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Abstract 

The in-service safety of railway axles is a very important engineering challenge, as it has a large impact not 

only from the economic point of view of the railway operator, but it has cascading effects on supply chains, 

loss of work productivity, and, in the most serious cases, loss of life. It is, therefore, vital that the structural 

integrity of such components is known, during their lifecycle, with the highest possible accuracy via precise 

modelling, reliable inspections and, more recently but still at research level, effective condition monitoring. 

With a focus on solid freight axles, the research investigates the applicability of Acoustic Emission as a 

structural health monitoring approach for determining the in-service condition of a full-scale axle. A fatigue 

crack propagation test is carried out in the lab subjecting the axle to many repetitions of a block load 

sequence defined from real service measurements. AE data are continuously recorded during the test, 

whilst crack size is periodically measured by conventional non-destructive techniques. 

Eventually, a first-approximation correlation is highlighted between Acoustic Emission data, post-

processed by a machine-learning algorithm, and crack propagation ones. 
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1. INTRODUCTION 

In railway vehicles, axles are a fundamental component of the wheelset subsystem and represent safety-

critical key elements for railway operations. They are designed against fatigue limit according to relevant 

standards such as, for example, EN13261 [1] and EN13103-1 [2] in Europe or AAR Section G [3] in North 

America. On the other hand, in light of a typical design and service life of 30-40 years, the structural 

integrity of railway axles is prone to service damages [4], like impacts due to the ballast or corrosive 

aggression, not considered by the cited standardized classical design approach based on the fatigue limit. In 

particular, such events facilitate the unexpected initiation of fatigue cracks able to cause premature service 

failures, with important consequences on costs for the infrastructure manager and the railway operator 

and, in the most serious cases, the onset of accidents and unacceptable fatalities. 

To face the abovementioned criticalities, a more effective structural design of railway axles is today 

commonly looked for complementing the traditional design by more refined approaches based on either 

fatigue damage assessment or fracture mechanics concepts. Many studies and researches are available in 

the literature on this topic and, among the most recent ones, a few examples are [5]-[6]. Considering, 

instead, the in-service structural integrity of railway axles, one of the most successful approaches is 

Damage Tolerance [7], which is today continuously developed and significantly contributed by, for example, 

Europe ([4],[8]), China [9] and Japan [10]. By this approach, axles are inspected, at periodical service 

interruptions suitably planned for maintenance (“inspection intervals”), by well-established [11] non-

destructive testing (NDT) techniques, such as visual testing (VT), magnetic particle testing (MT) and 

ultrasonic testing (UT). Nevertheless, despite the high performance reached by the present application of 

NDT inspections and by the development of life prediction models, few fatigue-induced failures of axles are 

still observed. A possible way to further reduce and likely eliminate such in-service failures might be 

switching the paradigm from the traditional scheduled maintenance to a more affordable on demand 

maintenance, implementing on-board real time structural health monitoring (SHM) of railway axles. From 

this point of view, the fact that SHM has shown [12]-[13], especially in the aeronautical and civil fields, the 

possibility to decrease the costs of preventive damage inspections by 30%, without losing accuracy, should 

not be underestimated, as well. 



To date, very few investigations are available in the literature about SHM applied to railway axles. Even 

if still at a preliminary stage, the most advanced and promising approaches seem to be acoustic emission 

[14]-[17], low frequency vibrations (revolution periodicity) [18], high frequency vibrations (changes in 

natural frequencies) [19] and automated UT [20]. Other methods recently started to be taken into account 

or just suggested to be applicable to the problem at hand: microwave testing [21], alternating current field 

measurements [22], induced current focusing potential drop [22], alternated current thermography [23] 

and laser-air coupled hybrid UT [24]. Each of these approaches has specific pros and cons, but, for the sake 

of brevity, the reader is referred to the specific literature for details. Nevertheless, the present study 

focuses on Acoustic Emission (AE) because, up to date, it seems to be the most advanced and because the 

equipment is less invasive and less bulky. This is a very important and critical advantage considering the 

configuration of real axles mounted on running trains. Moreover, it is worth adding that, in the railway 

field, AE is already successfully applied for monitoring damage development in wheels, bearings and 

welded bogies, suggesting the possibility to take advantage of a synergic approach for the entire rolling 

stock, and rails. 

In the industrial field, SHM by AE is traditionally applied to assess the structural integrity of metallic 

components, especially pressure vessels and pipelines, under static and fatigue loading [25]. It originated 

transposing the concepts of seismology to a different (smaller) scale [26] and is based on the observation 

that, when damage develops in a material (plasticization, fracturing, …), it releases energy as ultrasonic 

elastic waves (“micro-earthquakes”), which can be fruitfully detected and interpreted. Such waves (the so-

called “hits”, Fig. 1) are typically short and transient (“burst events”) and are characterized by a bandwidth 

in the 100-1000 kHz range, which makes AE quite robust against audible noise and structural vibrations. 

