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Robust tuning of geometric attitude controllers for multirotor
Unmanned Aerial Vehicles

Davide Invernizzi ∗, Simone Panza †, and Marco Lovera ‡

Politecnico di Milano, Milan, Italy, 20156

In recent years there has been a significant body of literature proposing nonlinear attitude

control laws for small-scale multirotor UAVs, motivated by the high maneuverability of these

platforms. While tracking trajectories characterized by fast and large attitude changes makes

the control problem intrinsically nonlinear, most of the works proposing nonlinear designs is

concernedwith establishing their stabilizing properties, often deducedby referring to simplified

dynamical models, but limited attention has been devoted to performance. As a consequence,

less satisfactory results than expected are typically achieved in experiments and the controller

gains must be adjusted with trial and error procedures to obtain good performance. In

this paper we propose a model-based tuning method that exploits the cascade structure of the

attitude dynamics and that needs only single-axis identified linearmodels of the angular velocity

dynamics to be applied. The tuning of the controller gains is carried out on the linearized closed-

loop systemwith structured �∞ synthesis which allows one to enforce robustness against model

uncertainty in a systematic way and to achieve a desired level of performance in nominal

conditions. The approach is validated by tuning the gains of a novel P/PID-like cascade, which

has been developed in the framework of geometric control theory. A thorough analytical

comparison of the proposed design with a geometric PI-like controller borrowed from the

literature is complemented with experiments conducted on a small quadrotor UAV.

Nomenclature

$ � = origin of the inertial frame.

$� = origin of the body frame attached to the UAV.

18 ∈ S2 = i-th unit vector of the body frame.

48 ∈ S2 = i-th unit vector of the inertial frame.

G ∈ R3 = position of the UAV body frame with respect to $ � resolved in the inertial frame [m].

' ∈ SO(3) = rotation matrix describing the attitude of the UAV.
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E ∈ R3 = velocity of the UAV at $� [m/s].

l ∈ R3 = body angular velocity of the UAV.

g2 ∈ R3 = torque at point $� associated with the propellers action [Nm].

g4 ∈ R3 = torque at point $� associated with exogenous actions [Nm].

5?8 ∈ R3 = force delivered by the i-th propeller [N].

g?8 ∈ R3 = torque delivered by the i-th propeller at the i-th rotor hub [Nm].

)8 ∈ R≥0 = magnitude of 5?8 [N].

lA8 ∈ R>0 = angular rate of the i-th propeller [rad/s].

¤lA8 ∈ R = angular acceleration of the i-th propeller [rad/s2].

Y8 ∈ {−1, 1} = rotation direction of the i-th rotor (positive counterclockwise).

: 5 ∈ R>0 = thrust coefficient of the rotors [kgm].

:g ∈ R>0 = torque coefficient of the rotors [kgm2].

f ∈ R>0 = ratio between : 5 and :g .

G1A8 ∈ R3 = position vector from the airframe origin to the hub of the i-th rotor disk [m].

W8 ∈ [0, 2c) = angle of the between 11 and the i-th arm in the counterclockwise direction [rad]

ℓ ∈ R>0 = distance between the UAV center of mass and the rotors hubs [m]

� ∈ R3×3 = inertia matrix resolved in the body frame [kgm2]

�A8 ∈ R3×3 = inertia matrix of the i-th rotor resolved in the rotor frame [kgm2]

( ∈ R3×4 = First moment of inertia resolved in the body frame [kgm]

< ∈ R>0 = mass of the UAV [kg]

I. Introduction

Attitude control for multirotor Unmanned Aerial Vehicles (UAVs) is of fundamental importance since their flying

qualities depend significantly on the performance and stabilizing properties of their attitude controllers, the

design and tuning of which must be carried out in a sensible way. Guaranteeing good attitude tracking performance is

fundamental to cope with the underactuated nature of UAVs with coplanar propellers, in which the attitude dynamics is

used to stabilize the position dynamics. Depending on the application, requirements may vary and different modeling

and control law design tools have to be considered. If one is concerned with applications such as inspection, surveillance,

mapping, video and photography then linear modeling and control design methods are suitable and allow handling

stringent performance requirements in a systematic way. On the other hand, when considering maneuvers involving

significant changes in attitude such as in perching operations on inverted surfaces with high precision and repeatability,

in passing through narrow, vertical gaps or in fast flight conditions with dynamic obstacle avoidance, linear controllers
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may have deficiencies and yield poor performance or, even worse, fail to stabilize the vehicle.

