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Abstract—Neural networks are being broadly explored for the
identification of Industrial Cyber Physical Systems (ICPS) models
from data sequences. However, learned representations typically
lack explainability, representing nowadays a major challenge of
deep learning. Interpreting the information structured across the
synaptic links is particularly challenging for recurrent neural
networks (RNN), encoding input features and observed system
dynamics within a continuous latent space. In this work, we
investigate the representation built within the RNN while learning
behavioral models of a class of discrete dynamical systems.
To this end, we propose a method to extract the symbolic
knowledge structured by the continuous state, based on Gaussian
Mixture Model clustering. Experiments are performed on a pilot
remanufacturing plant, by learning the model of a conveyor
controller from process data. We show the capability of the RNN
to achieve accurate predictions while providing a Moore Machine
representation of the latent activations, consistent with the target
system.

Index Terms—Recurrent neural networks, Discrete systems,
Model explainability, Industrial Cyber Physical Systems

I. CONTEXT AND MOTIVATION

Leveraging on the pervasive connectivity of smart devices
and production processes, data-driven identification techniques
are being considered more and more as a complementary
approach to first principle modeling of Industrial Cyber Phys-
ical Systems (ICPS) [1], [2]. System identification algorithms
shape models by fitting parameters using available observa-
tions, inherently support adaptation by including run-time data,
and foster the digitalization of existing production systems
lacking design-phase models [3]. In this context, modern deep
neural networks are being widely investigated, due to their
capability of structuring features by efficient representations
[4].
The aim is to model the underlying data generator. How-
ever, the information extracted by the network is typically
implicit and distributed across the neural connections, thus
resulting almost impossible to be understood by the users.
Indeed, the increase of explainability (i.e., achieve deeper
insights into the mechanisms of the implemented network) is
broadly recognized as a critical open issues within the deep
learning research field [5]. Explainability is particularly chal-
lenging when employing Recurrent Neural Networks (RNN),
including a stateful encoding of input features and observed
system dynamics through hidden states, iteratively processed

by implicit transition rules [6]. Continuous representation
networks are employed to obtain differentiable architectures,
so to exploit efficient learning algorithms. Nonetheless, in
many practical applications, RNNs are intrinsically processing
discrete features, from computer science (e.g., language, image
captioning) to the manufacturing field (e.g., process mining,
logical control). In these contexts, RNNs perform satisfactory
inferences structuring a temporal symbolic knowledge in their
continuous state space during training [6].

In the system identification field, RNNs encapsulate con-
tinuous representations of finite state machines when learning
behavioral models of discrete time-state systems processing
finite input-output signals, representing a broad class of prac-
tical applications. The extrapolation of such mechanisms could
significantly support explainability.
Surprisingly, this topic dates back to 60s when Minsky
demonstrated the relationships between RNN and Finite State
Automata (FSA) in accepting regular languages [7]. Starting
from this seminal study, theoretical models of computation
have been exploited to investigate the capabilities provided by
alternative prototype RNN architectures, mostly in terms of
symbolic knowledge structuring by performing grammatical
inference [6]. The major research momentum in this field
occurred in 90s, starting from the observations that the orbits
of internal activations tend to cluster when the network learns
to emulate a FSA [8]. Several methods have been developed
to extract FSA from RNN trained to perform grammatical
inference, characterizing a class of algorithms often referred
to as Rule Extraction (RE). A review on RE can be found
in [9]. Despite having a long history, to the best of our
knowledge, RE techniques have not yet been explored within
the manufacturing field to achieve deeper insights into the
representation learned by RNN-based ICPS models, as a way
to increase explainability. In fact, most developments target
grammatical inference, considering FSA processing sets of
finite traces of symbols to assess their compliance with a
target language, determined by single boolean output variable
[10]. On the other hand, the learning of ICPS models requires
to deal with concatenated multi-input multi-output data se-
quences generated by the continuous execution of the target
process. Then, the hidden active state of the system has to be
inferred from the temporized observations.

