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Abstract 

Background. Peripheral artery disease (PAD) is an atherosclerotic disorder that leads to unpaired 

lumen patency through intimal hyperplasia and the build-up of plaques, mainly localized in areas of 

disturbed flow. Computational models can provide valuable insights in the pathogenesis of 

atherosclerosis and act as a predictive tool to optimize current interventional techniques. Our 

hypothesis is that a reliable predictive model must include the atherosclerosis development history. 

Accordingly, we developed a multiscale modeling framework of atherosclerosis that replicates the 

hemodynamic-driven arterial wall remodeling and plaque formation. 

Methods. The framework was based on the coupling of Computational Fluid Dynamics (CFD) 

simulations with an Agent-Based Model (ABM). The CFD simulation computed the hemodynamics in 

a 3D artery model, while 2D ABMs simulated cell, extracellular matrix (ECM) and lipid dynamics in 

multiple vessel cross-sections. A sensitivity analysis was also performed to evaluate the oscillation of 

the ABM output to variations in the inputs and to identify the most influencing ABM parameters.  

Results. Our multiscale model qualitatively replicated both the physiologic and pathologic arterial 

configuration, capturing histological-like features. The ABM outputs were mostly driven by cell and 

ECM dynamics, largely affecting the lumen area. A subset of parameters was found to affect the final 

lipid core size, without influencing cell/ECM or lumen area trends.  

Conclusion. The fully coupled CFD-ABM framework described atherosclerotic morphological and 

compositional changes triggered by a disturbed hemodynamics.  

 

Keywords: Atherosclerosis, computer modeling, multiscale model, agent-based model, lipid plaque, 

SMC, ECM, remodeling, wall shear stress, hemodynamics    
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1 Introduction 

Peripheral Arterial Disease (PAD) is an atherosclerosis-related pathology characterized by arterial 

lumen stenosis through the formation of a lipid-rich plaque, which affects more than 200 million people 

worldwide [1]. In its severe stage, the disease can potentially lead to peripheral gangrene, with 

consequent amputation, or spread to other parts of the body exposing the patient to the risk of heart 

attack or stroke [2].  

Within the multifactorial nature of the pathology, the relation between hemodynamics and 

atherosclerotic plaque localization has been extensively studied, supported by evidences of plaque 

occurrence at sites of disturbed blood flow, where a low Wall Shear Stress (WSS) is appreciable [3]. 

The role of WSS in the pathogenesis of atherosclerosis has been associated with induced 

mechanotransduction at cellular level. WSS modulates the endothelial release of specific chemicals that 

control pivotal states such as the permeability to low density lipoproteins and cellular/extracellular 

functions, including Smooth Muscle Cells (SMCs) proliferation and Extracellular Matrix (ECM) 

dynamics, which are all relevant within the disease pathogenesis [4].   

Nowadays, the preferred techniques adopted to restore the physiological circulation, namely 

Percutaneous Transluminal Angioplasty (PTA) and Vein Graft Bypass (VGB), are still affected by a 

high rate of medium/long-term failure, with a 3-years patency of 60% for PTA and a 5-years patency of 

70% for VGB [5]. An interdisciplinary approach and advances in the study of the underlying cellular, 

molecular and genetic mechanisms involved in atherosclerosis are widening the actual knowledge of 

the disease and will facilitate the improvement of the current therapeutic solutions and development of 

new strategies [6,7].  

Mathematical models and computational simulations are powerful tools that can provide great 

support and guidance in this research process [8,9]. A variety of computational models have been used 
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to investigate the clinical outcome of  PTA with or without stenting [10–12] and VGB confirming the 

prominent need to overcome the limitations associated with these procedures, e.g. [13,14]. Particular 

attention was directed to the investigation of the in-stent restenosis mechanisms, a maladaptive vascular 

response to PTA and stent deployment which, leading to lumen re-occlusion, is considered one of the 

main causes of failure of the treatment [15]. In this context, several research groups used Agent-Based 

models (ABMs) to replicate the restenotic vascular remodeling processes following PTA with stenting, 

exalting the potentialities of ABM in simulating the response of a biological system to the alteration of 

its baseline working conditions [16–24]. However, most of the aforementioned works introduced the 

perturbation, namely the intervention procedure, in a healthy artery, without considering the underlying 

pathology. In the study by Curtin and Zhao [24], a more realistic pathological geometry was adopted as 

initial configuration and the atherosclerotic plaque was modeled, even though as an inert entity. Our 

hypothesis is that a more reliable predictive model of intervention should include the pathological 

history that, besides modifying the geometry and composition of the arterial wall, leads to an alteration 

of the cellular and extracellular dynamics and the activation of processes, for example due to the 

presence of the lipid core, that might affect the treatment outcome. To the best of our knowledge, few 

works adopted ABM techniques to simulate atherosclerotic plaque formation and their main focus was 

on the immune and inflammatory events occurring in the early phases of atherosclerosis [25–27].  

Accordingly, we here present a multiscale framework that, starting from an idealized healthy artery, 

simulates the process of atherosclerotic plaque formation and progression generating a diseased artery 

as output. This is an extension of a previous preliminary work from our research group [28] where we 

coupled Computational Fluid Dynamics (CFD) simulations with agent-based modeling to replicate 

hemodynamic-driven events in atherosclerosis. Specifically, the CFD analysis performed in a 3D artery 

model provides the hemodynamic input to multiple 2D ABMs, which, in turn, simulate cellular 

dynamics. In [28] we provided a preliminary description of the working mechanisms, which will be 
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here discussed in detail. Moreover, additional work was done to improve the model reliability, with 

peculiar attention directed to the sensitivity analysis of the ABM, performed to evaluate the model 

output in response to variations at the level of the input parameters. Indeed, due to the lack of a direct 

calibration of the driving coefficients of the model on experimental data, those coefficients were 

selected heuristically, leading to a certain level of uncertainty that needed to be quantified. The 

sensitivity analysis allowed us to understand the impact of the uncertain inputs on the model response, 

identifying the most influencing parameters, whose future calibration on experimental data will 

improve the model accuracy [29]. Finally, the results of this analysis provided further understandings 

of the model mechanisms, namely a verification of the ABM response with respect to the model laws, 

and the identification of an unexpected or not considered behavior.  

2 Material and methods 

2.1 Multiscale framework  

Figure 1 shows the structure of the complete multiscale framework that consists of four cyclically 

repeated steps [28]. First, an idealized 3D model of the lumen of a tortuous portion of healthy 

Superficial Femoral Artery (SFA) is built and a 3D mesh of the fluid dynamic domain is generated 

using ICEM CFD (v. 18.0, Ansys Inc., Canonsburg, PA, USA). To compute the hemodynamics, a 

steady-state CFD simulation is performed in Fluent (v. 18.0, Ansys Inc.), and the WSS profiles are 

extracted at the lumen interface of a discrete number (𝑀 = 10) of 2D vessel cross-sections. For each 

plane, the local, hemodynamic-driven remodeling is replicated with an ABM implemented in Matlab 

(v. 2016b, MathWorks, Natick, MA, USA) that simulates cellular, extracellular and lipid dynamics. 

Specifically, depending on the WSS profile computed by the CFD simulation, the ABM replicates the 

physiologic or pathologic arterial wall remodeling occurring in a predefined time-frame (e.g. one week 
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ABM simulated time). At the end of said period, here referred as coupling period, the ABM 

simulations are stopped to perform a new CFD simulation in the modified (i.e. updated) 3D geometry. 

Indeed, the geometrical changes computed by the ABM in each 2D plane affect the fluid dynamic 

domain, implying the need to update the hemodynamics and the WSS distribution by coupling back the 

ABMs to the CFD module. To do that, a new 3D geometry of the lumen vessel is reconstructed by 

lofting the luminal curves of the M ABM outputs and the four main steps of the multiscale framework 

are then re-performed. The entire process stops at the end of a predefined follow-up period (e.g. at two 

months ABM simulated time). Each of the aforementioned steps, as well as the coupling process, 

require the user intervention.  
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Fig. 1. Multiscale computational framework [28]. Starting from a 3D model of healthy artery, the physiologic/pathologic 

wall remodeling is simulated through a four-blocks scheme: (i) geometry preparation and meshing, (ii) CFD simulation, (iii) 

ABM simulation and (iv) new 3D geometry. The CFD and ABM modules constitute the multiscale core of the framework, 

acting on the second/tissue and weeks/cell scales, respectively.  

 

The multiscale core is based on the CFD and the ABM modules, embedded in the dashed red box in 

Fig. 1. The first simulates at tissue/seconds scale the average hemodynamics in the SFA, while the 

second replicates at cell scale the process of arterial wall remodeling, involving a time span of 

weeks/months.  

A step-by-step extended description is provided below with the following order:  i) geometry 

preparation and meshing, ii) CFD simulation, iii) ABM simulation, and iv) retrieval of the new 3D 

geometry.  