Historically, the so-called “parametric AE” approach was used in order to decrease the amount of data to 

be managed: the transient waveforms were discarded after being “fingerprinted” using some well-

established features (Fig. 1: amplitude, duration, energy, …) for further processing. Today, with the 

availability of higher sampling frequencies and the increase of data storage capabilities, the full waveforms 

can be recorded in order to get the highest flexibility during post-processing and the analysis of the 

phenomenon, but new issues arise. In particular, a first critical point of AE monitoring is the typical amount 



of recorded data, which, even considering short campaigns, can easily sum up to millions of events. 

Secondly, it is reasonable to expect the recorded data are not just directly related to primary emissions 

(damage phenomena), but also to different types of secondary emissions (background noise and 

interference). These two inherent characteristics directly put AE monitoring and analysis into the field of 

Big Data Analytics [27], i.e. a highly multidimensional problem with little a priori knowledge of the 

underlying data structures, and suggest AE data is the perfect candidate for machine learning classification 

algorithms.  

The present paper investigates the application of SHM by AE to the special case of a deep-rolled solid 

axle subjected to a variable amplitude full-scale crack propagation test. AE data are continuously recorded 

during the test, whilst crack size is periodically measured by conventional non-destructive techniques. 

Eventually, a first-approximation correlation is highlighted between Acoustic Emission data, post-processed 

by a machine-learning algorithm, and crack propagation ones. 

 

2. EXPERIMENTAL FULL-SCALE PROPAGATION TEST 

All the details and results about the full-scale tests carried out, in the frame of the MARAXIL Research 

Project [28], on deep-rolled axles can be found in [29], while a short summary, useful as a background for 

the present research, is given in this section. 

 

2.1. Specimen and details on the full-scale crack propagation test 

The feasibility of AE as a SHM approach to railway axles was investigated considering a solid full-scale 

specimen, shown in Figure 2 and named “axle” in the following, designed according to [1] and made of the 

standardized EA4T medium strength steel grade (quenched and tempered 25CrMo4, [1]). It is worth 

remarking that the geometry of the specimen does not correspond exactly to that of a real axle, but its 

central area (press-fit seat, T-transitions and the two portions of the adjacent cylindrical body) is fully 

representative of the regions of real axles where the wheels are press-fitted and of the adjacent areas [1]. 

Moreover, a portion of the axle was treated by the deep-rolling procedure typically used, in Europe, for 

some high-speed applications. The full-scale axle was, then, subjected to a variable amplitude fatigue crack 



propagation test. In order to effectively control the initiation site of two independent fatigue cracks, the 

section of interest of the axle (Fig. 2a and b) was characterized by two artificial notches, manufactured by 

electro-discharge machining (EDM) in the deep-rolled cylindrical region of the axle, located at 180° one 

from the other. Such notches had a semi-circular shape with radius R = 4 mm. This particular size was 

chosen, based on the measured residual stress profile [29], in order to overcome the compressive stress 

state at the surface and to allow a significant propagation of the cracks during the test.  

The full-scale crack propagation test was carried out by means of the “Dynamic Test Bench for Railway 

Axles” (BDA) available at the labs of the Department of Mechanical Engineering at Politecnico di Milano 

(Fig. 3a and b). The bench applies, to the tested full-scale specimen, a three-point rotating bending 

condition by an actuator group (having capacity equal to 250 kNm) and an electrical engine: both fatigue 

(durability) and crack propagation tests can be carried out applying either constant amplitude or variable 

amplitude block loads, as described in [30]. The BDA bench is fully compliant to the relevant European 

standard on the qualification of railway axles [1] and both the fatigue test procedure and the crack 

propagation results are Quality Certified according to ISO/IEC 17025 [31].  

In the present research, the full-scale axle was subjected, by the BDA bench, to a block loading sequence 

(Fig. 3c) experimentally derived from the typical service spectra of a tilting train on European lines [32] and 

representing about 57000 km of high-speed service. Eventually [29], the full-scale test lasted for 64 

repetitions of the block load sequence, corresponding to an equivalent distance of about 3.5x106 km, and 

was interrupted before the final failure of the specimen. 

 

2.2. Characterization of crack initiation and propagation by non-destructive testing 

With the aim to get a feedback on crack initiation and propagation and to evaluate the effectiveness of 

structural health monitoring by AE, NDT was applied at suitable interruptions of the test, which were 

planned between the repetitions of the block load sequence. In particular, the size of the cracks originating 

from the artificial notches was characterized by visual testing (VT) and phased array ultrasonic testing 

(PAUT).  