Leveraging on the theoretical framework provided by the



language inference field, in this work we propose a method
to extract a human interpretable representation from RNNs
trained to model the behavior of a class of discrete-time
discrete-state dynamical system. To this end, we developed
a rule extraction technique based on Gaussian Mixture Model
clustering (GMM). Compared to alternative approaches pro-
posed in the literature, GMMs provide a probabilistic interpre-
tation supporting soft-assignments and the capability to tune
cluster-specific full covariance matrices.

The proposed approach is applied to the conveyor of a pilot
remanufacturing plant, for the identification of the behavioral
model of the control system component of the ICPS [2].
We show that the trained RNN is able to infer the active
state of the controller and predict the next action performed,
encapsulating the finite state machine by its continuous latent
space. We then extract the hidden Moore Machine (MM)
representation by processing latent activations records. The
extracted MM is exported toward a run-time environment to
execute simulation scenarios on the same data processed by
the continuous RNN, then the related input-output sequences
are compared to analyze representation consistency.

The paper is organized as follows. Section 2 starts formal-
izing the focused system identification problem and linking
to RNNs. Section 2A introduces the developed RE algorithm.
Section 2B details the developed latent space clustering tech-
nique, based on GMM. Section 2C describes the adopted net-
work architecture. Section 3 describes the targeted application
and summarizes the results achieved.

II. METHOD

In this work, we consider non-linear dynamic systems
defined in discrete space and discrete time t ∈ Z, driven by
external signals u(t), of the form:{

x(t) = p(x(t− 1), u(t))

y(t) = q(x(t))
(1)

where x(t) ∈ Xnx ⊂ Znx
+ constitute the system state, being a

finite subset of positive integer with x(0) = s0, u(t) ∈ Bnu

the input set size, y(t) ∈ Bny the the output set size, with
B = {0, 1}. The nonlinear state-transition mapping is defined
in p[·] : Xnx × Bnu → Xnx , while the output mapping is
defined in q[·] : Xnx → Bny . nx, nu and ny represents the
size of states, input and output vectors size respectively.

From a system identification perspective, our aim is to infer
a functional model of the unknown dynamic system through
learning, by leveraging on the available input and output data
sequences. Several techniques have been proposed in the lit-
erature for such purpose, including feedforward and recurrent
networks based approaches. (see e.g., [11]). In this work, we
exploit Recurrent Network architectures, which are receiving
a lot of attention for system identification applications. The
major strengths of RNNs reside in their capability to structure
past input information within the hidden states, through loop
connections. Besides, a compressed representation can be
achieved by constraining the encapsulation of information

Fig. 1. Finite state machine extraction by clustering.

from arbitrary long input sequence within a smaller size hidden
state.

Formally, an RNN is a discrete time nonlinear dynamical
systems defined as:{

h(t) = fθ(h(t− 1), u(t))

y(t) = gθ(h(t))
(2)

where h(t) ∈ Rnh characterize the RNN latent state size,
which might result different from the dimension of the un-
known state space of the target dynamical system. fθ[.] :
Rnh+nu → Rnh , gθ[.] : Rnh → Rny are parameterized
nonlinear functions tuned through learning to fit the focused
dynamical system behavior, minimizing the error between the
network predictions and the given output targets.

A. Rule extraction method

As introduced above, RNNs are expected to encapsulate
a continuous representation of the identified discrete system
within its latent space. Thus, RNNs can be considered as
a kind of neural state machine [6]. To extract the discrete
representation embedded by the trained RNN, we propose the
rule extraction algorithm summarized in Figure 1.