2.1.1 Geometry preparation and meshing 

A simplified 3D geometry of the lumen of a healthy artery with SFA-like features was initially built 

using the CAD software Rhinoceros (v. 6.0, Robert McNeel & Associates, Seattle, WA, USA) (Fig. 

2A). The initial geometry presented a centerline length of 𝐿𝑐𝑒𝑛𝑡 = 84.02 𝑚𝑚, and circular inlet and 

outlet cross-sections with diameters 𝐷𝑖𝑛𝑙𝑒𝑡 = 4.10 𝑚𝑚 and 𝐷𝑜𝑢𝑡𝑙𝑒𝑡 = 3.71 𝑚𝑚, respectively.  

The 3D geometry was imported into ICEM CFD to generate the 3D mesh of the lumen for the CFD 

simulation. A hybrid tetrahedral mesh with five boundary layers of prism elements was created with the 

Octree method [30]. As global mesh parameters, an element maximum size of 0.39 mm was set and the 

curvature/proximity based refinement was enabled with a minimum element size of 0.156 mm and a 

refinement of 20 edges along a radius of curvature. The five layers of prism elements were generated 

with an exponential growth law, setting 1.05 as height ratio.  Finally, the mesh was globally smoothed 
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by imposing five smoothing iterations and a quality criterion up to 0.4. The resulting mesh, shown in 

Fig. 2B, presented almost 235500 cells.  

 

Fig. 2. Fluid dynamic domain. A) 3D ideal geometry of the superficial femoral artery, with ten cross-sectional planes 

P1-10 where the wall shear stress profiles were extracted as hemodynamic input for the agent-based model (ABM). B) 

Mesh of the fluid domain, with a magnified view of the inlet cross-section, showing the tetrahedral mesh and five layers of 

prism elements next to the arterial lumen.  

2.1.2 CFD simulation 

Steady-state CFD simulations were performed using Fluent to compute the hemodynamics in the 3D 

artery model. Since the arterial wall remodeling, computed by the ABM, occurs in the time scale of 

weeks, while the cardiac output waveform is in the order of the seconds, cellular dynamics were 

assumed to depend on the average WSS. Accordingly, to avoid excessive time consumption, a steady 

flow was imposed to approximate the average hemodynamics. 
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At the inlet cross-section, a constant parabolic-shaped velocity profile with physiological mean 

velocity was applied. The mean velocity was derived from the analysis of patient’s Doppler ultrasound 

image at the SFA level [31], following a proper scaling to make it consistent with the current inlet area. 

At the outlet cross-section, a reference zero pressure was imposed. No-slip wall boundary condition 

was specified at the arterial lumen, assumed as rigid. A density of ρ=1060 kg/m3 was set for blood, 

modeled as a non-Newtonian Carreau fluid, as in [32]. The simulation was run using the pressure-based 

solver with coupled method as pressure–velocity coupling method, least square cell-based scheme for 

the spatial discretization of the gradient, second-order scheme for the pressure and second-order 

upwind scheme for the momentum spatial discretization [33]. 

At the end of the CFD simulation, WSS profiles were extracted at pre-selected M = 10 internal 

circular planes perpendicular to the centerline (Fig. 2A) and used as hemodynamic input to the 

corresponding ABM. The choice of M = 10 planes guaranteed a reliable reconstruction of the 3D vessel 

geometry.  

2.1.3 ABM simulation 

In general, starting from an initial homeostatic condition, the 2D ABM replicates a physiologic or 

pathologic arterial wall remodeling (depending on the WSS profile) on a vessel wall cross-section, by 

locally simulating cell mitosis/apoptosis, ECM production/degradation and lipid infiltration in the 

intima. The model was developed assuming that the risk factors promoting the disease were already 

present. Accordingly, the process of plaque formation in a specific region is purely driven by the 

hemodynamic conditions, and specifically by the WSS profile.  

The implemented ABM was inspired to the one developed by Garbey et al. [34,35] for the 

simulation of VGB post-surgical adaptation. However, different vessel structure and composition, as 
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well as agent types and dynamics were implemented in the present work, which also deals with new 

cellular events. 

Figure 3 shows the ABM flowchart. Following the geometrical and hemodynamic initialization, at 

each time step of one hour, the model computes cell/ECM and lipid dynamics that drive the remodeling 

of the wall. Then, in order to retrieve smooth profiles and guarantee structural integrity, the lumen and 

external walls are regularized at each iteration until the end of the simulated period.  

 

Fig. 3. Agent-based model (ABM) flowchart. t refers to the internal clock of the ABM and TFU is the predefined follow-

up time.  

To replicate the cellular and extracellular events, probabilistic behavioral rules were assigned to 

each agent and the simulations were performed with Monte Carlo method, allowing capturing the 

intrinsic variability of biological processes. Due to the stochasticity of the present ABM, the output of a 

single simulation cannot be considered as a representative solution. Thus, N = 10 independent 
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simulations were run starting from the same initial condition and the average trend was evaluated. The 

choice of N was dictated by the need of a reasonable trade-off between computational time and 

minimization of the standard deviation.  

A basic solution was generated by opportunely calibrating the agent dynamics in order to stabilize 

the system around an equilibrium working point. This condition, representative of the homeostatic state 

of a healthy artery, was then perturbed to simulate the process of atherosclerotic plaque formation.  

Prior to the building of the fully coupled framework, the ABM behavior was verified both under 

physiologic and atherogenic conditions. For this purpose, a single CFD-ABM coupling was performed 

to initialize the ABM with the hemodynamic input and the ABM simulations were run for two months. 

Differently, within the fully coupled framework, the ABM running time corresponded to the chosen 

coupling time between ABM and CFD modules.  

The ABM simulations were run on a 16.00 GB RAM CPU, Intel® Core™ i7-4790, with 4 Cores 

and 8 Logical Processors. 

Details on the ABM initialization, agent dynamics and geometrical regularization are provided 

below.  

 

Initialization. The ABM was implemented on a 2D <130 x 130> hexagonal grid, representing a 

good compromise between affinity to the isotropic reality and level of complexity and computational 

efforts. The initial geometry is a 2D circular cross-section composed by 3 concentric layers, i.e. tunica 

intima, media and adventitia (Fig. 4A) with the internal and external elastic laminae (IEL and EEL) 

separating the intima and the media and the media and adventitia, respectively (Fig. 4B). While sites in 

the lumen and in the external portion to the wall are initially empty, each site within the wall is 

randomly seeded with a cell or an ECM, coherently with the cell/ECM ratio of each layer [36–38]. 

Intima and media are initialized with SMCs and elastin and collagen as ECM, with a SMC/ECM ratio 
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of 0.72 [36] and a collagen/elastin ratio of 0.63 [38], while fibroblasts and collagen fill the adventitial 

sites with a ratio of 0.43 [37]. Figures 4C and 4D show cellular and extracellular composition of intima, 

media and adventitia layers. For simplicity, no differentiated behaviors between SMC and fibroblasts 

or between elastin and collagen were implemented.  

  

Fig. 4. Agent-based model (ABM) initialization. A) ABM cross-section showing intima, media and adventitia layers 

with their cell/extracellular matrix (ECM) composition. B) Internal elastic lamina (IEL) in green, and external elastic lamina 

(EEL) in red. C) Cellular composition of the arterial wall, with SMCs in the intima and media layers and fibroblasts in the 

adventitia layer. D) ECM composition of the arterial wall, with elastin and collagen in the intima and media layers and 

collagen in the adventitia layer.  
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As previously mentioned, the 2D ABM is informed with an initial WSS profile, which can 

potentially trigger a pathologic vascular remodeling by perturbing the baseline cellular activity and 

favoring lipid infiltration and accumulation within the arterial wall [3,4]. Indeed, a low WSS affects the 

endothelial function by down-regulating atheroprotective genes and up-regulating the atherogenic ones, 

eventually promoting atherosclerotic plaque formation [4,39].    

Accordingly, each site i of the lumen wall is initialized with a WSS value obtained from the 3D 

CFD simulation, and a level of endothelial dysfunction 𝐷𝑖 is computed as follows: 

 

𝐷(𝑊𝑆𝑆)𝑖 = 𝐷𝑖 = {
1 −

𝑊𝑆𝑆𝑖

𝑊𝑆𝑆0
, 𝑖𝑓 𝑊𝑆𝑆𝑖 < 𝑊𝑆𝑆0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                (1) 

 

𝑊𝑆𝑆𝑖 is the WSS at site i and 𝑊𝑆𝑆0 = 1 𝑃𝑎 is the assumed pathologic/physiologic WSS threshold.  

𝑊𝑆𝑆0 was set in accordance with the study of Samady et al. [40], in which areas exposed to WSS 

lower than 1 Pa developed greater lumen area reduction. Moreover, the chosen threshold agrees with 

the physiological range of WSS in the SFA, identified to be between 1.5-2 Pa [41]. 

