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Abstract—Network slicing and mixed-numerology schemes are
essential technologies to efficiently accommodate different ser-
vices in 5G radio access networks (RAN). To fully take advantage
of these techniques, the design of spectrum slicing policies needs
to account for the limited availability of the radio resources
as well as the inter-numerology interference generated by slices
employing different numerologies. In this context, we formulate
a binary non-convex problem that maximizes the aggregate
capacity of multiple network slices. The resulting spectrum
allocation minimizes the inter-numerology interference under the
frequent channel fluctuations characterizing the various users. To
address the computational complexity of the designed objective
function, we leverage deep reinforcement learning (DRL) to
design a model-free solution computation. In detail, the trained
centralized DRL agent exploits the channel fading statistic in
order to provide a spectrum allocation that minimizes the inter-
numerology interference. Results reveal that the proposed DRL
scheme achieves performance that is comparable to the optimal
one. It also outperforms a baseline scheme that statically allocate
the radio resources.

I. INTRODUCTION

RAN slicing is a network feature that makes it possible
to deploy multiple independent virtual networks on top of
the same physical network infrastructure. Each virtual entity
is commonly denoted as “network slice” and has access to
a set of common radio resources that are shared with other
slices. The advantage of this technique, which has become
an essential tool in 5G networks, is the flexibility to tailor
the network according to the service level agreement (SLA)
requirements of each application [1].

To fully benefit from this technology, two main challenges
need to be addressed: i) differently from other physical re-
sources like hardware computational capabilities, radio spec-
trum is a limited resource whose quality is inherently related
to the signal propagation environment, ii) inter-slice isola-
tion is affected by the external interference that is mutually
generated between coexisting slices on the same spectrum.
Such issues are further exacerbated by the introduction of
mixed-numerology schemes that are employed to enhance the
transmission performance over the radio interface. Differently
from conventional orthogonal frequency division multiple ac-
cess (OFDMA) schemes, such technology makes it possible
to multiplex time-frequency resources, denoted as resource

blocks (RB), having heterogeneous subcarrier spacing on the
same physical layer. On one hand, this access scheme provides
the flexibility to accommodate different radio requirements,
on the other hand, the loss of orthogonality between RBs of
different numerologies generates interference that hinders the
transmission performance [2].

For these reasons, the design of effective RAN slicing
policies should jointly account for the dynamic quality of the
radio resources together with the inter-numerology interfer-
ence (INI). However, in our opinion, most work has addressed
these issues separately and the analysis of their mutual impact
has received little attention. Following these observations,
we propose a centralized agent-based allocation of mixed-
numerology spectrum slices by leveraging deep reinforcement
learning (DRL), which has recently found many applications
in the field of wireless communications [3] [4]. In detail, the
main contributions of this work are:

• We design a binary non-convex optimization problem
for the allocation of radio resources to multiple net-
work slices that are multiplexed on a mixed-numerology
physical layer. The objective function maximizes the
aggregated capacity of each slice by accounting for the
channel state information (CSI) of the users as well as
for the INI power that is mutually generated between the
coexisting network slices.

• We propose a DRL formulation of the optimal problem
in order to overcome its computational complexity. More
specifically, we design a DRL agent that learns how the
relationship between the small-scale fading fluctuations
and the INI power, generated between different slices,
affects the aggregate capacity of their users. Based on
such information, the trained agent can simultaneously
allocate the spectrum to each network slice without
incurring in a significant time overhead.

• We compare the DRL based resource allocation with
the optimal solution and with a heuristic scheme that
performs a static spectrum allocation. Results show the
effectiveness of our approach in approximating the op-
timal solution as well as a consistent performance gain
over the heuristic scheme.

The remainder of the paper is organized as follows. We present978-1-7281-4490-0/20/$31.00 c© 2020 IEEE



the related work in Section II. We describe the system model
in Section III. We discuss the optimal problem formulation
as well as the DRL based resource allocation in Section IV.
We show the simulation results in Section V. Finally, the
conclusion is drawn in Section VI.