The algorithm proceeds as follows. The continuous state
RNN is trained by backpropagation through time using the
training set. Then, the network is executed in prediction mode,



Fig. 2. Comparison of RNN and extracted FSM traces.

collecting both the outputs y(t) and the latent state activations
h(t) related to each sample. Afterwards, the hidden activations
records are processes by a clustering algorithm to identify
discrete states within the continuous space. Indeed, as shown
in [12], RNNs must structure their state space in subsets to
achieve robust finite state computation (i.e. including injection
of bounded additive noise to states). Moreover, the construc-
tion of a finite state representation in form of clusters is related
to the capability of finding a proper set of stable attractors
during training through bifurcation [13].
While performing rule extraction, each cluster is referred to the
states of the induced state machine and performed trajectories,
consequent to input sequence processing, to state-transition
mappings. Afterwards, a state transition diagram is extracted,
to visually represent the behavior of the RNN. Considering
the characteristics of the problem at hand, we employ a
Moore Machine (MM) diagram, formally defined as a 6-tuple
{U,X, Y, δ, λ, x0} where U, X, Y characterize the finite input,
state and output sets and δ : U ×X → X , λ : X → Y state
transition and output functions [14].

To evaluate the extracted MM, in this work we employ
a simulation approach. The exploration of further techniques
(e.g. by including model checking methods [15]) is foreseen
for future extensions. The MM is compared with the RNN
by running both on the same dataset and analyzing the output
traces, as shown in Figure 2. To such an aim, the extracted
MM is exported towards a simulation environment supporting
executions: in this work, we employ Mathworks-Stateflow,
representing a broadly used tool for state machines modeling.
Eventual differences provide indications of inconsistencies.
Then, further simulations can be performed, e.g. by changing
the tuning parameters of the clustering algorithm, which is
detailed described in the next section.

B. Latent space clustering technique

Several methods have been developed to extract symbolic
knowledge in the form of finite state machine from RNNs.
In [12], the state space is equally quantized in hypercubes
followed by a breadth-first exploration of partitions. Notably,
by adopting hyperbolic tangent activation functions, the points
tend to concentrate on the corners of the hypercube [−1, 1]nh

if the hidden size results well balanced with the number of
discrete latent states to be recover. Nevertheless, such assump-
tion is not valid in general [9]. Vector quantization techniques
have been proposed to tackle the exponential grows of par-
titions with the increasing latent space size, while providing
clustering regions more fitted to the activations specifically oc-
curring in the RNN. Several quantization algorithms have been
investigated, including K-means (see e.g., [16]), Hierarchical
Clustering (see e.g., [17]) and Self Organizing Maps (see e.g.,
[18]). In this work, we have developed a RNN latent space
clustering algorithm based on Gaussian Mixture models. The
major strengths resides in the full-covariance matrix support
and soft-assignments, enabling the identification of partially
overlapping non-isotropic clusters. Formally, the Mixture of
Gaussian model of the latent activations is defined over a
set of K multivariate Gaussian distributions N (x|µk,Σk) and
discrete latent variables zk, representing the probability of an
activation sample to belong to each component, as follows:

p(x) =

K∑
k=1

πkN (x|µk,Σk) (3)

where π ≡ {π1, . . . , πK} represents the mixing coefficient
and µ ≡ {µ1, . . . , µk} and Σ ≡ {Σ1, . . . ,ΣK} the mean and
covariance tensors.

The marginal density of the distribution of the activations
then results:

p(x) =

K∑
k=1

p(zk)p(x|zk) (4)

constituted by a factorized composition of component-wise
conditional probabilities p(x|zk = 1) = N (x|µk,Σk) time
the prior probability to sample each k-th component p(zk =
1) = πk. Then, by applying the Bayes rule, we obtain the
posterior probability p(zk = 1|x) = γ(zk), often referred to
as responsibility, as:

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

=
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

(5)

which provides the soft assignment of each latent space
activation point to the clusters characterizing the discrete states
of the MM. To fit the parameters of the distribution, we
iteratively employ the Expectation Maximization algorithm
applying until convergence E-steps and M-steps:



E-step :

{
γ(znk) =

πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

M-step :



µ′
k =

1

Nk

N∑
n=1

γ(znk)xn

Σ
′

k =
1

Nk

N∑
n=1

γ(znk)(xn − µ′
k)(xn − µ′

k)T

π′
k =

Nk
N

Nk =

N∑
n=1

γ(znk)

(6)

To select the number of components, we develop an inte-
grated approach including Information criteria (i.e., Bayesian
information criterion), cross validation, and silhouette in-
dicators so to gain complementary insights regarding the
learned RNN state discretization. Standard state minimization
techniques might be considered to investigate the potential
existence of equivalent minimal state machines [14].

C. Developed network architecture

Several RNN cells have been proposed to address the
vanishing gradient issue of traditional units. Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU) represent
the most used in practical applications nowadays. Compared to
LSTMs, GRUs employ a single gating unit to control the state
update and the forgetting factor [19]. It has been shown that
the former provides enhanced representation power, operating
as an automata with external memory, at the cost of higher
complexity in terms of parameters, whereas the latter behaves
more as a finite state machine [20]. In this work, we implement
an RNN based on GRU cells since well fitted with the
characteristics of the problem at hand while computationally
cheaper than LSTM. The output layer is defined as an element-
wise sigmoid instead of the conventional softmax since the
network must be capable to deal with multiple output actions
independently activated at a certain time, thus representing a
kind of multi-label classification problem.

Considering element-wise Bernoulli distributions over the
output vector, we propose a binary-cross entropy objective
function across the target actions to be predicted by the
network, formally expressed as:

L = − 1

B

B∑
i=1

ny∑
j=1

[yi,j log(yi,j) + (1− yi,j)log(1− yi,j)] (7)

with mini-batch size B and target actions yt.

III. RESULTS AND DISCUSSION

The proposed approach has been tested with the application
to the STIIMA-CNR pilot plant for remanufacturing of mecha-
tronic products [21]. We focus on the flexible conveyor system,
aimed to move the of the Printed Circuit Boards (PCBs) across

the operating stations (e.g. test, rework, etc.). Figure 3 reports
a picture of the system. The conveyor is composed of 15
modular units with dedicated controllers, enabling agile layout
reconfiguration following production needs.

Fig. 3. Conveyor module of the remanufacturing plant.

The controllers are connected by an industrial Ethernet
network and include an ISaGRAF Soft-PLC and an OPC-
UA server, providing run-time data access and registration in
databases. Modules execute equivalent instances of the control
logic, supporting management of transfer tasks requests in
each direction within the module. Figure 4 and Figure 5
display the Sequential Functional Chart (SFC) based control
logic and the I/O list respectively.

Fig. 4. SFC chart of the flexible conveyor system.

The dataset is constituted by a sequence of 10000
observations-actions pairs recorded from the PLC of a module
, encoded as arrays of binaries. We implemented the neural
network in Tensorflow 2.0. The RNN is trained in supervised
learning to predict the next output signal of the module
controller by observing a sequence of past input and output
signals. For this reason, the dataset has been pre-processed to
extract samples of I/Os records up to a certain time t − 1 as
the input set and the output at time t as the label. Then, the
obtained dataset has been split into sub-parts including 60%,
30%, 10% of the samples, dedicated to training, validation and
test respectively. The hyperparameter set include the number
of layers of the network, the number of units in each layer,
the extension backpropagation through time, the size of the
mini-batch, the number of epochs and the patience of early
stop routine. Then, a grid-search cross-validation approach has
been adopted, employing the Adam algorithm for training the
network by minimizing the objective function (8). A network
architecture constituted by a GRU layer of 10 cells followed
by a fully connected output layer has been adopted to process



Fig. 5. I/O signals of the module controller.

the test set. The further hyperparameters values and prediction
results obtained are reported in Table 1.