 In the ABM, each dysfunctional endothelial site i, with 𝐷𝑖 ≠ 0,  triggers a state of alteration that 

diffuses within the intima through isotropic diffusion, from a peak of intensity 𝐷𝑖 with a diffusion 

constant 𝜙:  

 

𝐴𝑖,𝑘(𝐷𝑖, 𝑑) = 𝐴𝑖,𝑘 = 𝐷𝑖 ∗ 𝑒
−

1

2
(

𝑑

4𝜙𝑡
)
2

 (2) 

 

where 𝐴𝑖,𝑘(𝐷𝑖, 𝑑) is the level of alteration generated by the i-th endothelial site and recorded at the k-th 

site within intima, at a distance 𝑑 from i. In each site k, the individual states of alteration originated 

https://doi.org/10.1016/j.compbiomed.2020.103623


 

Accepted manuscript at https://doi.org/10.1016/j.compbiomed.2020.103623 

14 

 

from different endothelial sites are summed up to define the global level of inflammation of the k-th 

site 𝐼𝑘, as follows:  

 

𝐼𝑘 = ∑ 𝐴𝑖,𝑘𝑁𝐿
𝑖=1  (3) 

 

 NL is the initial number of sites of the lumen wall (i.e. endothelial sites) and the resulting 𝐼𝑘 affects 

the agent dynamics, as described below, promoting atherosclerotic plaque formation.  

Since the purpose of the present model was not to accurately replicate the mechanisms of 

endothelial dysfunction and the early inflammatory processes occurring during atherogenesis, the 

endothelium and inflammatory cells or molecules were not explicitly modeled. However, Eqs (1) - (3) 

were implemented to capture the key role of the hemodynamic input in the pathogenesis of 

atherosclerosis, whose effect, thanks to the mediation of the endothelial layer, is transferred to the 

interior sites. Specifically, if all the WSS values at the i-th sites are greater than the threshold, 𝐷𝑖 =

0 ∀𝑖 and 𝐼𝑘 = 0 everywhere. Under this condition, defined atheroprotective, the homeostasis of a 

healthy artery is replicated. On the contrary, if there is at least one site of the lumen wall exposed to a 

𝑊𝑆𝑆𝑖 < 𝑊𝑆𝑆0, a state of inflammation 𝐼 develops and the mechanisms of plaque formation are 

activated, namely the lipid dynamics and an increased cellular activity in the intima. The related WSS 

profile was thus defined atherogenic.  

The geometrical and compositional initialization shown in Fig. 4 and described in the present 

section is performed only at the first cycle of the framework in Fig. 1. The starting geometrical and 

compositional configurations of the ABM simulations at the cycle n+1 are the corresponding ABM 

output configuration of the previous cycle, n, which are informed with the respective WSS profile 

obtained from the CFD simulations of the current cycle, n+1. 
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Agent dynamics. The ABM at t = 0 is populated with cells and ECM, for which each component is 

approximated as a single agent. To desynchronize the cellular activity and ensure the stochastic nature 

of the simulation, an internal clock was associated to the model. Each site containing a cell/ECM was 

initially associated with a random number, 𝑡𝑎𝑔𝑒𝑛𝑡, that individuates its biological state within the 

relative cycle, of period 𝑇𝑠𝑖𝑡𝑒, which was differentially defined for cells, 𝑇𝑠𝑖𝑡𝑒 = 𝑇𝑐𝑒𝑙𝑙 = 12 ℎ𝑜𝑢𝑟𝑠, and 

ECM, 𝑇𝑠𝑖𝑡𝑒 = 𝑇𝑚𝑎𝑡𝑟𝑖𝑥 = 2 ℎ𝑜𝑢𝑟𝑠. 𝑡𝑎𝑔𝑒𝑛𝑡 is incremented of one hour at each time step and an agent can 

potentially undergo a certain event (described later) only when 𝑡𝑎𝑔𝑒𝑛𝑡 =  𝑛 ∗ 𝑇𝑠𝑖𝑡𝑒 , with n positive 

integer number.  

When a site containing cell/ECM is accessed (i.e. when it is in its potentially active state), a Monte 

Carlo simulation determines whether the potential event is happening or not, as shown in the “event 

assessment” phase of Fig. S1. The CPU generates a random number 𝑡𝑒𝑠𝑡 ∈ [0; 1] that is compared with 

the probability of the event itself, 𝑝𝑒𝑣𝑒𝑛𝑡, and the event occurs if 𝑡𝑒𝑠𝑡 <  𝑝𝑒𝑣𝑒𝑛𝑡.  

The cellular events of interest are, as baseline of activity, mitosis/apoptosis for cells and 

deposition/degradation for ECM, and, only under atherogenic condition, the ABM also simulates the 

process of lipids infiltration.  

In Fig. 5, the workflow adopted for the implementation of the agent dynamics and the corresponding 

parameter setting is shown. A detailed analysis of the biological processes occurring during 

atherosclerosis initiation and progression was performed, with a focus on the cellular, extracellular and 

lipid dynamics, which led to the definition of their probabilistic behavioral rules. The final probability 

equations depend on a set of coefficients αi, adopted to weigh a specific influencing factor in the global 

agent behavior or to set the probability in the interval (0:1).  

The numerical value assumed by those coefficients was derived through an iterative process in 

which the output of the ABM was verified in terms of integrity and qualitative resemblance to 

histological or literature evidences. In the present section, the values obtained from the aforementioned 
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process are listed below each equation and tagged as default values.  This procedure allowed us to 

obtain a reasonable range for each coefficient. However, since they were not experimentally derived, 

they are associated with uncertainty, which is reflected in the model output. For this purpose, a 

sensitivity analysis of the αi parameters was performed and detailed in section 2.2.1. In future works, 

the parameters αi that emerged as driving ABM coefficients will be calibrated against experimental 

data and the ABM will be finally validated.  

 

Fig. 5. Workflow for the implementation and fine-tuning of the agent-based model (ABM).   

 

Before implementing the pathological cellular dynamics, the baseline densities of probability were 

set for cell mitosis/apoptosis and ECM deposition/degradation to replicate the physiological conditions. 

They were defined with Eq. (4) and Eq. (5), respectively: 
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𝑝𝑚𝑖𝑡 = 𝑝𝑎𝑝𝑜𝑝 = 𝛼1  (4) 

𝑝𝑝𝑟𝑜𝑑 = 𝛽 ∗ 𝑝𝑑𝑒𝑔 = 𝛼4 (5) 

 

𝛼1, 𝛼4 and β were imposed to guarantee the maintenance of the physiologic cell/ECM ratio defined at 

the initialization phase for each tissue layer. 𝛼1 and 𝛼4 were set to compensate the different cellular and 

extracellular time period, i.e. 𝛼1 =
0.1

𝑇𝑚𝑎𝑡𝑟𝑖𝑥
= 0.05 and 𝛼4 =

0.1

𝑇𝑐𝑒𝑙𝑙
= 0.008, where, the 0.1 multiplier 

was introduced to obtain a baseline probability of said event within a realistic unit of measure [34].  

While cell agents are responsible for cell mitosis and apoptosis and ECM production, ECM agents 

are involved in ECM degradation, meaning that the code scans the grid looking for cells or ECM, 

respectively. It results that, due to the prevalence of ECM on cells, the model has the tendency to 

preferentially degrade ECM, instead of producing it. Accordingly, to replicate a baseline condition 

where ECM production and degradation are averagely balanced, an adjusting coefficient β was 

introduced and calibrated for each layer. Specifically, since the intima and the media layer have the 

same cell/ECM ratio = 0.72, a single βint/med was defined for these two layers, while a different value, 

βadv, for the adventitia, being the adventitia composed by a cell/ECM ratio of 0.43. To this aim, ten 

ABM simulations were run under physiologic conditions with several tentative βint/med and βadv values 

and, at a 2-months follow-up, the ratio between final and initial ECM,  
𝐸𝐶𝑀𝑓

𝐸𝐶𝑀𝑖
, was computed for each 

layer. Considering the work of Garbey et al. [34], a first set of ten simulations was run with initial 

guesses of βint/med = 2.13 and βadv =2.5 and provided  
𝐸𝐶𝑀𝑓

𝐸𝐶𝑀𝑖
> 1 in the intima and media layers and 

𝐸𝐶𝑀𝑓

𝐸𝐶𝑀𝑖
= 1 in the adventitia layer. Other five values corresponding to 1, 1.5, 1.6, 1.75 and 2 were 

investigated to calibrate βint/med and, by interpolating the  
𝐸𝐶𝑀𝑓

𝐸𝐶𝑀𝑖
 vs. 𝛽 plot in correspondence of 

𝐸𝐶𝑀𝑓

𝐸𝐶𝑀𝑖
=

1, βint/med = 1.57 was identified as adjusting coefficient for the intima and the media layers, as shown in 
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Fig. 6. Therefore, β = {1.57,1.57,2.5} were set for intima, media and adventitia, respectively, in order 

to guarantee stable trends of ECM in each layer under baseline conditions.  