II. RELATED WORK

A general overview of the basic concepts of RAN slicing
and mixed-numerology access schemes as well as their main
challenges can be found in [5] [6]. Recent work in these fields
has investigated resource allocation schemes that address the
related issues in a unified scenario.

The authors of [7] propose several online joint scheduling
algorithms to allocate low latency and multi-broadband users
at different time granularity on a shared physical layer. Sim-
ilarly, the work in [8] addresses a user allocation problem
leveraging the flexible frame structure provided by mixed-
numerology schemes. In detail, the authors design a self-
adaptive flexible transmission time interval scheduling strat-
egy for low latency and multi-broadband services. However,
although [7] and [8] consider a mixed-numerology access
scheme, the INI effect is not included in the proposed algo-
rithms.

The authors of [9] and of [10] propose a INI-based schedul-
ing scheme to reduce the size of the guard interval between
different numerologies and to mitigate the interference power,
respectively. However, the designed solutions are based on
heuristic approaches, which are not supported by an optimal
problem formulation that analytically accounts for the INI. The
authors of [11] provide an allocation scheme, formulated as
a max-min Knapsack problem, that allocates radio resources
of different numerologies to fulfill the latency requirements of
each user. The proposed solution also includes the INI effect,
but the analysis is limited to the interference generated by
the users of higher numerologies. Moreover, the performed
optimization accounts only for the macroscopic fading.

Differently from the aforementioned work, we provide an
optimal formulation for the INI minimization. Then, we pro-
pose a DRL agent-based spectrum allocation that minimizes
the INI power between different network slices while consid-
ering the small-scale fading fluctuations that affect the channel
quality.

III. SYSTEM MODEL

We consider a RAN where the network owner (NO) leases
the available radio spectrum to M mobile virtual network
operators (MVNO) providing different services. Each MVNO
m manages a logical standalone radio interface that schedules
the available radio resources among its users, Um, in order to
fulfill the SLA requirements. Similarly, the NO manages the
amount of radio resources required by each MVNO in order
to ensure the feasibility of the service provisioning. In this
context, the RAN slicing architecture can be modeled as a two-
layer radio resource scheduler. The top-layer is composed by
the MVNOs schedulers, whereas the bottom-layer corresponds
to the NO, which acts as a “slice scheduler” by managing the

Fig. 1. RAN slicing architecture. The NO multiplexes the various MVNOs
on the available RAN spectrum.

radio resource allocation between MVNOs. A scheme of the
considered network slicing architecture is depicted in Fig. 1.

We assume that a mixed-numerology OFDMA scheme
is employed as physical layer and we split the frequency-
selective channel in K independent flat-fading subchannels,
of bandwidth W , each one composed by a fixed number
of contiguous RBs having the same numerology. To model
different radio behaviors, each MVNO m selects a differ-
ent numerology type, µm, which is tailored to the radio
performance expected by its users. The numerology type
defines the subcarrier spacing between symbols within each
RB composing the various subchannels. Formally, we have
that RBs of each MVNO m are characterized by a subcarrier
spacing of ∆fm = 15 · 2µm kHz with µm ∈ {0, 1, 2, 3, 4} as
dictated by the 3GPP specification [12].

We assume that the NO has full knowledge of the channel
state information (CSI), so that each user u estimates the
subchannel status and reports the related gain to the base
station (BS) as feedback. We model the power gain in each
subchannel as composed by large-scale fading, αum, that is due
to path loss and shadowing, and small scale fading, hum(k),
that is assumed to be exponentially distributed with unit mean.
Formally, we have that the subchannel gain of subchannel k
reported by user u belonging to slice m can be written as

gum(k) = αumh
u
m(k). (1)