While model-based or data-driven approaches have been presented to tune linear attitude controllers for multirotor

UAVs [1, 2], for nonlinear control laws no systematic approaches exist, to the best of our knowledge. Global tracking

properties of such control laws are usually derived by treating multirotor UAVs as rigid bodies [3–6] while robust

nonlinear designs are typically limited to the case of uncertain inertia matrix [7] and constant exogenous disturbances [8].

However, the rigid body model fails to be representative of the actual dynamics of a multirotor UAV, which includes the

motor dynamics, aerodynamic effects, measurements noise and delays, as can be seen by inspecting identified models of

the attitude dynamics in near hovering conditions [9]. It is therefore inevitable that the tuning phase is challenging:

starting from initial values obtained on a simulation platform, gains are adjusted with trial and error procedures on

the real platform [8]. Clearly, to achieve satisfactory performance and to save time, the simulation platform must

be sufficiently accurate. This, in turn, asks for the identification of several parameters, an activity which is not only

time-consuming but prone to error as well. Even when a reasonably accurate simulation model is available, the tuning

procedure on the simulation platform is still based on trial and error and therefore sensitive to the control designer

experience. An alternative solution to deal with such issue is to develop nonlinear adaptive schemes which, nonetheless,

results in a more complex control law [10–12].

On the contrary, the approach presented in this work is an attempt to simplify the tuning procedure of nonlinear

control laws for attitude control of small-scale multirotor UAVs by exploiting the cascade structure of the attitude motion,

in which nonlinearities are mostly associated with the kinematics while the main source of uncertainties is the angular

velocity dynamics. In particular, the proposed tuning method requires only the identification of single-axis linear models

of the angular velocity dynamics. This is motivated by the fact that gyroscopic terms have a limited influence on the

dynamics of small-scale UAVs and together with other nonlinear effects they can be treated as disturbances to be rejected

by the control system. Identified models, although linear and decoupled, allow capturing more accurately the angular

velocity dynamics which includes the motor dynamics as well as aerodynamic effects. By referring to the linearized

closed-loop system obtained with the identified models, robust tuning techniques can be employed to tune controller

gains. In this work, structured �∞ [13] has been employed since it was proved to be of great practical usefulness and

has been widely adopted in aerospace applications, in particular on rotorcraft [14–16]. Specifically, it may be used

to enforce robustness against model uncertainty and requirements encoded in the frequency domain can be used to

achieve tight performance. By referring to identified models of a small quadrotor UAV, the proposed approach has been

validated by tuning the gains of a novel P/PID-like cascade architecture, which has been developed in the framework of

geometric control theory (see [17] for an introduction to geometric control). A PI-like geometric controller inspired

by [18] has been considered as well for comparison purposes. Both controllers are globally well-defined, simple to

implement and, thanks to the robust tuning procedure, with guaranteed performance in near hovering conditions. This

claim has been further verified by conducting experiments on a small quadrotor UAV: the tests confirmed that the
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behavior of the control architectures is consistent with the closed-loop sensitivity functions obtained with the identified

model. Furthermore, the controllers performed with satisfactory results also when large amplitude references were

required. While the cascade controller showed excellent results in aggressive set-point tracking, when large and constant

attitude changes are commanded, the PI-like controller provided good trajectory tracking performance.

There are three main contributions in this work, which can be summarized as follows. Firstly, a novel nonlinear

cascade architecture, capable of high performance, has been presented and its stability and tracking capabilities

have been studied and discussed in details. Secondly, a systematic approach to tune the gains of nonlinear attitude

control architectures has been presented. The approach requires only single-axis identified models of the angular

velocity dynamics and allows recovering high performance in near hovering conditions typical of linear control designs

while guaranteeing, by design, desirable tracking properties in a broader range of operations. Finally, the proposed

analysis, complemented with experimental results, has allowed showing strong points and deficiencies of the considered

architectures and their suitability in relation to the considered applications.

II. Notation
Notation. In this paper Z denotes the set of integers, R (R>0,R≥0) denotes the set of real numbers (positive,

nonnegative real numbers), R= denotes the =-dimensional Euclidean space and R<×= the set of < × = real matrices.