  
Fig. 6.  𝛽𝑖𝑛𝑡/𝑚𝑒𝑑  interpolation. The 

𝐸𝐶𝑀𝑓

𝐸𝐶𝑀𝑖
 values obtained at different βint/med = 1, 1.5, 1.6, 1.75, 2, 2.13 with fixed βadv =2.5 

are indicated as blue circles. Each of the 
𝐸𝐶𝑀𝑓

𝐸𝐶𝑀𝑖
 values is the average result of five repeated simulations. The dashed red curve 

indicates the interpolation of βint/med in correspondence of 
𝐸𝐶𝑀𝑓

𝐸𝐶𝑀𝑖
= 1. 

 

With said calibrated coefficients, Eq. (4) and Eq. (5) drive the physiological wall remodeling, 

leading to the replication of the homeostatic state of a healthy artery. Differently, under atherogenic 

conditions (i.e. when at least one site of the lumen wall is associated with a 𝑊𝑆𝑆 < 1 𝑃𝑎) cellular 

mitosis and ECM production in the intima are perturbed to model the increased cellular activity 

involving the intima layer during atherosclerosis. This translates into a modification of the probability 

densities defined with Eq. (4) and Eq. (5). Specifically, the probability of cell mitosis and ECM 

production in the intima increases with the inflammation level, the number of neighboring lipids and 

the closeness to the lumen [42], leading to the following: 
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𝑝𝑚𝑖𝑡 = {
𝛼1 · (1 + 𝛼2𝐼

𝑘) 𝑖𝑓 𝑛𝑙𝑖𝑝 = 0

𝛼1 · (1 + 𝛼2𝐼
𝑘)(1 + 𝛼3𝑛𝑙𝑖𝑝){1 + exp(−𝑑𝑙𝑢𝑚𝑒𝑛

𝑘 )} 𝑖𝑓 𝑛𝑙𝑖𝑝 ≠ 0
 (6) 

 

𝑝𝑝𝑟𝑜𝑑 = {
𝛼4 · (1 + 𝛼2𝐼

𝑘) 𝑖𝑓 𝑛𝑙𝑖𝑝 = 0

𝛼4 · (1 + 𝛼2𝐼
𝑘)(1 + 𝛼3𝑛𝑙𝑖𝑝){1 + exp(−𝑑𝑖𝑠𝑡𝑙𝑢𝑚𝑒𝑛

𝑘 )} 𝑖𝑓 𝑛𝑙𝑖𝑝 ≠ 0
 (7) 

 

𝛼2 = 1.5 and 𝛼3 = 0.1 weigh, respectively, the effect of the inflammation state, 𝐼𝑘, and the 

influence of the neighboring lipids, 𝑛𝑙𝑖𝑝, while 𝑑𝑙𝑢𝑚𝑒𝑛
𝑘  is the distance between the site k and the lumen 

wall. The coefficients were set following the framework proposed in Fig. 5, with the additional 

requisites of obtaining probability values of the agent dynamics in the interval (0;1) and an accelerated 

plaque formation under atherogenic condition, so that the pathological processes in the planes exposed 

to atherogenic WSS profile arose within two simulated months. This choice, although not realistic, was 

dictated by the need to reduce the elevated computational time.  

Under atherogenic conditions, the ABM also implements the process of lipid infiltration in the 

intima. In order to simulate an earlier adaptive intimal thickening [3], lipid dynamics is activated once 

the intima thickens over a given threshold, here set as IT=6 sites. Since circulating low density 

lipoproteins were not explicitly modeled, the probability of lipid infiltration is computed as the 

probability of a site k at the lumen wall to allow lipids to invade the intima, expressed by:  

 

𝑝𝑙𝑖𝑝𝑖𝑑 = 𝛼5(1 + 𝐼𝑘){1 + 𝛼6 · exp(−𝑑𝑖𝑠𝑡𝑙𝑖𝑝
𝑘 )} (1 + 

𝑛𝑙𝑖𝑝

𝛼7
), (8) 

 

where 𝛼5 = 0.05 sets the event probability in the interval (0;1). The terms 𝛼6 exp(−𝑑𝑖𝑠𝑡𝑙𝑖𝑝
𝑘 )  and 

(1 + 
𝑛𝑙𝑖𝑝

𝛼7
) promote lipid clustering, by increasing the probability of a lipid to occupy a site k close to 
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another lipid, whose distance is 𝑑𝑖𝑠𝑡𝑙𝑖𝑝
𝑘  and whose neighboring lipids is, in turn, 𝑛𝑙𝑖𝑝.  𝛼6 = 10  weighs 

the distance term between k and its closest lipid, and 𝛼7 = 6  is a normalization constant to maintain 

the ratio in the interval (0;1). Also in this case, the terms and coefficients of Eq. (8) were set following 

the framework in Fig. 5 to obtain a lipid core resembling histological features [43].  

At each time step only one lipid can enter the intima. To determine the site of access for the lipid, 

the ten sites of the lumen wall with higher 𝑝𝑙𝑖𝑝𝑖𝑑 are explored. Starting from the most probable site 

Monte Carlo simulation is applied and if  𝑝𝑙𝑖𝑝𝑖𝑑
𝑘 > 𝑡𝑒𝑠𝑡, then k is the designated site of access, 

otherwise the following site of the list is investigated, up to ten. This translates in assuming that a lipid 

has a total number of chances, 𝑡𝑟𝑦𝑙𝑖𝑝 = 10, to migrate into the intima.  

In the present work, it was assumed that lipids might continue entering the intima until the lipid core 

potentially occupies maximum 15% of the lumen area. Although not representative of real biological 

mechanisms, this condition allowed replicating a progressive growth followed by a stabilization of the 

lipid core, which agrees with the choice not to simulate the phenomenon of plaque rupture, more likely 

associated with a continuous growth of the lipid-rich necrotic core [44]. Moreover, in PAD, which is 

the context of the current study, atherosclerotic plaques are usually characterized by a smaller lipid core 

than in coronary artery disease, and are less subjected to rupture, which further corroborates the 

assumption on the lipid core size [43].  

 

Tissue plasticity and geometrical regularization. To accommodate the production or removal of an 

element while performing agent dynamics (“event manifestation” phase of Fig. S1), the tissue 

reorganizes by following a minimum energy principle, according to which agents move along the 

shortest path to the target site [34]. In case the active site is at the luminal or external wall border, the 

production of a cell/ECM results in the addition of a new agent, positioned in a random empty space 

surrounding the active agent itself. In same condition, if the active agent undergoes death or 
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degradation, it is simply removed from the computational domain leaving an empty space. Differently, 

in case of an agent inside the arterial wall, a pushing or pulling movement of the surrounding elements 

allows the production or removal of an element. For example, in case of element production, a site 

adjacent to the mitotic/synthetic cell is freed thanks to the movement of the surrounding elements either 

towards the lumen or the exterior, respectively if the site is in the intima or in the media/adventitia. 

Similarly, when an element is removed, its site is occupied by an inverse movement of the neighboring 

agents. Agent movement must always comply with the minimum energy principle, with the only 

exception constituted by the presence of lipid agents along the shortest path. Once they enter the intima 

layer, lipid agents must maintain their position throughout the entire simulation, thus constituting an 

obstacle to the movement of the surrounding elements. Consequently, the agent movement is 

performed along the shortest path that does not involve lipid agents, allowing preserving the lipid core.  

Figure 7 provides, on a magnified schematic portion of the arterial wall (Fig. 7A), an example of 

possible rearrangements of the tissue in case of production or removal of an agent in the intima (Fig. 

7B), media (Fig. 7C) and adventitia layers (Fig. 7D).  
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Fig. 7. Examples of tissue rearrangement. A) Schematic representation of a magnified portion of the arterial wall, with the 

intima in blue, the media in green and the adventitia in red. Examples of tissue reorganization when the active site k 

produces an element or is removed in the intima (B), media (C) and adventitia (D).  
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Finally, in order to guarantee integrity of the structure and smooth profiles at the interface, a 

regularization is applied at each time step. The regularization involves the luminal wall, the internal 

elastic lamina, the external elastic lamina and the exterior border with different algorithms depending 

on the case. The luminal and external boundaries are regularized through a continuous movement of the 

border sites until the achievement of a compact structure, which maximizes contacts among agents by 

redistributing potential spikes. The internal and external elastic laminae are instead adjusted by 

computing their average radii and performing target agent movements to obtain regular separations 

among the tissue layers while preserving the layer composition and area resulting from the computation 

of the agent dynamics. The regularization step, besides allowing obtaining a realistic structure, is of 

crucial importance to guarantee the correct functioning of the model, preventing potential degeneration 

and instabilities.  