The rationale behind the application of VT was to size the surface length of cracks. Two different 

approaches were adopted: digital image acquisition by an optical microscope (“OM” in Figure 2a) and 

plastic replicas ([33], “PR” in Figure 2a). Eventually, the information provided by the two methods 

corresponded and, as an example, Figure 4a shows the plastic replica, observed at the microscope, of one 

of the surface tips of crack A at the end of the test (repetition #64 of the block load sequence). Figure 4b, 

instead, summarizes the complete trend of crack advance at the surface for crack A, while crack B showed 

analogous results. As can be seen, no crack initiation could be observed up to block load repetition #15, 

after which multiple cracks actually initiated and propagated from the artificial notches. Such cracks 

developed up to a very limited size (about 140 m) and became non-propagating after about 35 repetitions 

of the block load sequence. This peculiar behaviour was ascribed to and explained by the influence of deep-

rolling residual stresses on crack driving force [29]. 

On the other hand, the rationale behind the application of PAUT was to size the depth of cracks. To this 

aim, a Harfang X32 ultrasonic phased array unit, equipped with a linear probe characterized by 32 elements 

and a central frequency equal to 5 MHz, was adopted. Cracks were inspected using a sectorial scan 

visualization (S-Scan with refraction angle ranging from 35° to 55°) and sized by means of the ‘‘crack tip 

diffraction’’ method ([34], Fig. 4c). Figure 4d summarizes the trend of crack depth for both crack A and B. 

Before discussing the results, it is worth noting the significant scatter of PAUT measurements: actually, such 

a scatter was expected because, even if UT is the only volumetric NDT method applicable (and affordable) 

to inspect the volume of railway axles, its performance to size defects is one of the most controversial 

topics. No one UT sizing technique has yet been established which gives a high degree of accuracy or 

repeatability in all circumstances [35]. Actually, the low accuracy (high uncertainty) of UT sizing and the lack 

of repeatability of UT measurements (inherent high measurement errors) are very well-known in the NDT 

field and are confirmed, for the case at hand, by the data shown in Fig. 4d. Nevertheless, as can be seen, 

both an initiation stage and a propagation one are highlighted again: due to the aforementioned 

uncertainty of the measurements, the border between these two regions was estimated by the AE results 

discussed in Section 3.  



Considering the initiation stage (Fig. 4d), the experimental average estimations of the depth of the initial 

notch (nominally equal to 4 mm) resulted to be equal to 4.1 mm (standard deviation equal to 0.26 mm) and 

to 4.14 mm (standard deviation equal to 0.28 mm) for cracks A and B, respectively. Assuming the nominal 4 

mm depth value as a reference (the supplier certified the size of the EDM notches with an uncertainty 

equal to ±0.1 mm), the mean measurement error by PAUT resulted to be between 0.1 mm and 0.15 mm. 

Moreover, a 95% confidence analysis of the experimental mean values (not shown in Fig. 4d for the sake of 

clarity) showed an almost complete superposition of the confidence bands, which also included the 

reference one, and, consequently, allowed to conclude there is a statistical consensus between them and 

the reference one. 

Regarding the propagation stage, the total crack growth resulted to be at a nearly constant rate and 

about 1 mm long for both cracks, which propagated up to about 5 mm during the whole fatigue test. Data 

were fitted by the least squares method trying different mathematical models (linear, logarithmic, 

exponential and power): the best determination coefficients were achieved by the linear model, which 

resulted to be characterized by R2=0.62 and R2=0.58 for cracks A and B, respectively. Such best values 

denote a non-optimal, but rather reasonable and acceptable linear fitting. As for the case of the initiation 

stage, a 95% confidence analysis of the linear fittings was carried out, finding again a statistical consensus 

between the behaviour of the two cracks. 

 

3. STRUCTURAL HEALTH MONITORING OF RAILWAY AXLES BY ACOUSTIC EMISSION 

AE signals were continuously recorded, during the entire full-scale crack propagation test, to monitor 

damage development. In particular, an AE piezoelectric sensor (Vallen VS150-M with resonance frequency 

equal to 150 kHz) was applied at the free end of the axle (Fig. 2a) using a custom made mount designed to 

hold it in position together with a pre-amplifier (Vallen AEP4 34 dB). The AE sensor was coupled to the 

surface of the axle using bearing grease in order to prevent the formation of air bubbles and to maximize 

sensitivity: such an assembly was periodically checked to ensure the grease was not deteriorated or moved 

away during the test. In this bench test, the use of a single AE sensor was forced by the presence of the 

engine coupling at one end of the axle. In a real application, the use of two sensors (one at each end of the 



axle) would allow localizing AE signals along the axle improving the accuracy of defect detection, but this 

remains an open point and a future development of the present research. 

The rotating measuring group was linked to a sliding contact (Michigan Scientific S4) to send the signals 

to the AE acquisition system (Vallen AMSY-5). The use of a sliding contact, which is simple and cheap, 

explains the need of the adopted preamplifier: indeed, the signal to noise ratio resulted to be very low 

because, without preamplifier, the background noise generated by the sliding contact was of the same 

order of magnitude ([mV]) of the acquired AE signals. Finally, together with AE events, the signal of the 

applied load over time was acquired, as well, in order to synchronize the outputs. 