The simultaneous multiplexing of subchannels composed
by RBs of different numerologies produces INI. As a matter
of fact, the symbol orthogonality is ensured only within each
subchannel as the employed numerology is homogeneous. To
quantitatively model the INI dynamic, we rely on the analytical
formulation proposed by authors in [13], which we adapted
to fit the considered system scenario. In general, given two
subchannels, k and k′, of numerologies with subcarrier spacing



∆fm and ∆fm′ , the INI power affecting user u ∈ Um on
subchannel k due to subchannel k′ can be computed as, if
∆fm < ∆fm′ ,
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otherwise, if ∆fm > ∆fm′ , as
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(3)
where Nk = W/∆fm denotes the number of subcarriers in
subchannel k, PT (k) is the power allocated on subchannel
k, N (T )

k = Nk + NCP
k is total number of subcarriers in

subchannel k with NCP
k corresponding to the number of

subcarriers used as cyclic-prefix, ξ = bNk/NT
k′c is the number

of overlapping OFMD symbols within the same transmission
frame, and w(z, v) denotes the spectral distance between
subcarriers of different numerolgies and it is computed as
the total number of subcarriers separating subcarrier z from
subcarrier v.

From (2) and (3) we note that INI power depends on
the spectral distance between the subcarriers of different
numerologies and the power allocated to each subcarriers.
More precisely, the higher is the spectral gap between the
victim and the aggressor subcarrier and the higher is the power
of the aggressor subcarrier, the more interference is generated
on the victim subcarrier.

We measure the subchannel quality perceived by each user
u belonging to MVNO m and associated to each subchannel
k as the signal-to-interference-plus-noise ratio (SINR)

γum(k) =
PT (k)gum(k)

σ2
w +

∑
m′ 6=m

∑
k′ 6=k

xm′,k′Ium(k, k′)
, (4)

where xm,k is the binary subchannel allocation indicator as-
suming value xm,k = 1 if subchannel k is allocated to MVNO
m and xm,k = 0 otherwise, and σ2

w is the white Gaussian noise
power over each subchannel. From (4), we observe that the INI
power generated in subchannel k depends on the subchannel
gain related to the subchannels of different numerologies.
Therefore, it is possible to exploit the independent fading
effect on the various subchannel to reduce the INI power. This
observation covers an important role in the design of the DRL
algorithm that is going to be presented in Section IV.

IV. PROBLEM FORMULATION

In this section, we formalize the optimal spectrum allocation
and we present the DRL framework proposed to approximate
the optimal solution.

A. Optimal resource allocation

According to the system model previously described, the
NO periodically computes the number of subchannels required
by each MVNO based on the service demand. We denote as
Sm the spectrum assignment policy that expresses the number
of subchannels assigned to MVNO m such that

∑
m∈M Sm =

K. The various subchannels are then allocated over the shared
spectrum following two requirements:

1) The negative effect of INI is minimized.
2) Multi-user diversity is exploited to improve the aggre-

gated capacity of each MVNO. In other words, the best
subchannel, providing the highest aggregated capacity,
should be allocated to each MVNO.

Following these observations, we design an optimization
problem to compute the optimal subchannel allocation that
maximizes the system capacity under the requirement 1) and
2). We formalize the resource allocation problem as

max
x

M∑
m=1

K∑
k=1

1

Um

Um∑
u=1

xm,k ·W log2 (1 + γum(k)) (5)

subject to
K∑
k=1

xm,k = Sm ∀m ∈M (6)

M∑
m=1

xm,k ≤ 1 ∀k ∈ K (7)

xm,k ∈ {0, 1} ∀m ∈M,∀k ∈ K. (8)

Intuitively, the effect of such optimization is the allocation
of each subchannel to the MVNO that can provide that highest
throughput to its users while simultaneously minimizing the
INI power between different slices. Problem constraints de-
fine a feasible resource allocation according to the proposed
system model. In detail, (6) ensures that a suitable number
of subchannels are allocated to each MVNO based on the
spectrum assignment policy Sm. Equation (7) guarantees that
every subchannel is allocated to a single MVNO only. Finally,
(8) expresses the integer nature of the problem by means of
the binary optimization variable xm,k.