With a slight abuse of notation we use the same notation for a vector G ∈ R= and its representation as column matrix in

some basis. The canonical basis in R= is denoted as 48 := (0, . . . , 1, . . . , 0) for 8 ∈ {1, ..., =} and the identity matrix in

R=×= is denoted as �= := [41 · · · 48 · · · 4=]. Given G = (G1, . . . , G=) ∈ R=, ‖G‖ :=
√
G2

1 + . . . + G
2
= is the corresponding

Euclidean norm. Given � ∈ R=×=, we use the compact notation � ∈ R=×=
>0 (R

=×=
<0 ) to represent a positive (negative)

definite matrix. The set SO(3) := {' ∈ R3×3 : ') ' = �3, det(') = 1} denotes the third-order Special Orthogonal

group while S= := {@ ∈ R=+1 : ‖@‖ = 1} denotes the =-dimensional unit sphere. The hat map ·̂ : R3 → so (3), given by

(l1, l2, l3) ↦→



0 −l3 l2

l3 0 −l1

−l2 l1 0


, (1)

for any l := (l1, l2, l3) ∈ R3, defines an isomorphism between R3 and the vector space of third-order skew-symmetric

matrices, i.e, so (3) := {, ∈ R3×3 : , = −,) } with the corresponding inverse given by the veemap (·)∨ : so (3) → R3.

For l̂ ∈ so(3), one has l̂H = l × H, ∀H ∈ R3, where × is the cross product. The notation 'D (\) := exp(\=̂) is used to

represent the rotation matrix corresponding to a rotation about a unit axis D of an angle \ ∈ R.

4



Fig. 1 Example of a multirotor UAV and definition of the frames.

III. The attitude dynamical model of multirotor UAVs
A multirotor UAV is an aerial vehicle made by a central body and n arms, each of which carries a propeller group.

The propeller groups consist of a motor and a propeller and are in charge of producing the wrench (force and torque)

required to control the motion of the UAV (Figure 1). The configuration of the UAV can be identified with the motion of

a body-fixed frame F� := ($�, {11, 12, 13}) with respect to a reference frame F� := ($ � , {81, 82, 83}), where 1 9 and

8 9 ( 9 ∈ {1, 2, 3}) are unit vectors forming right-handed orthogonal triads and $�, $ � are the origins of the body and

reference frame, respectively. The position vector from $ � to $�, resolved in F� , is denoted hereafter as G ∈ R3. We

denote ' := [ 11 12 13 ] ∈ SO(3) the rotation matrix describing the attitude of the UAV, where 18 are the body axes

resolved in F� .

By referring to the body frame, the attitude motion is described by the following set of equations:

¤' = 'l̂ (2)

� ¤l = −l ×
(
�l +

=∑
8=1

�A8 43 ¤lA8

)
+

=∑
8=1

�A8 43 ¤lA8 + ( ¤E + g4 (', G, l, E, 6, C) + g2 (3)

where � = �) ∈ R3×3
>0 is the inertia matrix with respect to $�, ( ∈ R3×3 is the first moment of inertia, �A8 = �)A8 ∈ R

3×3
>0

such that '43 (U)�A8')43
(U) = �A8 ∀U ∈ R is the inertia matrix of the i-th propeller, l ∈ R3 is the body angular

velocity, E ∈ R3 is the translational velocity, g2 , g4 ∈ R3 are the control and disturbance torque, respectively, and

lA := (lA1 , . . . , lA= ) ∈ R≥0 × . . . ×R≥0 contains the angular rates of the propellers. The control torque g2 delivered by

the propellers at $� is given by:

g2 :=
=∑
8=1

G1A8 × 5?8 + g?8 (4)

where 5?8 and g?8 ∈ R3 are, respectively, the force and torque delivered by the i-th rotor and G1A8 ∈ R3 is the position
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vector from $� to the hub of the i-th rotor disk, all resolved in F�. In this work we rely on the widely adopted

quadratic aerodynamic model for the propeller force and torque generation mechanism [19]. According to this model,

the components in the propeller frame of the force and torque delivered by i-th propeller are:

5?8 := : 5 l2
A8
43 (5)

g?8 := −Y8:gl2
A8
43, (6)

where : 5 , :g ∈ R>0 are the thrust and torque coefficient, respectively, which can be obtained experimentally in static

conditions, and Y8 ∈ {−1, 1} defines the rotation direction of the i-th rotor. Note that this model is valid when considering

small deviations from the hovering condition [19] although it has been successfully used in control laws for highly

acrobatic maneuvering, as documented by experimental works [20, 21]. By defining

)8 := : 5 l2
A8

8 = 1, . . . , =, (7)

the i-th propeller force and torque can be written as 5?8 = )843 and g?8 = −Y8f)843, respectively, where f := :g/: 5

is a positive constant. Then, when assuming that there are sufficiently fast low-level controllers to track any desired

angular rate lA8 , D := ()1, . . . , )=) ∈ R≥0 × . . . × R≥0 can be considered as the input variable for control design. If the

rotor hubs are placed equidistantly from the center of mass, each making an angle W8 ∈ [0, 2c) with respect to 11, the

control torque (4) can be written as a map ()1, . . . , )=) ↦→ g2 ()1, . . . , )=), given by the following expression:

g2 ()1, . . . , )=) :=
=∑
8=1

(
G1A8 × )843 − Y8f)843

)
(8)

where G1A8 := ℓ'43 (W8)41 with ℓ being the distance between the rotor hubs and $�. Finally, the total force is delivered

by the propellers along the positive direction of the third body axis, according to the following map:

52 ()1, . . . , )=) :=
=∑
8=1
)843. (9)

Note that )8 appears linearly in (8)-(9). Hence, by defining )2 := 5 )2 43, the input mapping for a multirotor UAV can be
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compactly written in matrix form as:



)2

g21

g22

g23


=



1 · · · 1

ℓ sin(W1) · · · ℓ sin(W=)

−ℓ cos(W1) · · · −ℓ cos(W=)

−Y1f · · · −Y=f





)1

...

)=


=:


" 5

"g




)1

...

)=


(10)

where " 5 ∈ R1×= and "g ∈ R3×= are the force and torque input mapping, respectively. It is worth remarking that since

we have employed an approximated model in (5)-(6), an additional disturbance torque Δg4 (D) :=
∑=
8=1 G1A8 ×Δ 5?8 (D) +

Δg?8 (D) should be included in equation (3) to account for modeling errors. The remaining part of the external torque is

related to the aerodynamic interaction of the UAV main body and arms with air and gravity terms, not reported here for

the sake of conciseness. Therefore, a general model for the attitude dynamics would be described by:

� ¤l = −l ×
(
�l +

=∑
8=1

�A8 43 ¤lA8

)
+

=∑
8=1

�A8 43 ¤lA8 + ( ¤E + g4 (', G, l, E, 6, C) + "gD + Δg4 (D). (11)

Note that lA and ¤lA depend upon input D and that in general, the exact expression of g4 is difficult to find. The model

gets even more complicated when one considers the dynamics of the motors which are usually considered as saturated

first order low-pass filters with time constant g< and time delay C3:

D = sat)"
)<

(
1

g=B + 1
4−BC3D3

)
= sat)"

)<
(�< (B)D3) , (12)

where sat)"
)<
(G) := min(max()<, G), )" ) is the standard saturation function applied component-wise to G and

)" � )< ≥ 0 are the upper and lower saturation levels on the propeller thrust.

IV. The attitude tracking problem
As can be seen from equation (10), the coplanar propellers UAV is an underactuated mechanical system: no force

can be instantaneously delivered in the plane spanned by 11, 12. To control position, the standard approach assumes full

actuation of the attitude subsystem to stabilize the position error dynamics. In practice, a control law for g2 is designed

to tilt the body vector 13 in the direction of the force required for position tracking. At the same time, the magnitude

of the control force )2 is adjusted to match the magnitude of the required force and then the propellers thrust (input

D) is computed by inverting (10). Therefore, the design of control laws for attitude tracking becomes a fundamental

ingredient to ensure the stability of the overall system. If one is not interested in position tracking, the fully actuated

rotational dynamics can be exploited to perform arbitrary rotational maneuvers.
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As shown in the previous section, the attitude dynamics of multirotor UAVs is fairly complex and is coupled with

the translational dynamics. For control design purposes, some simplifying assumptions are considered. In particular, it

is often [19] assumed that the origin $� of the body-fixed frame F� coincides with the center of mass of the UAV and

that the body axes 18 are principal ones. Furthermore, the inertial and gyroscopic terms related to the spinning of the

rotors are assumed to be negligible (small rotor inertia �A8 ) together with aerodynamic effects and Δg4 (D). Under these

assumptions, the attitude dynamics reduces to

� ¤l = −l × �l + "gsat)")< (�< (B)D3) . (13)