The AE system was calibrated according to the standard pencil lead break test [36]: signal attenuation 

along the axle was found to be negligible. After one minute of rotation of the specimen without any load 

application, the acquisition threshold of AE events was set to 55.8 dB in order to filter noise under the 

assumption that, in the absence of load, no events related to crack propagation are expected. Moreover, 

since AE hits related to fatigue damage in homogeneous and isotropic materials have the typical burst 

morphology, a band pass acquisition filter was set in the 230 - 850 kHz frequency range, with the lower 

frequency set above the sensor’s resonance (150kHz), and the upper frequency set to accommodate a 

sampling frequency of 5 MHz. 

 

3.1. Analysis of raw events recorded by acoustic emission 

During the whole test, the AE set-up recorded 437268 hits. Figures 5a and b compare AE activity, in terms 

of number of hits and their amplitude, at the beginning of the test (block load repetition #2) and at its end 

(block load repetition #64). A significant increase of such an activity is evident and can be interpreted as 

follows. 

First, the sources of background noise and interference should be nearly time-independent and keep 

almost constant during the test: no increase of AE activity should have been observed if crack initiation and 

propagation were absent. Nevertheless, during the very first repetitions of the block load sequence, like the 

one shown in Figure 5a, the recorded AE events can be reasonably related to background noise only. In the 



case at hand, the events are very few due to the suitably chosen acquisition threshold (55.8 dB) and the 

applied passband filter (230 - 850 kHz). 

A significant and peculiar increase of AE activity started to be observed at block load repetition #4 (Fig. 

6a). It can be clearly noticed that there is a strict correlation between the number of hits, their amplitude 

and the load level: during the load cycles with low load levels, the AE activity is relatively low and almost 

constant, whereas, during the load cycles with high load levels, it increases instantly and significantly. It has 

to be also noted that the activity is globally very low during most of the time, with events of moderate 

amplitude, comparable to the inherent background noise shown in Figure 5a. Since no cracks were 

detected by NDT up to block load repetition #15, the whole set-up (test bench and measurement chain) did 

not show any malfunctioning and the test conditions (load levels, temperatures, …) did not justify any 

structural modifications of the material of the axle, the recorded peaks of AE activity could be ascribed [37] 

to plasticization and sliding of dislocations in the process zone at the tips of the artificial notches. Figures 

6b, c and d confirm such behaviour up to block load repetition #15, with a continuous increase of events in 

between load transitions, as well. It is worth remarking that the AE activity detected during this (crack 

initiation) stage seems able to provide a warning about damage development well before the NDT 

approaches traditionally applied to railway axles. The amplitude doesn’t show repeatability across graphs, 

which is an observation well in line with the Kaiser effect and the nonlinear nature of crack propagation. 

Based on the outcomes of NDT inspections, the last (crack propagation) stage is here assumed to start at 

block load repetition #16, even if it is likely micro-cracks, not detectable by NDT, could have appeared 

during the previous couple of block load repetitions. Nevertheless, during crack propagation, the size of the 

crack front increases in length and more point sources of acoustic events are made available (Fig. 7a), 

suggesting the onset of more sparse AE hits with respect to the shape of the load sequence. This is 

confirmed by Figure 7b, where the AE activity of block repetitions from #16 to #18 is shown. As can be 

seen, the AE events correlated to load levels are almost disappeared, while more uniformly distributed hits 

have taken place. The same can be observed later on during the test (Fig. 7c) and at its end (Fig. 5b). Finally, 

it is worth noting the ability of SHM by AE to highlight the onset of load interaction effects on crack 

propagation. Figure 7b, and Figure 7c to a limited extent due to the high number of recorded events, clearly 



show that, during the application of the low load levels just following the high ones, AE activity decreases 

significantly and gradually increases again with the accumulation of low amplitude fatigue cycles. Since a 

decreased AE activity may be linked to a slower crack growth, this seems to suggest the onset of crack 

growth retardation due to application of the chosen block load sequence: actually, this corresponds exactly 

to the results shown in [29] with respect to the crack propagation behaviour observed during the present 

full-scale test. 

 

3.2. Unsupervised classification of acoustic emission events 

As previously stated, AE signals can originate from different sources, not all of which are of interest in a 

SHM problem. In this research, in order to classify the recorded events, AE parameters (amplitude, rise 

time, duration, counts and energy, see Fig. 1 for their definition) are used as an input to a Self-Organizing 

Map (SOM) [38], a particular type of neural network, which tends to group similar inputs together. 