2.1.4 Retrieval of the new 3D geometry 

Within the fully coupled framework, at the end of the ABM simulation period, 𝑁 = 10  output 

solutions, different in terms of morphology, composition and plaque features, are obtained for each of 

the 𝑀 = 10 cross-sections of the artery. Accordingly, an innovative method was developed to select 

for each cross-section the output configuration that mostly resembled the corresponding average 

solution in terms of i) lumen radius, ii) external radius, and iii) plaque size. The procedure, described 

below, allowed building, at the end of each cycle of the framework in Fig. 1, a unique 3D geometry of 

the lumen vessel, and determining the starting ABM configuration of each plane for the following cycle 

of the framework. Specifically, for each ABM solution, i = {1,…,N}, of a given M cross-section, lumen 

and external radii and plaque thickness as function of the angular coordinate 𝜗 were computed and 

indicated as 𝑅𝑗
𝑖(𝜗), with j=1,2,3, respectively. The corresponding deviation, ∆𝑖, from the average 
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configuration, 𝑅𝑗(𝜗)̅̅ ̅̅ ̅̅ ̅, was computed as defined in Eq. (9), and the ABM i-th output minimizing ∆ was 

selected. 

 

∆𝑖= ∑ ∫ 𝑤𝑗√(𝑅𝑗
𝑖(𝜗) − 𝑅𝑗(𝜗)̅̅ ̅̅ ̅̅ ̅)2𝑑𝜗,

2𝜋

0
3
𝑗=1  (9) 

where each j-th quantity is weighed by 𝑤𝑗.  

 The same criterion was applied for all the 𝑀 = 10 cross-sections and the 3D geometry was finally 

reconstructed in Rhinoceros by lofting the lumen profiles of the selected configurations.  

2.2 Sensitivity analysis 

 Sensitivity analyses of the ABM coefficients and of the ABM/CFD coupling period were performed 

and detailed below in sections 2.2.1 and 2.2.2, respectively. In the first analysis, the response of the 2D 

ABM was studied at the variation of its driving parameters with the aims of gaining further insights on 

the ABM working mechanisms and identifying, if present, the dominant parameters. In turn, the 

analysis of the coupling time was carried out on the fully coupled framework to investigate the 

sensitivity of the scheme to different frequencies of update of the hemodynamic condition, with the 

final goal of determining a suitable coupling period that limits the computational efforts without 

affecting the results.    

2.2.1 ABM sensitivity analysis 

Since the model output is largely affected by the parameter setting and none of the parameters was 

derived from experiments, a sensitivity analysis of the ABM parameters was performed. The goals 

were (i) to evaluate the oscillation of the model solution due to the uncertainty of the parameters or to 

the possible inter-subjects variability and (ii) to identify the parameters that mainly drive the ABM 

output. 
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For this purpose, first a mono-parametric and then a multi-parametric sensitivity analyses were 

carried out, as detailed below. In both analyses we defined v = {α2, α3, α5, α6, α7, IT, trylip} that consists 

in the parameter set under investigation. α1 and α4 were not included in the analysis because they were 

already calibrated in [34]. For each parameter, a triangular probability density function was defined, 

based on the parameter range and its most probable value, as shown in Tab. 1. The parameter range 

was chosen to be consistent with the physical meaning of the parameter itself, while guaranteeing agent 

behavioral probabilities between 0 and 1 when said parameter is varied and all the others are 

maintained at their default values. About the most likely value, the default value defined in the previous 

section was considered for each parameter.  

 

Tab. 1 Default value and range of the parameters for the sensitivity analysis 

Parameter Baseline value Range 

α2 1.5 (2;17) 

α3 0.1 (0; 0.5) 

α5 0.005 (0; 0.106) 

α6 10 (0; 24.46) 

α7 6 (1.84; 100) 

IT 6 (2; 17) 

trylip 10 [1; 20] 

 

Aligned with the purpose of the current analysis, all the ABM simulations were initialized with the 

same WSS profile, corresponding to the one computed at the 9th plane of the SFA-like geometry (Fig. 

2A). Indeed, being the most critical hemodynamic scenario, it activates a prompt and intense 

atherogenic response, allowing appreciating the effects of parameter variation in the ABM response 
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within just one month of follow-up. This is convenient, considering the high computational costs 

required by the sensitivity analysis. Moreover, since the focus of the analysis was the ABM, the 

hemodynamic update was not considered, but only 2D ABM simulations were run. 

Mono-parametric sensitivity analysis. The probability density function of each parameter was 

divided in five equal probability intervals and the medium value for each interval was considered. 

Moreover, two additional values were included in the analysis to explore the ABM behavior at the 

extremes of the parameter range, thus investigating seven values for each of the seven parameters, 

shown in Tab. 2. As mentioned above, in this analysis only one parameter at a time was varied, while 

keeping all the others at their default values, resulting in 49 cases, each with ten replicates.  

The results were analyzed in terms of lumen area and intimal content of SMCs, ECM and lipids. 

Indeed, the intima is the layer that is mostly affected by the pathologic wall remodeling occurring in 

atherosclerosis.  

The statistical analysis of the results was performed in Matlab. The normality of data was assessed 

using Kolmogorov-Smirnov test. After verifying that all data were not parametric, Kruskal-Wallis test 

with multiple comparison was used to detect differences among the variables. Tukey-Kramer method 

was applied for the p-value corrections, and variables were considered significantly different if p-value 

< 0.05.  

 

Tab 2. Parameter samples for mono-parametric sensitivity analysis 

Parameter Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Value 7 

α2 0.029 0.465 1.123 1.468 1.805 2.436 2.854 

α3 0.005 0.050 0.127 0.185 0.259 0.400 0.495 

α5 0.001 0.016 0.039 0.052 0.064 0.089 0.105 

α6 0.245 3.488 8.428 11.215 14.290 20.244 24.215 

α7 2.822 7.935 19.781 32.352 48.053 78.467 99.018 
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IT 2.150 3.728 6.249 7.954 10.054 14.121 16.850 

trylip 1 3 8 10 12 17 20 

 

Multi-parametric sensitivity analysis. Latin hypercube sampling (LHS) was adopted to randomly 

sample the triangular probability density function of each parameter and define the parameter set for 

the ABM simulations [45]. This method allows exploring the entire range of each parameter and 

achieves good accuracy with a limited number of simulations compared to simple random sampling 

[45]. In this study, the probability density functions of the j=7 {α2, α3, α5, α6, α7, IT, trylip} parameters 

were divided into k=10 equal probability intervals and the LHS matrix (k x j) was generated, 

identifying the k=10 ABM parameter combinations:  

 

𝐿𝐻𝑆 𝑚𝑎𝑡𝑟𝑖𝑥 =  

[
 
 
 
 
 
 
 
 
 
2.308 0.211 0.074 11.901 14.616 12.799 18
1.004 0.339 0.066 7.710 50.609 7.039 1
1.597 0.154 0.049 19.369 24.559 3.829 9
0.915 0.359 0.036 1.102 6.838 4.452 13
2.004 0.124 0.102 9.159 42.310 8.682 11
1.421 0.228 0.031 10.211 64.241 10.368 8
0.395 0.054 0.062 5.937 70.664 15.746 12
1.731 0.096 0.014 15.608 12.999 5.812 6
1.287 0.148 0.041 18.063 28.455 9.035 10
1.940 0.260 0.052 14.116 34.063 7.463 15]

 
 
 
 
 
 
 
 
 

 

For each k-th parameter set, ten simulations were run to account for the inherent stochasticity.  

Partial Rank Correlation Coefficients (PRCC) were computed to quantify the correlation of the target 

outputs (i.e. lumen area and intimal content of SMCs, ECM and lipids) with each parameter, while 

removing the effect of the remaining parameters. To compute the PRCC, the average target outputs of 

the ten replicates for each k-th simulation was considered [45].  PRCC can span from -1 to +1, 

corresponding to a perfect negative/positive correlation, respectively, and a p-value is associated to 

each correlation to assess the statistical significance. Correlations were considered statistically 

significant if the corresponding p-value was lower than 0.05.  
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2.2.2 Sensitivity analysis of the coupling time  

Back to the fully coupled CFD-ABM framework, an important decisional step was about the 

definition of the coupling time, namely at which time step the ABM simulations need to be paused to 

update the hemodynamics according to the geometrical changes. A short coupling period allows a 

better control of the model, but implies high computational time and efforts. Accordingly, a 

compromise between accuracy of the results and computational effort must be reached. To this aim, we 

developed an innovative technique based on a sensitivity analysis that was performed to assess the 

influence of the coupling time on the output, by testing three different cases on a 14 days follow-up 

period. In the first two cases, the ABM was coupled back to the CFD with a frequency of 7 and 3.5 

days, respectively, while, in the third case, the first coupling was performed after 7 days, and then 

every 3.5 days. For each cross-section, the temporal evolution of the lumen area predicted in the three 

cases was evaluated, as well as the ABM simulation mode at each coupling interval, which can be 

either physiologic or pathologic, depending on the WSS profile computed at the corresponding 

coupling step.  

3 Results  

3.1 ABM replication of homeostasis and atherosclerotic plaque generation   

The ABM accurately and robustly replicated both the homeostatic condition of a healthy artery and 

the formation of an atherosclerotic plaque, when subjected to the hemodynamic stimuli.  