Since " is full row rank by design, one can exploit the allocation D3 = "+
[
) 32
g32

]
, where D3 := ()31 , . . . , )

3
= ) collects

the thrusts corresponding to desired )32 , g32 to be provided by the controller and "+ = ") ("") )−1 is the right inverse

of " , to obtain:

� ¤l = −l × �l + "gsat)")<
(
�< (B)"+

[
) 32
g32

] )
. (14)

In most operating conditions, it is possible to obtain feasible thrusts D3 (i.e., within the bounds defined by (12))

for some bounded torque and thrust according to the (right) pseudo inverse of (10). In such a case, since

"gsat)")<
(
�< (B)"+

[
) 32
g32

] )
= �< (B)"g"

+
[
) 32
g32

]
= �< (B)g32 , the simplified model becomes

� ¤l = −l × �l + �< (B)g32 (15)

where g32 is the input variable to be assigned by control design.

Remark 1 Most of the works in the literature assume the motor dynamics be sufficiently faster than the expected attitude

dynamics and consider �< (B) = 1 for control design purposes: according to this assumption, the attitude dynamics of

a multirotor would be the one of a fully actuated rigid body.

Remark 2 For small scale UAVs, the gyroscopic coupling l × �l is small compared to the other terms and can be

reasonably neglected. The approximated attitude dynamics is described in this case by three independent equations of

the form:

l8 =
�< (B)
�8B

g328 =: �l8 (B)g328 . (16)

The performance of control designs based on this simplified model heavily depends upon the knowledge of the principal

moments of inertia, which can be either obtained from a CAD model or estimated via identification experiments. Note,

in passing, that the inertia moments �8 are nothing but scaling terms of the control variables g328 and "wrong" values of

�8 can be compensated by tuning the gains of the control law to be developed for g32 . The outcomes of this (tedious)

approach are strongly related to the experience of the control designer: accepting the decoupled axes approximation,
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it is much more convenient to work directly with identified linear models �l8 (B) from g328 to l8 for 8 = 1, 2, 3, which

provide significant information about the overall system dynamics.

Remark 3 In deriving the simplified equations of motion, one point of concern is related to the assumption $� be

coincident with the center of mass. Indeed, if this was not correct, one should consider that the effect of gravity does not

disappear from g4, namely, that a torque g34 := (6') 43 would act as perturbation on the attitude dynamics. Such a

disturbance together with Δg4 (D) (which, among other things, includes terms related to the thrust axes being not exactly

aligned with 13) could significantly affect the UAV flying capabilities. For instance, when referring to near hovering

conditions, an almost constant disturbance torque (643 would perturb the attitude dynamics. If not compensated,

such a disturbance would make the UAV drift in position due to its underactuated dynamics, with possible destructive

consequences.

Under these premises, the equations of motion that will be used for control design are equation (2) and

� ¤l = −l × �l + g32 + g4, (17)

in which g4 ∈ R3 is assumed to be a constant disturbance torque. Then, attitude tracking problem can be formalized as

follows.

Problem 1 Consider the attitude dynamics described by equations (2), (17). Given a trajectory C ↦→ ('3 (C), l3 (C)) ∈

SO(3) ×R3, where l3 (C) := (')
3
(C) ¤'3 (C))∨ is a continuously differentiable and bounded function of time with bounded

time derivative, find a control torque g32 such that the trajectory ('3 , l3) is locally asymptotically tracked when

assuming that full state information is available.

In this work we first present a cascade control law to tackle the attitude tracking problem by accounting for

nonlinearities as well as disturbances. Then, we review a slightly modified version of the nonlinear PI-like control law

proposed in [18] which is considered for comparison purposes. Both control laws are geometric in the sense that they

are not based on any parametrizations of SO(3).

V. Geometric P/PID-like cascade architecture
The cascade strategy that we propose is motivated by the structure of equations (2), (11) when treating g4 as an

exogenous disturbance. Under this assumption, the attitude dynamics (11) is independent from the kinematics (2).