However, as the number of groups of similar signals is unknown a priori, the results are run through a k-

means algorithm assuming an increasing number of classes. The classification quality is evaluated using 

different fitness criteria (Davies-Bouldin, Silhouette, Calinski-Harabasz) which are, then, used to determine 

the optimal number of classes in the dataset. The full details on the adopted classification algorithm are 

described in [39], while its full validation is reported in [40]. 

As the classification algorithm was run on the whole AE dataset recorded during the test, two classes of 

events were found: Class #1 gathering 87% of the total (380423 hits out of 437268) and Class #2 gathering 

the remaining 13% (56845 out of 437268 hits). Figure 8a shows, as an example, the classification obtained 

for block load repetitions #17 and #18. As can be seen, the amplitude of Class #1 is generally low (55-65 dB) 

and correlated with load levels, whereas the amplitude of Class #2 seems more evenly distributed at all 

load levels and has, overall, a higher maximum value (up to around 75 dB). In order to provide a physical 

meaning to the two classes of events, the first step was to check the morphology of the classified 

waveforms. From this point of view, always considering the exemplificative case of block load repetitions 

#17 and #18, an example of typical Class #1 waveform is shown in Figure 8b, while Figure 8c shows an 



example of typical Class #2 waveform. As can be seen, the first impression is that Class #1 gathers 

background noise, while Class #2 gathers burst events likely related to damage development. 

Another useful and commonly adopted feature for analysing the meaning of AE classes is their 

cumulated energy, which is a measure of the energy introduced into the system. Accordingly, Figure 8d 

shows the cumulated energy of the two classes against the applied load for the exemplificative case of 

block load repetitions #17 and #18. One can see that, despite Class #1 events being far more numerous 

than Class #2 events, their cumulated energy level is generally lower. This is very informative because, 

typically, damage development is characterized by a much higher energy content than background noise. In 

addition, as stated in Section 3.1, noise should remain nearly constant over time and, consequently, show a 

linear trend in terms of cumulated energy. From this point of view, the trend of Class #1 is actually nearly 

linear with time, while Class #2 shows, especially during block load repetition #18, sudden significant 

increments likely related to damage development and crack advance. 

It can be concluded that there is a reasonable guarantee that Class #1 is mainly related to background 

noise, while Class #2 mainly to damage development. Consequently, just the events included in Class #2 will 

be considered in the following Section.  

 

3.3. Discussion on the performance of classified acoustic emission 

Figures 9a shows the trend of the number of hits for each repetition of the block load sequence. 

Considering the whole test, the discussion presented in Section 3.1 is confirmed: the activity was very low 

at its beginning, the highest during the initiation stage, but with an uncertain and very dispersed trend, and 

in-between during the propagation stage with a nearly linear increasing trend, even if quite dispersed 

again. A clear identification, based on AE activity, of the three stages of damage development (initial noise, 

crack initiation and crack propagation) might seem a good opportunity for a successful SHM of railway 

axles, but, actually, the very high level of uncertainty (dispersion of data) makes this approach subtle due to 

the consequent high probability of false positive and false negative results. 

Looking at the trend of the average amplitude of AE events for each repetition of the block load 

sequence (Fig. 9b), a clearer interpretation is possible. Indeed, in this case, it is easy to identify the different 



stages, because the initiation phase is characterized by significantly higher amplitudes than the other two. 

This observation is aligned to the literature [37]: the initiation stage of cracks usually provides a higher AE 

activity characterized by a higher amplitude compared to the propagation stage, which is reported to be 

rather quiet. Consequently, the amplitude of AE events might be a good criterion for an early detection of 

damage. Nevertheless, the amplitude level during the propagation stage is constant and comparable to the 

one of the initial noise. This might prevent crack sizing and raises issues in real applications where the noise 

level is expected to be higher than in the lab. 

Figure 9c shows the trend of the average energy of AE events for each repetition of the block load 

sequence. In this case, it is not possible to identify the three stages because no peculiar behaviours are 

observed, but the general linear trend show the closest match to crack propagation stages, if compared to 

the activity and the average amplitude. This means that energy can provide useful information about the 

presence of damage development, but none on the type or stage of such a damage.  

Summarizing, a simple criterion based on AE amplitude might be effective for pointing out the onset of 

crack initiation: a suitable amplitude threshold should be calibrated on real applications and a warning 

alarm released when it is reached and overtaken. On the other hand, the most descriptive and robust AE 

feature for crack propagation, where the key point is a reliable crack sizing, seems to be the energy and a 

more detailed analysis is required. 