Notably, the network reached 100% prediction accuracy,
which is foreseeable when tackling deterministic problems by
properly tuned learning machines and datasets covering the
operating conditions of the target system. Nevertheless, the
data driven model identified by the network is still a black-box.
Therefore, we execute the trained network to collect the latent
state activations observations while processing each sample.
Then, the activations set has been processed by a GMM-based
clustering procedure, implemented by means of Scikit-learn.
Plots of the indicators to select the cluster size are reported in
Figure 6, suggesting a choice of 14 components. The resulting
clusters are reported in Figure 7, showing the cross activation
of latent space neurons. Visibly, activation clusters are partially
overlapping and non-isotropic.

Despite providing deeper view of the structure existing
within the activation points inside the multidimensional con-
tinuous latent space, the cluster plot still result difficult to
be interpreted by the user. Discrete states are clearly visi-
ble, but their relationship is still difficult to be understood.
Moreover, this complexity increase with the size of the la-
tent space. Figure 8 provides a more interpretable insight
of the finite state representation embedded by the network
through the continuous latent space. In details, the figure
reports the Moore Machine obtained by processing aggregated
input/clustered-state/output data and recording observed input
conditioned state-transition and state-outputs within dedicated
tensors. The Stateflow API is employed to construct the
state machine programmatically. Visibly, the inferred state
machine is equivalent to the SFC implementing the behavior
of the conveyor module. It is worth noting that the self-
transitions connected to some states of the Moore Machine are
representing persistence in a state of the SFC when transitions

TABLE I
HYPERPARAMETERS VALUES AND TEST SETS RESULTS

BPTT Mini-batch Epochs Patience Pred. Accuracy
50 64 50 5 100%

Fig. 6. BIC, Silhouette and Mean Cluster Distance curves

conditions are not active. Despite validating the feasibility
of the proposed method, such opportunity is not available in
general. Indeed, comparing the extracted state machine with
the one executed in the controller is typically not possible in
practice, especially when performing data-driven ICPS models
identification on brownfield plants. Therefore, we also checked
the consistency of the extracted representation by comparing
the state profiles of the RNN and the simulated state machine
while processing the same data sequences. Figure 9 reports

Fig. 7. Clustered latent space activity



Fig. 8. Moore Machine constructed in Stateflow

Fig. 9. MM machine (blue line) and RNN state prediction (dotted orange)
sequences

an extract of the obtained state sequences, showing equal
behavior. Such operation can be performed iteratively, e.g. by
varying hyperparameters, while checking eventual changes in
the acquired representation, providing a complementary form
of analysis to conventional accuracy test. In fact, we found
consistent representations while executing different runs of the
experiments. This analysis represent a first step that we plan
to extend in future works, e.g., by exploiting model checking
techniques.

IV. CONCLUSION AND NEXT STEPS

In this paper we have proposed a method to extract the
symbolic knowledge structured in the continuous state space of
neural ICPS models. To such an aim, we processed the latent
state activations of a trained Recurrent Neural Network with
Gated Recurrent Units by a Gaussian Mixture Model based
clustering technique. We showed the capability of the method
to cluster the latent space activations, characterized by partially
overlapping and non-isotropic distributions. Afterwards, a state
transition diagram is extracted, providing a human inter-
pretable representation of the symbolic knowledge structured
by the RNN across the continuous latent space. Experiments
have been performed by application to the conveyor of a pilot
remanufacturing plant, learning the behavioral model of the
control system component of the ICPS.

Our major aim is to achieve more explainable neural ICPS
models, fostering the application of data-driven identification
techniques in industrial context requiring deeper insights into
the model to enable implementation. Such techniques are
particularly beneficial when targeting brownfield plants where
design phase models are not available.

Next developments will include the investigation of further
class of discrete dynamical systems and hybrid systems, the
integration of the clustering mechanism within the RNN layers
to construct discrete latent states and the investigation of
methods to validate the extracted representation.
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