Therefore, the angular velocity l can be considered as a virtual input to track the desired attitude C ↦→ '3 (C). Then, the

torque g32 can be designed according to different control strategies to track the virtual angular velocity, relying on the

full actuation assumption of the attitude dynamics.
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Geometric law

'

%��

l

'3 lE g32

Fig. 2 Cascade attitude control architecture

A. Control law design

We propose the following geometric-based cascade control law (see also Figure 2):

lE := −4' ('4) + ')4 l3 (18)

g32 := %� (B) (lE − l) − � (B)l (19)

where '4 := ')
3
' ∈ SO(3),

4' := 1
2

(
 ''4 − ')4  '

)∨
, (20)

and %� (B) :=  ? +  8 1
B
, � (B) :=  3

B
1+ B

#

are transfer functions on the Laplace domain defining, respectively, a

proportional-integral and (filtered) derivative action. Herein,  ',  ? ,  8 and  3 ∈ R3×3 are positive definite diagonal

matrices while # ∈ R>0 is the derivative filter constant;  G8 refers to the 8-th element on the diagonal of the generic

matrix  G . Note that the derivative action � (B) is applied only to the state variable and not to the error so that step-like

references from the outer loop do not result in excessive peaks in the commanded torque (19).

Theorem 1 Consider the attitude motion described by equations (2), (17) and a desired trajectory C ↦→ ('3 (C), l3 (C)) ∈

SO(3) × R3, where l3 (C) = 0. There exist diagonal gain matrices  ',  ? ,  8 and  3 ∈ R3×3
>0 such that the equilibrium

point (', l, 4� ) = ('3 , 0,  −1
8
g4), where 4� ∈ R3 is the state of the integrator, is locally asymptotically stable.

Proof of Theorem 1. We start the proof by deriving the error dynamics associated with the control law (18)-(19):

¤'4 = '4l̂ (21)

� ¤l = −l × �l − %� (B)lE − %�� (B)l + g4, (22)

where %�� (B) := %� (B) + � (B) (for simplicity we assume the derivative term � (B) =  3B in the stability analysis),

for which the set of equilibria is given by
{
('4, l, 4� ) ∈ SO(3) × R3 × R3 : lE = 4' ('4) = 0, l = 0, 4� =  −1

8
g4

}
.

Such a set contains the desired equilibrium '4 = �3 and three other points in SO(3), namely, '4 = '48 (:c8) where

: ∈ Z and ∀8 ∈ {1, 2, 3} [23]. To prove local stability of the desired equilibrium, consider the linearized dynamics for
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small attitude errors '4 ≈ �3 + \̂4, l ≈ 0, where \4 ∈ R3 is a vector containing small error angles:

B\4 = l (23)

B�l = −%� (B) ̃'\4 − %�� (B)l + g4 (24)

in which

 ̃' :=


 '2+ '3

2 0 0

0
 '1+ '3

2 0

0 0
 '1+ '2

2

 , (25)

The non-trivial step in deriving the linearized closed-loop system is the computation of equivalent gain matrix  ̃'

(25), which can be obtained by linearizing function 4' ('4) defined in (20) for '4 ≈ �3 + \̂4 as follows. Then, the

approximation of (20) reads

4' ('4) ≈
 ' \̂4 − \̂)4  '

2
=
 ' \̂4 + \̂4 '

2
. (26)

Finally, by exploiting the property of the hat map �) Ĝ + Ĝ� = ((tr(�)�3 − �) G)∧ for any � ∈ R3×3, G ∈ R3, equation

(26) can be compactly written as∗:

4' ('4) ≈  ̃'\4 . (27)

Since the integrator state is 4�8 (C) :=
∫ C

0 ( ̃'8 \48 + l8)dC, by defining the change of coordinates 4̄�8 := 4�8 − 1
 �8
g48 ,

system (23)-(24) can be then written as three decoupled set of equations of the following form:

¤\48 = l8 (28)

(�8 +  �8 ) ¤l8 = − ?8 ( ̃'8 \48 + l8) −  �8 4̄�8 (29)

¤̄4� = ( ̃'8 \48 + l8). (30)

By direct substitution, the closed-loop solutions of the linearized system (28)-(24) evolve according to (�8 +  �8 )\̈48 +

 %8
¥\48 + ( �8 +  ̃'8 %8 ) ¤\48 +  ̃'8 �8 \48 = 0, whose characteristic polynomial is:

(�8 +  �8 )B3 +  %8 B2 + ( �8 +  ̃'8 %8 )B +  ̃'8 �8 . (31)