 

4. A FIRST-APPROXIMATION ACOUSTIC EMESSION BASED APPROACH TO CRACK SIZING 

AE energy can be represented in many different ways: instantaneous value, total cumulated trend during a 

given monitoring campaign, block cumulated trend during a fixed time window, etc. All of these possibilities 

were analysed in order to individuate the most effective one for the study at hand. Eventually, a promising 

correlation between crack depth and the (logarithmic) AE energy cumulated during each block load 

repetition, related to the crack propagation stage, could be found (Fig. 10a). It is worth noting that just 

crack depth was considered as a relevant descriptor of crack size because, as explained in Section 2.2, crack 

propagation at the surface was strongly influenced (impeded) by the compressive residual stress profile 

and, consequently, was assumed to be negligible. Moreover, it was not possible to separate the AE events 



related to the propagation of each individual crack, but, since they behaved in a very similar way (Fig. 4d), 

an average crack depth value is here considered as a first approximation. 

The empirical relationship between crack depth and the logarithmic AE energy cumulated during each 

block load repetition was built as follows: 

1. AE data from Class #2, previously identified by the classification algorithm, is isolated; 

2. the cumulated AE energy related to each block load repetition (Eblock) is calculated; 

3. a linear model is fit to the data: 

𝑎 = C0 + C1 ⋅ log10(𝐸𝑏𝑙𝑜𝑐𝑘) (1) 

 

where “a” is the average crack depth. The results obtained by the proposed linear model are shown in 

Figure 10b. Despite the relatively wide confidence band, which can be explained by the relatively large 

uncertainty in the crack measurement data, the overall performance of the correlation is reasonable. The 

R2 of the linear regression is 0.39, which may appear not enough to provide a traditionally “reliable” model 

of crack propagation, but is still an indication that such a relationship exists. Both coefficients C0 (2.671) and 

C1 (0.244) have a p-value of less than 0.01 (the tested hypothesis is that the coefficient is equal to 0, i.e. the 

model is a constant trend): this indicates a strong evidence of the presence of a relationship, with the 

relatively low R2 indicating moderate levels of noise/uncertainty. 

As a further verification of the claims on classification results given in Section 3.2, the correlation was 

separately defined for Class #1 data, as well. In this case, the correlation fitted the data poorly, the value of 

R2 dropped to 0.24 and the p-value of C1 rose to 0.03. This information is a further indication that Class #2 

signals are indeed related to crack propagation, whilst Class #1 events are linked to sources of background 

noise. 

As a remark, the proposed classifier is trained to the specific axle’s data, and, due to its nature, every 

different combination of axle geometry and material (e.g. hollow versus solid) may affect the signals’ 

propagation path and characteristics. This could mean that a classifier trained on a solid axle will not be 

directly transferrable on a hollow axle, or on a solid axle made of a significantly different material. 

However, as the “transfer function” between the source and the sensor will be the same for any category 



of signals within the same axle, it is expected that the proposed method would still be applicable, as it will 

be able to accurately classify different signals. The linear model coefficients may require further analysis 

before directly extending them to a different geometry.  

Finally, it is worth mentioning that the proposed first-approximation empirical (data-driven) correlation 

is meant to be just the first promising step for the future development of a full crack initiation and 

propagation (physics-based) tool aimed to build a set up for the diagnostics and the prognostics of in-

service railway axles. Accordingly, more dedicated full-scale crack propagation tests are being carried out. 

 

5. CONCLUDING REMARKS 

The objective of this study is to highlight the feasibility of using Acoustic Emission for the real-time 

structural health monitoring of in-service railway axles with initiating and developing damage. 

The physical nature of the collected data was clearer after the application of unsupervised classification, 

excluding effectively signals due to background noise. Consequently, the possibility to clearly identify and 

separate the initiation and propagation stages of damage development was observed, providing an 

important advantage when compared with the conventional application of non-destructive testing. 

Focusing on the propagation stage, an empirical and reasonable relationship, linking suitable AE features to 

the measured crack size, was found. Further investigations, including two sensors setups and more full-

scale tests, can further improve and validate the proposed approach. 

In conclusion, the work shows that there is certainly scope for using Acoustic Emission to reduce the 

frequency and the cost of periodic non-destructive testing inspections. 

 

ACKNOWLEDGMENTS 

The full-scale crack propagation test was carried out in the frame of the MARAXIL (‘‘Manufacturing Railway 

Axles with Improved Lifetime’’) Research Project co-funded by Regione Lombardia (ID 16973, Rif. n° MAN-

15). The Authors would like to thank Prof. S. Beretta, Prof. S. Bruni, Prof. M. Guagliano and Dr. P. Rolek for 

the given support and useful discussions and Mr. G. Cunati for the active help given during the 

experimental crack propagation test. 



 

REFERENCES 

[1] EN 13261. Railway applications – Wheelsets and bogies – Axles – Product requirements. CEN, 2010. 

[2] EN 13103-1. Railway applications – Wheelsets and bogies – Part 1: Design method for axles with 

external journals. CEN, 2017. 

[3] AAR Manual of Standards and Recommended Practices. Section G: Wheels and Axles. AAR, 2011. 