The resulting allocation increases the scheduling flexibility
of each MVNO because their users have access to spectrum
slices providing favorable radio conditions. In addition, slice
isolation is enforced as the INI power is minimized. However,
the computation of the solution of the proposed problem
is challenging due to the non-convexity of (5) whose opti-
mization variable is integer. Furthermore, the complexity is
further exacerbated by the highly non-linear equation defining
the INI as shown in (2) and (3). These issues make the
discussed problem formulation unpractical for real systems
due to the stringent time requirements required to adapt the
slice allocation to the wireless channel dynamic.

For this reason, we propose an alternative approach to
approximate the solution of (5) in a lower amount of time.
In this regard, we design an allocation policy of the radio



resources by leveraging DRL. The main advantage of this
scheme is that it allows to compute an allocation policy under
a model-free environment formulation. Consequently, we can
overcome the challenges related to the design of a heuristic
algorithm capable of effectively modeling the complex rela-
tionship between the fading fluctuations and the INI dynamic.
In the next section we describe the proposed DRL scheme.

B. DRL-based resource allocation

DRL provides an iterative method to compute an optimal
policy for solving a Markov Decision Process (MPD), where
the transition probabilities from each state towards other states
are unknown [14]. Formally, an MDP can be formulated by
a 5-tuple composed by {S,A, p(s′|s, a), R(s, a), β}, where S
and A denotes, respectively, the state space and action space,
p(s′|s, a) denotes the transition probability from state s at time
t toward state s′ at time t+1 and depends on the current state
s ∈ S and the action a ∈ A, R(s, a) is the immediate reward
that is obtained by performing action a under state s, that is
discounted over time by a factor β ∈ [0, 1). This parameter
models the diminishing returns of the current rewards in next
time slot t′ and expresses the uncertainty of the agent about
the impact of its actions on future rewards. The goal of the
learning is to find the optimal policy that allows to maximize
the expected discounted reward, Gt, from any initial state s,
i.e.

Gt =

∞∑
i=0

βiRt+1+i, 0 ≤ β < 1. (9)

The optimal policy provides the probability of selecting each
action from any state that maximizes the expected future
rewards that are obtained by following such policy.

C. State space

We model the environment that is observable by the agent
as the subchannel gains reported by each user and the INI
power measured on every subchannel without accounting for
the channel fading fluctuations. In other words, we compute
the INI power that would be received by every user given
the transmission power allocated on every subchannel. We
obtain such quantity by setting gum(k) = 1 in (2) and (3). Note
that both observations do not require any significant signalling
overhead as they can be easily retrieved by the NO at the BS.
Formally, we have that in each time slot t the agent observes
the environment that is characterized by the state space

S = {G[k], I[k]}k∈K (10)

where

G[k] = {gum(k)}m∈M,u∈Um
, (11)

I[k] =
{ ∑
m′ 6=m

∑
k′ 6=k

xm′,k′Im(k, k′)
}
m∈M

. (12)

We remark that the INI power computed as (12) is the same
for all the users belonging to the same MVNO, hence we
dropped the index u from the notation. The underlying idea
behind this design choice is to let the agent learn how the

INI power is affected by the fading fluctuations so that it can
exploit the independent fading between subchannels to better
mitigate the INI.

D. Action space

The action space is composed by all the feasible subchan-
nel allocations. More specifically, starting from one feasible
subchannel allocation that satisfies the spectrum assignment
policy Sm, the total number of the available actions can be
enumerated by computing the related unique permutations,
which are equal to N = |A| = K!

S1!...SM ! . Note that such
action space design directly embeds constraints (6)-(7) within
the action definition, hence it automatically denies the agent
from selecting unfeasible allocation policies. The action set
can be formalized as follows

A = {X1, . . . ,XN} (13)

where

Xi =

 x1,1 . . . x1,K
...