Hence, to conclude local asymptotic stability we invoke [24, Theorem 4.7] according to which the gains of the diagonal

matrices must be selected in order to make the polynomial in (31) Hurwitz for 8 = 1, 2, 3. Since for a given set of

polynomial coefficients we can always find a corresponding set of gains, by Routh-Hurwitz stability criterion for
∗Matrix  ̃' has a non-trivial relationship with matrix  ' , which is the one actually used in the control law. For instance, when considering

small attitude errors, increasing the term  '3 does not correspond to a larger gain relative to yaw but rather to an increase of the roll and pitch gains.
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third-order polynomials there exist gains such that all the roots of (31) have strictly negative real part, meaning that the

equilibrium (', l, 4̄� ) = ('3 , 0, 0) of (28)-(30), or equivalently, (', l, 4� ) = ('3 , 0,  −1
8
g4) for the original system

(23)-(24), is locally asymptotically stable, which concludes the proof. �

Remark 4 The suggested controller has been shown to guarantee local asymptotic tracking of any constant reference.

As it does not rely on any parametrization of SO(3), the control law is well defined for any attitude configuration and one

may be interested in understanding how large is the region of attraction. Since (18) is smooth and time-invariant, the

best results that one can look for is almost global stability† While we cannot prove formally this result, it is reasonable

to believe that the proposed control law will work well in practice as the following reasoning shows. Let us consider the

function Ψ('4) := 1
2 tr( ' (� − '4)), which is a continuously differentiable, positive definite function on SO(3). Its

time derivative along the flows of the closed-loop system reads:

¤Ψ('4) =
1
2
tr( ' ¤'4) =

1
2
tr( ' ¤')3 ' + '

)
3
¤'))

=
1
2
tr( '')3 'l̂) =

1
2
tr( ''4l̂)

=
1
2
tr(( ''4 − ')4  ')l̂) = 4)' ('4)l. (32)

If the control torque (19) could track the desired value lE sufficiently fast (instantaneously with respect to the outer

loop dynamics), then l ≈ lE and equation (32) would read:

¤Ψ('4) ≈ 4)' ('4)lE = −‖4' ('4)‖2, (33)

which is negative ∀'4 ∈ SO(3) except at '4 = �3 and three other points in SO(3), namely, '4 = '48 (:c8) where : ∈ Z

and ∀8 ∈ {1, 2, 3}[22]. Essentially, when assuming that the inner closed-loop is sufficiently fast in tracking the desired

angular velocity lE , the system behaves approximately like the kinematic error model ¤'4 = −'4 4̂' ('4), for which it is

well known [22, 23] that the equilibrium point '4 = �3 is almost globally asymptotically stable. Note that the separation

assumption between the inner and outer loop is not restrictive in practice since the motor dynamics is sufficiently fast for

small scale UAVs with respect to desirable closed-loop performance that is typically required for the attitude dynamics

of such platforms.

Remark 5 As shown in the stability analysis presented above, the control law (18)-(19) solves Problem 1 only for the
†An equilibrium point is said to be almost-globally asymptotically stable if the set of initial conditions converging to undesired equilibria is of

zero measure, in the sense of Lebesgue, with respect to the manifold SO(3) [22].
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case of constant reference (l3 (C) = 0). This issue can be resolved by considering

lE := −4' ('4) + ')4 l3 , (34)

which is (18) with an additional term including the desired angular velocity l3 . Note, however, that this signal is not

always available, especially when the UAV is manually piloted, and that it complicates the overall control architecture

when the position stabilization loop is included (see the discussion in Remark 7 for additional details). Nonetheless, it

will be shown in the linearized closed-loop analysis presented below that even without the feedforward term, the control

law (18)-(19) can be tuned to achieve a quite large bandwidth in near hovering conditions. We will verify experimentally

that satisfactory performance can be obtained for large attitude changes with the same tuning.

Remark 6 Hybrid synergistic designs [25–27] or quaternion-based controllers [28] could be employed as well for the

outer loop control (equation (3)) to avoid having undesired equilibria in the closed-loop system.

B. Linearized closed-loop system for control law tuning

Following up on the reasoning in Remark 2, the angular velocity dynamics of small scale UAVs is well represented

by three independent equations. To achieve satisfactory closed-loop performance without annoying manual tuning

procedures, it is advisable to have a sufficiently accurate knowledge of the transfer functions �l8 (B) (at least in the

frequency range of interest) so that one can apply systematic tuning methods on the linearized closed-loop system [29].