[4] U. Zerbst, M. Vormwald, C. Andersch, K. Mädler, M. Pfuff. The development of a damage tolerance 

concept for railway components and its demonstration for a railway axle. Eng. Fract. Mech. 72 (2003) 

209-239. 

[5] P. Pokorný, T. Vojtek, L. Náhlík, P. Hutař. Crack closure in near-threshold fatigue crack propagation in 

railway axle steel EA4T. Eng. Fract. Mech. 185 (2017) 2-19. 

[6] Z.W. Xu, S.C. Wu, X.S. Wang. Fatigue evaluation for high-speed railway axles with surface scratch. Int. 

J. Fat. 123 (2019) 79–86. 

[7] A.F. Grandt Jr. Fundamentals of Structural Integrity, John Wiley & Sons, 2004. 

[8] M. Carboni, S. Beretta. Effect of probability of detection upon the definition of inspection intervals of 

railway axles. Proc. Instn Mech. Engrs, Part F: J. Rail and Rapid Transit 221 (2004) 409-417. 

[9] S.C. Wu, S.Q. Zhang, Z.W. Xu, G.Z. Kang, L.X. Cai. Cyclic plastic strain-based damage tolerance for 

railway axles in China. Int. J. Fat. 93 (2016) 64–70. 

[10] T. Makino, H. Sakai, C. Kozuka, Y. Yamazaki, M. Yamamoto, K. Minoshima. Overview of fatigue 

damage evaluation rule for railway axles in Japan and fatigue property of railway axle made of 

medium carbon steel. Int. J. Fat. 132 (2020) 105361. 

[11] EN 15313. Railway applications – In-service wheelset operation requirements – In-service and off-

vehicle wheelset maintenance. CEN, 2016. 

[12] F.K. Chang. Structural Health Monitoring: A Summary Report. Proc. 2nd International Workshop on 

Structural Health Monitoring, Stanford, US, 1999. 

[13] C. Boller, Ways and options for aircraft structural health management, Smart Mater Struct 10 (2001) 

432–440. 



[14] X.J. Deng, G.J. Xui, S.Q. Liu. Research on Fatigue Crack Detection of Rail Vehicle Axle Based on 

Acoustic Emission. Proc. 10th International Workshop on Structural Health Monitoring, Stanford, US, 

2015. 

[15] C.H. Jiang, W. You, L.S. Wang, M. Chu, N. Zhai. Real-time monitoring of axle fracture of railway 

vehicles by translation invariant wavelet. Proc. International Conference on Machine Learning and 

Cybernetics. Guangzhou, China, 2005. 

[16] C.H. Jiang, S. Pan, C. Zhang, F. Li. Experimental Research on Fault Location for the Axle of Railway 

Vehicles Based on Acoustic Emission Technique. Int. J. Cont. Autom. 9 (2016) 91-98. 

[17] Y. Zhou, L. Lin, D. Wang, M. He, D. He. A new method to classify railway vehicle axle fatigue crack AE 

signal. Applied Acoustics 131 (2018) 174-185. 

[18] P. Rolek, S. Bruni, M. Carboni. Condition monitoring of railway axles based on low frequency 

vibrations. Int. J. Fatigue 86 (2016) 88–97. 

[19] M.J. Gómez, C. Castejón, J.C. García-Prada. New stopping criteria for crack detection during fatigue 

tests of railway axles. Eng. Fail. Anal. 56 (2015) 530–537. 

[20] S.Y. Chong, J.R. Lee, H.J. Shin. A review of health and operation monitoring technologies for trains. 

Smart Struct. Syst. 6 (2010) 1079–1105. 

[21] V. Gorbunov, V. Sutorikhin. Microwave Nondestructive Testing Method. Applied Physics Research 4 

(2012) 206-210. 

[22] N. Bachschmid, P. Pennacchi, E. Tanzi. Cracked rotors: a survey on static and dynamic behaviour 

including modelling and diagnosis. Springer Science & Business Media, 2010. 

[23] R. Zoughi, S. Kharkovsky. Microwave and millimetre wave sensors for crack detection. Fat. Fract. 

Engng Mat. Struct. 31 (2008) 695-713. 

[24] R. Ngigi, C. Pislaru, A. Ball, F. Gu. Modern techniques for condition monitoring of railway vehicle 

dynamics. Journal of Physics: Conference Series 364 (2012) 1-12. 

[25] M. Huang, L. Jiang, P.K. Liaw, C.R. Brooks, R. Seeley, D.L. Klarstrom. Using acoustic emission in fatigue 

and fracture materials research. JOM 50 (1998) 1–12. 

[26] C. Grosse, M. Ohtsu. Acoustic Emission Testing, Springer-Verlag, Berlin Heidelberg, 2008. 



[27] A. Deshpande, M. Kumar, Artificial Intelligence for Big Data, Packt Publishing, 2018. 