. . . . . .
xM,1 ... xM,K


i∈N

. (14)

Every element in (13) models a specific subchannel allocation
leveraging the subchannel indicator function as shown in (14).
In details, the matrix rows represent the subchannel allocation
associated to the M MVNOs, whereas the columns indicate
whether the k-th subchannel is allocated to MVNO m.

E. Reward design

The reward function characterizes the learning performance
of the agent while it interacts with environment. In the consid-
ered scenario, our objective is to design an allocation policy
that maximizes the aggregated capacity. Hence, we directly
employ (5) to model the reward obtained by the agent at each
time step. More precisely, the agent gets a reward Rt+1 that
is evaluated using (5) according to the subchannel allocation
chosen and the environment state modeled as (10) at time t.

To improve the learning stability, we discount each reward
using a high discount rate β. The motivation is to incentive a
greedy behavior of the agent in order to compute a subchannel
allocation policy that maximizes the system throughput in the
immediate time slots. As a matter of fact, the agent does not
gain any substantial benefit in the knowledge of the expected
reward in time slots that are far in the future given the current
state. Instead, its goal is to approximate the behavior of (5) that
maximizes the aggregate capacity at every new CSI update.

F. Algorithm overview

We adopt deep Q-learning (DQN) with experience replay
[15] to compute the spectrum allocation policy approximating
the optimal solution. In order to design a flexible agent that
can adapt to different radio scenarios, we perform the training
procedure on multiple episodes characterized by a different
user distribution that is kept constant for all the episode
duration. Each episode is composed by a fixed number of
time steps corresponding to a new CSI reporting. The agent



explores the environment using an ε-greedy policy. In details,
with probability ε, the agent randomly selects a subchannel
allocation regardless of its current state, otherwise, with prob-
ability 1-ε, it computes the slice allocation that maximizes the
expected long-term reward based on both the INI power and
CSI observations. The optimal policy π∗ is computed from
the state-action value function Qπ(s, a), also denoted as Q-
function, which is defined as the average discounted reward
obtainable starting from state s, taking action a and following
the policy π. Formally, we can write the optimal policy as

Qπ∗(s, a) = max
a∈A

Qπ(s, a) (15)

where
Qπ(s, a) = Eπ[Gt|St = s,At = a] (16)

with Gt defined in (9). Every time step, the Q-function (16)
is updated as

Q(st, at)← (1− α)Qπ(st, at)+

α[R(st, at) + β max
at+1∈A

Qπ(st+1, at+1)], (17)

where α ∈ [0, 1] is the learning rate.
DQN employs a deep neural network (DNN) of weights {θ}

to approximate (16) and overcoming the memory complexity
required to individually store the Q-function values for each
state-action pair. A scheme of the DNN architecture is shown
in Fig. 2.

The DNN weights {θ} are updated in order to minimize
the loss, L(θ), between the Q-function values computed on
subsequent time steps. Formally, L(θ) is defined as

L(θ) =
∑
D

[R(st, at) + β max
at+1∈A

Qπ(st+1, at+1;θ′)

−Qπ(st, at;θ)]2, (18)

where {θ′} corresponds to the weights of a second DNN that
is used to stabilize the Q-function computation convergence
and it is updated as {θ′ = θ} every few time steps. Parameter
D is the size of the mini-batch that is randomly sampled
from the experience-replay buffer. The latter collects and stores
the most recent N tuples (st, at, st+1, at+1) generated by the
agent during the training phase. This procedure improves the
learning performance by breaking the correlation between sub-
sequent weights updates [15]. In Algorithm 1, we summarize
the training phase.