Figure 8 shows a qualitative comparison between histology and the ABM output, with the latter 

selected among the N independent runs for plane 1 (Fig. 8A) and plane 5 (Fig. 8B), for visualization 

purposes. When initialized with a physiologic WSS profile, the ABM output on a 2-months simulation 

did not show any substantial deviation from the initial configuration, as depicted in Fig. 8A. The slight 
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alteration of the wall profile was within the physiological range, guaranteeing the preservation of the 

lumen and tissue layers areas. On the contrary, under atherogenic conditions, the ABM developed an 

atherosclerotic lesion with features resembling histological evidences, as shown in Fig. 8B. Both the 

ABM atherosclerotic output and the corresponding histology presented an asymmetric geometry, due to 

a focally localized thickening of the intima layer and the formation of a lipid-rich core (Fig. 8B). 

However, in the ABM output (Fig. 8B) the thick layer of fibrous intimal tissue covering the lipid core 

was not present because lipids were still migrating in the intima at the stage of the ABM configuration 

in Fig. 8B. By implementation, such layer would form once the process of lipid infiltration arrests and 

SMCs and ECM remain the only active agents, coherently with the fact that lipid core formation 

precedes the increase of fibrous tissue [46]. However, in the present work, the tissue layer separating 

the lipid core from the lumen was not fibrotic but normal intima, namely SMCs and ECM. Finally, in 

the ABM solution, maintenance of baseline thickness and composition of the media and adventitia 

layer was in good agreement with the histological image.  
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Fig. 8. Comparison between the 2-months agent-based model (ABM) outputs and histological images when the ABM is 

initialized with a physiologic (A) or pathologic (B) WSS profile. One ABM cross-section out of ten is shown for plane 1 

(A) and plane 5 (B), as example of physiologic and atherogenic hemodynamic condition, respectively. The histology in (A) 

refers to a femoral artery of a 75-years old male subject [47], while in (B) to a coronary fibrous cap atheroma of a 24-years 

old man [48].   

 

For each plane, the analysis of the temporal evolution of the ABM simulations and outputs allowed 

a further evaluation of the model dynamics and robustness, both in physiologic and pathologic mode. 

Under physiologic condition, stable trends of total cells, ECM and wall area were observed, and final 

healthy configurations were generated (Fig. S2). As shown in Figs. S2-3, although the variability 

attributable to the inherent stochasticity, a good agreement among the outputs was appreciable and 

indicative of a robust replication of homeostasis. 

Focusing on the atherogenic condition, further results are provided for the vessel cross-sectional 

plane 5 in Fig. 9. However, similar considerations apply for all the other cross-sections showing plaque 
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formation. In Fig. 9, the results of the ten ABM simulations of arterial wall remodeling of plane 5 on a 

2-months follow-up are illustrated in terms of temporal dynamics (Fig. 9A) and final ABM 

configurations (Fig. 9B). The normalized temporal trends of intimal, lumen, medial and adventitial area 

are provided, pointing out the monotonic decrease in lumen area due to the intimal thickening and the 

stability of media and adventitia layers. A considerable variation among the simulations involved the 

most active dynamics, i.e. the luminal and intimal areas, while little to negligible deviation was 

observed in adventitial and medial areas, respectively (Fig. 9A). The ABM output solutions at 2 months 

are provided in Fig. 9B for each of the a,...,j simulations. All the configurations replicated a pathologic 

wall remodeling with plaque generation, the latter shown in yellow. Although the intrinsic variability 

among the outputs due to the stochastic nature of the model, all the solutions agreed in terms of degree 

of stenosis and plaque size, location and morphology, as well as unaltered media and adventitia.  
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Fig. 9. Agent-based model (ABM) solutions for the vessel cross-sectional plane 5. A) Temporal trends of intimal, 

luminal, medial and adventitial areas along two simulated months, with the colored lines representing each of the ten 

independent simulations and the mean trend in bold black. B) Final ABM cross-sections obtained at the end of the a,…,j 

independent simulations. 
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Finally, the severity of the replicated pathology was proportional to the degree of atherogenic 

character of the WSS profile. In Fig. 10, the temporal evolution of an ABM cross-section out of ten is 

shown for planes 4, 5 and 9, providing an example of the ABM sensitivity to WSS. The percentage of 

lumen wall exposed to WSS < 1 Pa was 0.8, 16.5 and 52.6, respectively, while the lowest recorded WSS 

was 0.98 Pa, 0.69 Pa and 0.10 Pa. These WSS profiles triggered wall responses with different degree of 

intensity. Specifically, in plane 4, after two months the process of lipid infiltration was only at the 

beginning, with few lipid agents in the intimal layer, differently from plane 5 and 9, where lipids started 

migrating into the intimal layer within the first month, leading to the generation of a well discernible 

lipid core. In plane 9, the pathologic wall remodeling was faster than plane 5; moreover, although after 

one month the lipid core did not change significantly, the intima continued to grow, also thickening the 

layer between the lipid core and the lumen. At day 60, the configuration of plane 9 presented a more 

critical scenario compared to plane 5, in which the size of the lipid core was not stabilized yet and the 

lumen area was still largely preserved. Coherently with the definition and classification of advanced 

atherosclerotic plaque proposed by Stary et. al [46], the ABM configuration of plane 5 at day 60 (same 

as Fig. 8B) qualitatively resembles a type IV lesion, characterized by a dense accumulation of lipids 

without substantial lumen area change, and might progress to a condition of type V lesion, in which ECM 

is the major plaque component (as Fig. 10, plane 9 at day 60).  

The lumen stenosis at the end of the two months follow-up were 10%, 20% and 80% for plane 4, 5 

and 9, respectively.  
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Fig. 10. Agent-based model (ABM) sensitivity to wall shear stress (WSS). On the left, the initial WSS contour, on the 

right, the 2-months ABM-simulated process of wall remodeling for planes 4, 5 and 9. For each plane the most representative 

simulation output out of ten is selected and five intermediate cross-sections are provided with a 15 days time-step. 

3.2 Sensitivity analysis  

3.2.1 Mono-parametric sensitivity analysis 

Among the investigated parameters, the performed analysis pointed out the presence of one most 

influent parameter, α2, whose primary effect on the SMC and ECM dynamics propagated to the lipid 

dynamics and largely affected the predicted lumen area reduction. Figure 11 provides details on the 

model sensitivity to α2 in terms of intimal SMC (Fig. 11A), ECM (Fig. 11B), and lipids (Fig. 11C) and 

lumen area (Fig. 11D) showing, for each studied output, the temporal trends along the simulation and 

seven box plots at one month of follow-up.  
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 In the graphs reporting the time evolution of the variables, for each considered value of the 

parameter, the colored bold line represents the median trend and the associated band is the interquartile 

range (IQR 25th-75th percentiles). On the right, the corresponding box plots describe the data 

distribution of the specific variable at the end of the simulation obtained with the specific value of α2. 

Acting on SMC and ECM dynamics, α2 indirectly affected also lipid dynamics by anticipating or 

delaying the process of lipid infiltration in the intima, whose starting moment is clearly evident in Fig. 

11C and corresponds to the point on the x-axis at which a number of lipids greater than 0 is first 

observed. Specifically, the greater α2, the more SMC proliferation and ECM production were 

promoted, with an observed increase in such event rates and, obviously a higher intimal content of 

SMC and ECM at the end of the simulation (Figs. 11A-B). In turn, an augmented SMC proliferation 

and ECM production led to a faster thickening of the intima and, as consequence, to an earlier invasion 

of lipids in the wall (Fig. 11C). As expected, the starting point for lipid infiltration influenced the 

number of lipids in the intima observed at one month of follow-up. However, a saturation of the lipid 

content was observed with α2={2.436; 2.854}, due to a control on the lipid core size introduced in the 

lipid dynamics algorithm. Moreover, as natural consequence of the large effect that α2 has on the agent 

dynamics, the lumen area was considerably influenced by such parameter (Fig. 11D). An increase in α2 

enhanced lumen area reduction rate, leading to the most critical scenario (i.e. smallest final lumen area) 

associated with the highest α2=2.854. Significant differences among the data distributions associated 

with different values of α2 were detected for all the studied outputs (p<0.05), and details on the multiple 

comparisons are provided in the supplementary material (Tab. S1). Finally, the results shown by the 

box plots pointed out a clearly monotonic relationship between α2 and the studied outputs.  
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Fig. 11. Agent-based model (ABM) sensitivity to α2. ABM intimal content of (A) smooth-muscle cells (SMC), (B) 

extracellular matrix (ECM), (C) lipid and (D) lumen area at the variation of α2. For each target output, the temporal trends 

along one simulated month and box plots of the distribution at the end of the simulation are provided, with the colors 

corresponding to different values assumed by α2. 
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The graphs of the temporal dynamics and box plots of each considered output at the variation of the 

parameters {α3, α5, α6, α7, IT, trylip} are provided in the supplementary materials with the same 

modalities used for α2, see Figs. S4-9 and Tabs. S2-5. Within the studied range, parameters α3 and α7 

did not show any significant influence neither in the agent dynamics, nor, as consequence, in the lumen 

area (Figs. S4 and S7). 