[28] MARAXIL project. http://maraxil.mecc.polimi.it/, 2013. (accessed on July 2019). 

[29] D. Regazzi, S. Beretta, M. Carboni. An investigation about the influence of deep rolling on fatigue 

crack growth in railway axles made of a medium strength steel. Eng. Fract. Mech. 131 (2014) 587–

601. 

[30] S. Beretta, M. Carboni. Variable amplitude fatigue crack growth in a mild steel for railway axles: 

experiments and predictive models. Eng. Fract. Mech. 78 (2011) 848-862. 

[31] ISO/IEC 17025. General requirements for the competence of testing and calibration laboratories, ISO, 

2017. 

[32] S. Beretta, M. Carboni, S. Cervello. Design review of a freight railway axle: fatigue damage versus 

damage tolerance. Mat-wiss U Werkstofftech 42 (2011) 1099-1104. 

[33] M.H. Swain. Monitoring small crack growth by the replication method, ASTM STP 1149, 1992. 

[34] J. Krautkrämer, H. Krautkrämer. Ultrasonic testing of materials, 4th edition, Springer-Verlag, 1990. 

[35] J.C. Drury. Ultrasonic flaw detection for technicians, 3rd edition, Silverwing Limited, 2004. 

[36] ASTM E976. Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor 

Response, ASTM International, 2010. 

[37] R.K. Miller, E.v.K. Hill, P.O. Moore. Nondestructive Testing Handbook, Third Edition: Volume 6, 

Acoustic Emission Testing (AE). ASNT Publications, 2005. 

[38] S. Haykin. Neural Networks and Learning Machines. Pearson International Edition, 2009. 

[39] D. Crivelli, M. Guagliano, A. Monici. Development of an artificial neural network processing technique 

for the analysis of damage evolution in pultruded composites with acoustic emission. Composites: 

Part B 56, (2014) 948–959. 

[40] D. Crivelli. Structural health monitoring with acoustic emission and neural networks. PhD Thesis, 

Politecnico di Milano, Milano (Italy), 2014. Open access at 

https://www.politesi.polimi.it/handle/10589/89521. 



List of Figures 

Figure 1 – Scheme of an AE hit (case of burst event). 

Figure 2 – The tested full-scale specimen and the applied structural health monitoring and non-

destructive testing techniques (dimensions in [mm]): a) sketch; b) notched section of interest; 

c) picture view. 

Figure 3 – Experimental set-up for the full-scale crack propagation test: a) static scheme of the Dynamic 

Test Bench for Railway Axles; b) view of the test bench; c) applied block load sequence. 

Figure 4 – Crack sizing during the full-scale test: a) VT by plastic replica of one of the surface tips of crack 

A (repetition #64 of the block load sequence); b) trend of crack advance at the surface (crack 

A); c) scheme of sizing by PAUT; d) trend of crack depth. 

Figure 5 – Trend of AE activity during the full-scale test: a) at the beginning of the test (block load 

repetition #2); b) at the end of the test (block load repetition #64). 

Figure 6 – AE activity during the initiation stage of cracks: a) block load repetition #4; b) block load 

repetition #7); c) block load repetition #12; d) block load repetition #15. 

Figure 7 – AE activity during the propagation stage of cracks: a) scheme of the increase of point sources 

of acoustic events with the size of the crack front; b) block load repetition from #16 to #18; c) 

block load repetition from #56 to #60. 

Figure 8 – Unsupervised classification of acoustic emission events: a) example of classification for block 

load repetitions #17 and #18; b) example of noisy signal; c) example of burst event; d) 

cumulated AE energy vs. applied load. 

Figure 9 – Analysis of the performance of classified acoustic emission: a) AE activity vs. repetitions of the 

block load sequence; b) average AE amplitude vs. repetitions of the block load sequence; c) 

average AE energy vs. repetitions of the block load sequence. 

Figure 10 – A first-approximation correlation for crack sizing: a) average crack depth vs. logarithmic AE 

energy cumulated during each block load repetition; b) average crack depth compared to 

correlation results. 

  



 
 

Fig. 1 

 

  



  
(a) (b) 

 
(c) 

 

Fig. 2 

 

  



  
(a) (b) 

 
(c) 

 

Fig. 3 

 

  



 
 

(a) (b) 

  
(c) (d) 

 

Fig. 4 

 

  



  
(a) (b) 

 

Fig. 5 

 

  



  
(a) (b) 

  
(c) (d) 

 

Fig. 6 

 

  



 
(a) 

 
(b) 

 
(c) 

 

Fig. 7 

 

  



 
(a) 

  
(b) (c) 

 
(d) 

 

Fig. 8 

 

  



  
(a) (b) 

 
(c) 

 

Fig. 9 

 

  



  
(a) (b) 

 

Fig. 10 

 


	Paper2020CarboniCrivelli.pdf
	TextR2
	FiguresR2