Although this procedure is performed offline and it can
be computationally expensive, we highlight that the online
deployment of the trained agent takes a considerable lower
amount of time. The subchannel allocation is computed by
the agent according to the optimal policy (15) that is easily
derived by feeding the trained DNN with the current system
state. Moreover, assuming that network parameters like RAN
spectrum and number of active users are fixed, the agent
requires to be re-trained only when a new spectrum assignment
Sm is computed. This event is likely to rarely occur as it is
required to accommodate unexpected traffic load variations be-
tween MVNOs. However, we acknowledge that the proposed

Fig. 2. Fully-connected DNN structure used to compute Q(s, a). According
to the input state, the action corresponding to the highest Q-function value is
selected. Each action provides a subchannel allocation for all MVNOs based
on the assignment policy Sm.

Algorithm 1: Training procedure
Result: Subchannel allocation according to the

spectrum assignment policy Sm
1 Wireless environment and DRL agent initialization;
2 for each episode do
3 for each MVNO m ∈M do
4 Randomly place Um active users over the BS

coverage area;
5 end
6 for each time step do
7 for each subchannel k ∈ K do
8 Simulate INI power in every subchannel

using (12);
9 Generate CSI reporting of every user

u ∈ Um;
10 end
11 Observe the environment state st;
12 Select the action at according to the ε-greedy

policy;
13 Store the tuple (st, at, st+1, at+1) in the

experience-replay buffer;
14 Uniformly sample a mini-batch of size D from

the experience-replay buffer;
15 Update θ by minimizing L(θ) in (18) using the

sampled mini-batch;
16 end
17 end

DRL scheme scales poorly when the number of subchannels
to allocate increases as shown in (13). We are going to address
this issue in a future work by designing a suitable action
reduction algorithm to enhance the agent scalibility in more
complex scenarios.

V. PERFORMANCE EVALUATION

We discuss the results obtained by the proposed DRL
scheme. The whole simulation framework has been developed
in MATLAB. As network scenario, we considered a single BS
shared by up to 3 MVNOs having numerologies of subcarrier
spacing ranging from 15 kHz to 60 kHz. Every subchannel has



TABLE I
SIMULATION PARAMETERS

Network parameters Value

Subchannel transmission power 18 dBm
BS coverage radius 200 m
Carrier frequency 2.5 GHz
Available numerologies {15, 30, 60} kHz
Subchannel bandwidth 740 kHz
Active users per MVNO 4
Fading statistic Rayleigh
Doppler shift 35 Hz
Fading update 1 ms
Path loss model [17] 36.7 log10 d+ 33.05
Shadowing standard deviation 4 dB
Noise power -115 dBm

DRL parameters Value

Learning rate 0.001
Discount factor 0.01
Experience-replay buffer size 1000
Mini-batch size 64
Episode duration 100 ms
Number of episodes 500

equal transmission power and we assume that each MVNO
serves the same number of active users.

As DRL parameters, we employed a fully-connected DNN
with 5 hidden layers of 300 neurons each, that are activated
according to the Rectifier Linear Unit (ReLU), f(x) =
max(0, x), function. The loss function in (18) is minimized
using RMSProp optimizer [16] and the related Q-function
value is updated using a learning rate α = 0.001 in (17).
This parameter configuration was chosen experimentally by
assessing the result quality with respect to a variable number
of layers and neurons. The agent randomly explores the envi-
ronment with probability ε, that is exponentially decremented
at every new episode starting from ε = 1 up to ε = 0.01.
We trained the agent for 500 episodes that are composed by
100 time steps of granularity 1 ms. Moreover, to improve the
learning performance, we normalized the CSI reporting with
respect to the path-loss of each user before feeding it to the
DNN. We report the simulation parameters in Table I.

We analyze the performance of the DRL agent by compar-
ing it with two baseline schemes, denoted as

• Optimal allocation: the optimal subchannel allocation is
computed by means of an exhaustive search of all feasible
solutions in (5) at every CSI update.

• Static allocation: the same subchannel allocation is cho-
sen among the ones available regardless of the CSI
update.