While the global model output, represented by the lumen area, was affected almost exclusively by 

α2, which emerged as the driving parameter, the subset of parameters {α5, α6, IT, trylip} was identified 

to significantly influence lipid dynamics with minor or no effects in the other model outputs. Figure 12 

provides the lipid temporal dynamics along one month of simulation and box plots of the final intimal 

lipid content to the variation of the parameters α5 (Fig. 12A), α6  (Fig. 12B), IT (Fig. 12C) and trylip 

(Fig. 12D). As regards α5, while in the range between 0.039 and 0.105, no significant differences in the 

final lipid content were detected, α5 significantly affected that output when decreased below 0.039, 

with almost inhibition of the lipid intimal infiltration for α5=0.001. The effect of α5 on the lipid 

dynamics slightly propagated to the ECM dynamics, producing a reduced final ECM content in the 

intima for α5=0.016 and α5=0.001 (p<0.05) (Fig. S5 and Tab. S2). Similarly to α5, also α6 had an effect 

on the lipid dynamics only when decreased to 0.245, although in this case a slight reduction of the lipid 

infiltration rate was produced with a minor consequence to the final lipid content, compared to α5 (Fig. 

S6 and Tab. S3). Furthermore, as expected, IT largely affected the final number of lipids, by controlling 

the starting point of the infiltration process. However, no propagation to the other dynamics was 

observed, except for a single significant difference recorded in the final content of ECM between 

IT=3.728 and IT=16.85, as shown in Fig. S8 and Tab. S4. Additionally, the number of chances for a 

lipid to invade the intima, trylip, acted on the infiltration rate, by increasing the probability that at each 

time step a lipid successfully enters. As for IT, only a significant difference was recorded in the final 
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SMC content, between trylip=3 and trylip=20 (Fig. S9 and Tab. S5). As previously mentioned for α2, a 

saturation of the lipid content may occur due to a control on the maximum number of lipids.  

Finally, none of these parameters had an influence on the lumen area, meaning that lumen area 

reduction is mostly due to an augmented SMC proliferation and ECM production, rather than lipid 

accumulation in the intima.  
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Fig. 12. Lipid dynamics sensitivity to agent-based model (ABM) parameters. ABM intimal content of lipid at the 

variation of α5 (A), α6 (B), IT (C) and trylip (D). For each parameter the temporal trend of lipids along one simulated month 

and box plots of the distribution at the end of the simulation are provided, with the colors corresponding to different values 

assumed by the parameter. 
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3.2.2 Multi-parametric sensitivity analysis 

Figure 13 shows the PRCCs between the target model outputs and each input parameters {α2, α3, α5, 

α6, α7, IT, trylip}. Coherently with the mono-parametric sensitivity analysis, the final intimal content of 

SMC, ECM and lipids and the final lumen area were the investigated outputs. Although only values of 

PRCC associated with a p<0.05 were considered as statistically significant, also PRCC values with 

p≈0.06 were taken into account as weakly significant. In accordance with the previous analysis, α2 was 

identified as the most influencing parameter with significant highly positive correlations with the final 

amount of ECM and lipids in the intima and a significant highly negative correlation with the lumen 

area (p<0.05). α2 highly correlated also with the final content of SMC, but associated with a weak 

significance (p=0.068). Moreover, the remaining parameters were not found to significantly correlate 

neither with SMC and ECM intimal content, nor with the final lumen area, although a slight influence 

was recorded in some cases by the mono-parametric analysis. Finally, high correlations with weak and 

high significance were detected between α6, IT, trylip and the final content of lipids, with α6 and trylip 

exhibiting positive correlations (weakly and highly significant, respectively), while IT a negative 

weakly significant one.  
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Fig. 13. Main results of the multi-parametric sensitivity analysis. Partial Rank Correlation Coefficients (PRCC) of the 

analyzed agent-based model (ABM) parameters and the final intimal content of (A) smooth-muscle cells (SMC), (B) 

extracellular matrix (ECM), (C) lipids and (D) the final lumen area. Significant PRCC are indicated with (*) for p<0.05 and 

(*-) for p≈0.06.  
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3.2.3 CFD-ABM coupling period 

As regards the temporal trend of the lumen area along the total 14 days of simulation, no differences 

resulted from the choice of a smaller or larger coupling period. Indeed, for each plane, the standard 

deviations of the curves obtained with the three case studies were connected or partially overlapped, 

meaning that the error committed by adopting the greatest coupling time (i.e. 7 days) was in the range 

of the noise of the stochastic ABM simulations. However, two different scenarios emerged in terms of 

influence of the coupling period on the ABM simulation mode, which can be physiologic or pathologic 

depending on the WSS profile computed at each coupling step. Indeed, while for planes where the 

minimum WSS values were far from 1 Pa, there was complete agreement in the ABM simulation mode 

along the 14 days (Fig. 14A), discordance was observed in planes where the lowest WSS values were 

close to 1 Pa (Fig. 14B). In the last scenario, the shortest coupling period (i.e. 3.5 days) allowed 

catching switches between the physiologic and pathologic mode, ignored by the other two cases (see 

corresponding tables in Fig. 14B). Being the WSS profile of those planes very close to the 

physiologic/pathologic threshold, even a slight modification of the fluid-dynamic domain, obtained for 

example after 3.5 days of remodeling, could cause an oscillation from physiologic to pathologic 

condition and vice-versa. On the contrary, in the first case scenario, only a great alteration of the fluid-

dynamic domain could change the physiologic and atherogenic hemodynamic condition of planes 1 and 

9, respectively.  

The average time of computation of the ABM was about 30 minutes per one simulated day. A total 

of 20, 21.5 and 20.5 hours were needed to generate the solution of the fully coupled framework at day 

14, when a coupled period of 7 days, 3.5 days and 7 to 3.5 days was adopted. The greater the number of 

performed coupling steps, the higher the time consumption, due to the repetition of the CFD model 

preparation and subsequent CFD simulation.  
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Fig. 14. Significant results of the sensitivity analysis of the coupling period. Results are shown for four exemplifying 

planes with WSSmin far from 1 Pa (A) and planes with WSSmin close to 1 Pa (B), corresponding to two different scenarios. 

For each plane the output is analyzed in terms of normalized lumen area over time (curves) and simulation mode, i.e. 

physiologic/pathologic, along the 14 days of follow-up, for each case study a) coupling every 7 days b) coupling every 3.5 

days and c) first coupling after 7 days and then every 3.5 days.  
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4 Discussion  

Several computational studies have already used ABMs to simulate vascular adaptation processes in 

response to the alteration of the baseline working conditions [16,17,26,27,34,18–25]. In particular, in 

[16–24] ABMs of the arterial wall remodeling following stenting procedure were implemented to 

investigate the mechanisms of in-stent restenosis. However, in those works, the intervention procedure 

was simulated on a healthy artery, thus neglecting the underlying pathology which, instead, we 

consider to have a role in the final outcome. Herein we presented a novel framework that simulates the 

process of atherosclerotic plaque development in relation to the hemodynamics by coupling 2D ABM 

to CFD simulations in a 3D vessel geometry. Furthermore, we performed a detailed sensitivity analysis 

to identify the driving coefficients of the coupled model, thus laying the foundations for a future 

quantitative calibration and validation based on experimental and/or clinical data, which were not 

addressed in the present work.  

The strengths of the present framework are (i) the inclusion of important biological aspects related 

to the disease, i.e. cellular and extracellular dynamics, and (ii) the definition of a loop where molecular 

and tissue levels are strictly interconnected, and the effect of a perturbation applied to one node is 

directly reflected on the other ones. The framework is modular and versatile. After a proper 

experimental calibration and subsequent validation, it might allow the implementation of additional 

phenomena, such as drug therapies or intervention procedures, on a model of diseased artery. For 

instance, the effect of anti-proliferative or LDL-lowering drugs (e.g. statins) might be investigated, 

either by introducing advection-diffusion-reaction equations for those species, or by including them in 

the model as agents. In both cases, the current agent rules should be modified to take into account the 

mutual influence between their dynamics and the newly introduced factor/agent. In this context, it 

might be possible to study a potential plaque stabilization or regression [49]. Moreover, the model 
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might serve to create a virtual population of patients with different patterns (e.g. size and location) of 

lipid core, degree of stenosis and, once implemented, fibrotic cap and calcifications. Indeed, although 

until now the model only includes SMCs, ECM and lipid agents, implementation of calcifications is 

currently under investigation. This, together with further improvements and an experimental validation, 

might allow investigating the effects of such patterns on the lesion progression and on the intervention 

outcomes. Finally, by using previously developed in house techniques [14,50], the framework might be 

also informed with monocyte related gene expression data following a specific treatment. All these 

aspects are thought to represent a turning point in terms of ability to predict the treatment outcome.  

