setup that exploits unsupported NICs.

C. DPDK in chain

As for the DPDK in chain scenario, we performed the same
analysis considering 1 CPU core and 2 CPU cores assigned
to the DPDK application. In particular, we consider the l3fwd
sample application, which extracts the necessary information
from the IP header of the received packets and performs a
look-up in the rule database to figure out where to forward the
packets. Results of Fig. 7 show that when assigning 1 CPU
core to the l3fwd application, the line rate is reached for sizes
of packets equal to or greater than 512 Bytes, however when 2
CPU cores are assigned to l3fwd, the line rate is also reached at
a size of packets equal to 256 Bytes, i.e., for a significant larger
number of packets than the case of assigning 1 CPU core to
l3fwd. For lower packets’ sizes, i.e., for the cases of 64 and 128
Bytes, which represent more challenging cases with respect to

64 128 256 512 1024 1500
0

0.5

1

1.5

Packet size (Bytes)

Th
ro

ug
hp

ut
(M

pp
s)

l3fwd-1core l3fwd-2cores Linerate

Fig. 7: Throughput comparison of l3fwd with 1 and 2 CPU
cores in dual-hosts scenario with unsupported hardware

cases of larger packets’ sizes due to greater number of packets
that need to be processed, both assignments, with 1 and 2 CPU
cores, result insufficient to process all incoming packets and to
reach line rate. However, l3fwd-2cores processes around 30%
more packets than l3fwd-1core.

It is worth mentioning that, like the previous testbed setup, a
reasonable throughput is achieved using unsupported NICs for
implementing packet forwarding functionalities using DPDK
applications.

VI. CONCLUSION

In this paper we investigated solutions to deploy and run
DPDK in a lab environment without using the supported NICs
defined by DPDK. We presented four different testbed setups
ranging from totally virtualized, that works only inside a single
host, to running DPDK in chain using unsupported NICs. The
first setup builds and runs DPDK enabled OvS, and on top
of that using PMD, we run two separated containers. In the
second setup, we modeled the same functionality this time on
top of ESXi vSwitch (instead of OvS with DPDK support).
In the third testbed setup we model the same structure but in
two remote physical machines, connected using a direct link
and using two unsupported NICs. Finally, we run DPDK in
chain in our last testbed setup, by using two layer-3 DPDK
applications in the remote hosts.

The results obtained show that using unsupported 1 Gbps
NIC assigning two CPU cores to DPDK application in single-
host scenario, we can reach to line rate with packets size
equal and above 128 Bytes. While by assigning only one
CPU core to DPDK application, line rate is achievable only
for packets of size 256 Bytes and higher. As for the dual-
host scenario, line rate can be reached by assigning two CPU
cores to testpmd and having packets of 256 Bytes and higher.
Correspondingly, in DPDK l3fwd application, which works as
a virtual router, only for packets size of less than 512 Bytes
the throughput of testpmd with two CPU core assigned is not
equal to the line rate. Nevertheless, by assigning two CPU
cores we can reach to line rate with packets size above 256
Bytes. As a future step, we aim at exploring the same testbeds
considering 10 Gbps NIC and perform more precise analysis

on the resources allocated to containers and host machine
using different monitoring tools.

ACKNOWLEDGMENT

The work leading to these results has been supported by
the European Community under grant agreement no.761727
Metro-Haul project.

REFERENCES

[1] H. R. Kouchaksaraei and H. Karl, “Service function chaining across
openstack and kubernetes domains,” in Proceedings of the 13th ACM
International Conference on Distributed and Event-Based Systems, ser.
DEBS ’19, p. 240–243.

[2] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Contavalli,
M. Dalton, N. Dukkipati, W. C. Evans, S. Gribble, N. Kidd, R. Kononov,
G. Kumar, C. Mauer, E. Musick, L. Olson, E. Rubow, M. Ryan,
K. Springborn, P. Turner, V. Valancius, X. Wang, and A. Vahdat, “Snap:
a microkernel approach to host networking,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles, ser. SOSP ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
399–413.

[3] W. Zhu, P. Li, B. Luo, H. Xu, and Y. Zhang, “Research and implemen-
tation of high performance traffic processing based on Intel DPDK,” in
2018 9th International Symposium on Parallel Architectures, Algorithms
and Programming (PAAP), 2018.

[4] D. Syzov, D. Kachan, K. Karpov, N. Mareev, and E. Siemens, “Custom
udp-based transport protocol implementation over DPDK,” in Proced-
ings. of the 7th International Conference on Applied Innovations in IT,
2019.

[5] K. Sasaki, T. Hirofuchi, S. Yamaguchi, and R. Takano, “An accurate
packet loss emulation on a DPDK-based network emulator,” in Pro-
ceedings of the Asian Internet Engineering Conference, ser. AINTEC
’19, p. 1–8.

[6] S. Laki, P. Vörös, and F. Fejes, “Towards an AQM evaluation testbed
with P4 and DPDK,” in Proceedings of the ACM SIGCOMM 2019
Conference Posters and Demos, 2019, pp. 148–150.

[7] Z. Shen and Y. Zhang, “An NFV framework for supporting elastic
scaling of service function chain,” in 2018 IEEE 4th International
Conference on Computer and Communications (ICCC), Dec 2018.

[8] M. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Petralia,
H. Koumaras, G. Gardikis, and F. Liberal, “Enhancing VNF performance
by exploiting SR-IOV and DPDK packet processing acceleration,” in
2015 IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN), Nov 2015.

[9] L. Wang, T. Miskell, P. Fu, C. Liang, and E. Verplanke, “OVS-DPDK
port mirroring via NIC offloading,” in NOMS 2020 - 2020 IEEE/IFIP
Network Operations and Management Symposium, 2020, pp. 1–2.

[10] A. Leivadeas, M. Falkner, and N. Pitaev, “Analyzing service chaining of
virtualized network functions with sr-iov,” in 2020 IEEE 21st Interna-
tional Conference on High Performance Switching and Routing (HPSR),
2020, pp. 1–6.

[11] F. Slyne, D. Coyle, J. Singh, R. Sexton, B. Ryan, R. Giller, M. O’Hanlon,
and M. Ruffini, “Experimental demonstration of multiple disaggregated
olts with virtualised multi tenant dba, over general purpose processor,” in
2020 Optical Fiber Communications Conference and Exhibition (OFC),
2020, pp. 1–3.

[12] M. Adeppady, M. K. Singh, and B. R. Tamma, “ONVM-5G: a
framework for realization of 5G core in a box using DPDK,” CSI
Transactions on ICT, vol. 8, no. 1, pp. 77–84, Mar 2020. [Online].
Available: https://doi.org/10.1007/s40012-020-00275-7

[13] S. R. Chowdhury, Anthony, H. Bian, T. Bai, and R. Boutaba, “A
disaggregated packet processing architecture for network function virtu-
alization,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 6, pp. 1075–1088, 2020.

[14] DPDK.org, “DPDK homepage,” https://www.dpdk.org, Nov. 2019.
[15] J. DeMuro, “Containers,” https://www.techradar.com, Nov. 2019.
[16] “DPDK-Unsupported-NIC,” https://github.com/PayamMajidzadeh/DPDK-

Unsupported-NIC.
[17] I. S. Inc., “OvS DPDK lab,” http://bit.ly/2sWyolg, Nov. 2019.