The first scheme allows to investigate the gap of the DRL
solution from the optimal solution, whereas the second scheme
allows to highlight the performance gain over a heuristic
approach that does not jointly consider the channel fluctuations
together with the INI power. We consider different simulations
scenarios in order to provide better insights of the agent
performance. In this regard, we assess the results for a variable
number of subchannels. For each scenario, we consider 2 and
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Fig. 3. Average reward obtained by the DRL agent when 2 MVNOs of
numerologies {15, 30} kHz and 3 MVNOs of numerologies {15, 30, 60}
kHz are considered. The number of subchannels is k = 3 and k = 6.
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Fig. 4. Aggregate user throughput obtained with the optimal allocation, the
DRL agent allocation and the static allocation. The active numerologies are
{15, 30} kHz and {15, 30, 60} kHz when 2 MVNOs and 3 MVNOs are
considered, respectively. The number of subchannels ranges from k = 3 to
k = 6.

3 MVNOs employing numerologies with subcarrier spacing
15 kHz, 30 kHz and 15 kHz, 30 kHz, 60 kHz, respectively.

In Fig. 3, we show the average episode reward obtained by
the agent during the first 200 episodes of training phase (we
do not show all the 500 episodes for the sake of plot clarity).
We observe that the agent requires more episodes to converge
when the number of MVNOs and subchannels increases.
Specifically, the reward curve takes more episodes to settle
over a stationary trend when K = 6 due to the fact the a higher
number of actions are available and a longer environment
exploration is required to fully capture the underlying system
dynamic.

In Fig. 4, we show the aggregated throughput achieved by
the users belonging to the different MVNOs. We compare
the DRL-based allocation with the optimal allocation and the
static allocation previously discussed. We averaged the results
across 50 independent episodes where, for the static allocation,
we randomly chose a new subchannel allocation in each
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Fig. 5. Average SIR due to INI obtained with the optimal allocation, the DRL
agent allocation and the static allocation when the number of subchannels is
k = 3 and k = 6. The number of active MVNOs is M = 3.

episode. We observe that the DRL agent reaches performance
that is very close to the optimal solution in most of the
considered scenarios, where the minimum gap is achieved
when 2 MVNOs are active. Conversely, we note a more visible
performance loss in the 3 MVNOs case, that is due to the
higher number of available subchannel allocations. Moreover,
it is interesting to observe that increasing the number of
subchannels has a limited impact on the agent performance.
The motivation is that the INI dynamic is more dependent on
the number of different active numerologies rather than the
number of subchannels. Therefore, the agent can easily adapt
the learning process to additional subchannels that are shared
by the same number of MVNOs. The static allocation achieves
a lower throughput in all scenarios thus highlighting the benefit
of the considered approach to boost the system performance.
In detail, we note that the highest gain is achieved when 3
MVNOs are active. This behavior is due to the fact that when
more numerologies are multiplexed on the same spectrum the
INI power generated between different slices increases since
more non-orthogonal subchannels are contiguously allocated.
Consequently, the advantage of the proposed subchannel allo-
cation is more evident as more scheduling opportunities, that
minimize INI, are available.

Finally, in Fig. 5, we plot the average signal-to-interference
ratio (SIR) due to INI that is achieved by the various users.
In general, we observe that the DRL agent provides higher
average SIR values compared to the static allocation. More-
over, the DRL agent achieves performance close to the optimal
allocation when the number of subchannels is k = 3, whereas
a SIR degradation can be noted for k = 6 due to the more
challenging allocation scenario.

VI. CONCLUSION

We proposed a spectrum allocation policy that maximizes
the aggregated capacity of multiple MVNOs by taking into
account inter-numerology interference as well as the small-
scale fading effects of the various users. We designed a central-
ized DRL-based spectrum allocation scheme that provides an
effective approximation of the optimal solution in an efficient

amount of time. The DRL agent learns a suitable spectrum
allocation by correlating the received reward with the INI
power affecting each subchannel and the CSI reported by
the users. Results showed that the proposed DRL scheme
achieves performance very similar to the optimal allocation
in most scenarios and that it outperforms a baseline scheme
that statically allocates the radio resources to each MVNO.
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