To the best of our knowledge, the only work that partially resembles the proposed framework is that 

by Bhui et al. [27] in which a 3D ABM was coupled to CFD simulations to simulate the WSS-driven 

leukocyte trans-endothelial migration and subsequent plaque formation. However, differently from 

their model, in our ABM plaque volumetric growth was mainly due to SMCs proliferation, ECM 

production and lipid accumulation (Figs. 8B, 9B and 10), rather than leukocytes infiltration. This is in 

accordance with the study of Doran et al. [51], in which a key role to SMCs was recognized, and, the 

research of Stary et al. [46], who identified ECM as the major extracellular component of 

fibroatheromas after lipids. Finally, while in the model of Bhui et al. [27] wall remodeling was 

simulated according to Glagov’s phenomenon [52], in the present work, for simplicity, only the 

stenotic effect of plaque growth was considered. Consequently, a monotonic trend of lumen area 

reduction was observed in our model (Fig. 9A), while, according to [52], a compensatory enlargement 

of the vessel wall should preserve lumen area in the early stages of plaque formation.  

Although being able to capture some major aspects of the pathologic wall remodeling associated 

with atherosclerosis, as shown in Figs. 8, 9 and 10, the present ABM does not replicate the formation of 

a fibrotic cap. However, instead of fibrous tissue, it simulates a thickening of the intima (e.g. increased 

SMCs and ECM) between the lipid core and the lumen in advanced stages of the plaque, as in Fig. 10.  
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In view of a future implementation of structural (i.e. mechanical) aspects, it might be important to 

distinguish the fibrotic cap, since it is a key factor in determining plaque stability/instability [3]. 

Finally, the ABM successfully captured wall response to different WSS stimuli (Fig. 10). Although 

endothelial cells were not included in the ABM, the contribution of the WSS on the endothelial 

dysfunction, subsequently triggering the process of plaque formation, was considered through the 

implementation of a diffusion equation for the inflammation. Similarly, in previous works aimed at 

investigating the phenomenon of in-stent restenosis [18,19], the endothelium was not explicitly 

modeled, but a method to estimate the nitric oxide was used, thus considering its influence in SMCs 

activity and the effect WSS exerts on it.  

The sensitivity analysis performed on the ABM provided insights in the working mechanisms of the 

model, by identifying the most influencing parameters, the interactions among the agent dynamics and 

the contribution of SMC, ECM and lipid dynamics in the lumen area change. Both the mono-

parametric and multi-parametric sensitivity analyses recognized α2 (i.e. weight of the effect of 

inflammation in cell/ECM dynamics) as the driving parameter. From a designing perspective, this is the 

most important finding, suggesting that a future calibration of α2 will reduce most of the epistemic 

uncertainty associated with the model, thus improving the accuracy of the results. Moreover, in a 

general view, knowing in advance which is the most important parameter to be calibrated allows 

planning experiments optimized for the specific purpose, thus avoiding a waste of time and resources.  

The reasons why α3 did not show any contribution probably lie in the considered range and in the 

fact that the term (1 + 𝛼3𝑛𝑙𝑖𝑝) only involves a minor portion of SMC/ECM agents, thus constituting a 

local factor that does not produce a net effect in the cell/ECM dynamics. As regards the lipid dynamics 

and its driving parameters, the performed sensitivity analysis pointed out some crucial aspects, 

previously unknown. First, the saturation of the lipid infiltration rate for α5>0.039 and α6>3.488 while 

keeping all the other parameter fixed, is due to the fact that, with trylip=10 chances, the probability is 
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already enough to allow a lipid to enter at each time step. As a consequence, if only one parameter at 

time is varied, trylip is the one that mostly controls the rate of lipid accumulation in the intima. This 

parameter may represent the global endothelium permeability to lipids. Indeed, while the probability of 

a single endothelial site to allow a lipid to enter the wall is computed as expressed by Eq. 8, the number 

of sites at each time step potentially favorable for lipid entry constitutes a global measure that largely 

control the phenomenon. However, when the combined effects of the parameters were investigated, 

also the contribution of α6 was identified, confirming what previously stated and recognizing the 

potentialities of multi-parametric sensitivity analysis.  

Due to the high computational cost of the ABM (mean computation time of 25.87 hours for a 2-

months simulation) the LHS/PRCC sensitivity analysis was performed on a small sample size and 

results were obtained by running 100 ABM simulations. Consequently, only few correlations were 

identified as statistically significant. However, we decided to take into account also high PRCC 

associated with p≈0.06 because we attribute the inability to get more significance for those high 

correlations to the small sample size. Indeed, such correlations corresponded to parameters that were 

found to significantly affect that specific output in the mono-parametric sensitivity analysis. On the 

contrary, high p-values were associated with low PRCC values and results of the mono-parametric 

analysis revealing no relationship between said input and output. A low efficacy of the PRCC is, 

indeed, associated with non-monotonic input-output relationships [45].  

To obtain more reliable correlation estimates between each output and input, it is necessary to 

hugely increase the sample size, implying large computational effort. For this purpose, the Matlab code 

of the ABM might be converted in C, which is thought to extremely reduce the computation time for 

each ABM simulation. This will also allow extending the sensitivity analysis to more input parameters 

that were not considered in the present work, namely those related to the diffusion equation for the 

inflammation and the threshold on the WSS condition. In particular, the WSS threshold of 1 Pa is a 
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strong assumption which is thought to largely affect the output of the model. In fact, in case the 

threshold was lowered to 0.5 Pa, for example, plane 5 in Fig. 10, whose minimum WSS is 0.69 Pa, 

would remain in physiologic condition as plane 1, and plane 9 would develop a less severe plaque.  

Moreover, in a future perspective, the combination of sensitivity analysis and inverse problem solution 

proposed by Casarin et al. [53,54] can be a valuable tool to further narrow the range of optimal setting 

of the ABM model coefficients.  

The sensitivity analysis on the coupling period revealed that a shorter coupling time should be 

preferred until the ABM simulation mode for each plane stabilizes, namely until the WSS profile 

become clearly pathologic/physiologic (i.e. far from 1 Pa) or switching behaviors have not been 

detected for enough time. However, in this work only three cases of coupling period were investigated. 

The automation of the fully coupled CFD-ABM framework will reduce the user time consumption in 

the coupling processes, namely for the generation of the CFD model, the CFD simulation settings and 

the initialization of the subsequent ABM simulations. Once automated, a more extensive sensitivity 

analysis on the coupling period will be possible, as well as a sensitivity analysis on the number M of 

2D cross-sectional planes, which was not addressed in the present work, although considered important 

to determine the effect of the spatial resolution on the results. Finally, the automation of the framework 

and the conversion of the Matlab code in C, will facilitate the calibration of the ABM parameters on 

patient-specific geometries and the future validation, which otherwise would require excessive 

computational efforts and time. 

 

5 Conclusions 

  In this methodological work, we developed a multiscale CFD-ABM framework, able to capture the 

mutual interaction between hemodynamics and arterial wall remodeling in atherosclerosis. The 

https://doi.org/10.1016/j.compbiomed.2020.103623


 

Accepted manuscript at https://doi.org/10.1016/j.compbiomed.2020.103623 

49 

 

framework successfully simulated plaque formation in areas affected by disturbed hemodynamics of an 

idealized SFA model and updated the fluid dynamics following plaque growth.  

Qualitatively, the ABM replicated the main morphological and compositional changes involved in 

atherosclerosis, generating a pathologic arterial wall configuration coherent with histological images. 

Quantitatively, the output of the model was associated with uncertainty, which was related to its 

stochasticity and the input parameters. Replicating the ABM simulations N=10 times keeping all the 

parameters fixed allowed having an estimation of the aleatory uncertainty while the combination of 

mono-parametric and multi-parametric sensitivity analyses provided an estimation of the output 

oscillation due to uncertainty in the input parameters.  

The sensitivity analysis of the ABM parameters revealed that the lumen area reduction, which is the 

most clinically relevant effect of plaque formation, was exclusively governed by the weight of the 

WSS-induced inflammation, represented by α2, which acts on the SMC proliferation and ECM 

production in the intima layer. As a consequence, α2 was responsible for most of the uncertainty of the 

model output. This finding suggests that the identification of the exact value for α2 will be a turning 

point towards the definition of a simplified, but reliable model. Other parameters were found to 

influence the process of formation of the lipid core, without affecting neither SMC/ECM dynamics, nor 

the lumen area change. These parameters, having a local effect, are less important to be calibrated, but 

may express the inter-variability of the lipid core size among individuals.  

In conclusion, the results of the sensitivity analysis lay the foundations for a future parameter 

calibration and model validation based on experimental and/or clinical data, which is required for a 

more systematic assessment of the reliability and usability of the present multiscale CFD-ABM 

framework of atherosclerosis.  
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