Given �l8 (B), the inner closed-loop function (from virtual angular rate lE8 to l8) is

l8

lE8
=

�l8 (B)%� (B)
1 + �l8 (B)%�� (B)

=: )l8 (B) (35)

while the outer closed-loop function, also referred to as the complementary sensitivity function, is

\8

\38
=

1
B
 ̃'8)l8 (B)

1 + 1
B
 ̃'8)l8 (B)

=: )\8 (B). (36)

From (36), the sensitivity function, which can be interpreted as the closed-loop transfer function from the disturbance 38

to \8 (see again Figure 3), reads:

(\8 (B) = 1 − )\8 (B). (37)

At this point, one can either tune the inner loop gains first and then select the gain  ̃'8 , according to the cascade

structure in (23)-(35), or directly work with the sensitivity and complementary sensitivity functions in equations (37)

and (36). In this work the latter approach has been followed and structured �∞ synthesis will be used to tune the gains,

see Section VII. It is worth mentioning that the flexibility offered by the PID control law proposed in (19) allows shaping
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the complementary sensitivity function with sufficient ease for the typical transfer functions �l8 (B) that one can expect

from small scale multirotor UAVs. The block diagram of the linearized control architecture is depicted in Figure 3.

 ̃'8  ?8

 �8
B

 38
B

1+ B
#

UAV pitch
dynamics

\38 lE8 +

+ −

\8

l8
−−

g328+

38

+

Fig. 3 Linearized cascade architecture (single axis).

VI. Geometric PI-like architecture
We consider a geometric PI-like control law that is inspired by [18] for comparison purposes and to validate the

tuning procedure (to be presented in the next section) on a different control architecture. It is derived by means of

Lyapunov arguments by referring to the dynamics (2), (11) in which the disturbance torque is assumed to be unknown

but constant. Several versions of this control law have been proposed and experimentally validated [18, 30].

A. Control law

The following PI-like geometric control law is considered:

g2 := −4' ('4) −  l4l −  � 4� + �')4 ¤l3 + (')4 l3) × �')4 l3 (38)

¤4� := 4' ('4) +  l� 4l (39)

where 4' ('4) is defined as for (18), 4l := l − ')4 l3 and  l ,  � ,  l� ∈ R3×3 are diagonal positive definite matrices.

With respect to [18] we introduced the gain matrix  l� in front of the angular velocity error in the dynamics of

the integral term (39) in order to have more freedom in weighting the different terms. By exploiting Lyapunov

arguments [18], it is possible to show that there exist diagonal gain matrices  ',  l ,  � ,  l� such that the closed-loop
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equilibrium ('4, 4l , 4� ) = (�3, 0,  −1
�
g4) of the error dynamics

¤'4 = '4 4̂l (40)

� ¤4l = − l4l − 4' ('4) + (�4l + 3')4 l3) × 4l −  � 4� + g4, (41)

¤4� = 4' ('4) +  l� 4l , (42)

where 3 := 2� − tr(�)�3, is locally exponentially stable.

B. Linearized closed-loop system for control law tuning

In this section the closed-loop system for the PI-like control law is presented and discussed. Before proceeding, it is

worth noting that by (39), the PI-like control law includes the integration of the angular velocity error which, contrary to

the linear case, is not just equivalent to increase the proportional gain in (38) unless small attitude errors are considered.

Indeed, when '4 ≈ �3 + \̂4, 4l ≈ 0, the linearized closed-loop error system is:

B\4 = 4l (43)

B�4l = − l4l −  ̃'\4 −  � 4� + g4 (44)

B4� =  ̃'\4 +  l� 4l (45)

in which  ̃' is defined as in (25) and the gyroscopic terms in the dynamic equation (3) have been neglected, consistently

with the analysis of the cascade design. Equations (44) and (45) can be rearranged as

B�4l = − l4l −  ̃'\4 −  �
1
B

(
 ̃'\4 +  l� 4l

)
+ g4 . (46)

To determine the local stability behavior of the closed-loop system, one can refer to the corresponding characteristic

polynomial related to the 8-th axis, namely,

B3�8 + B2 l8 + B( ̃'8 +  �8 l�8 ) +  �8  ̃'8 (47)

in which g4 can be neglected since it is an exogenous signal and does not contribute to the stability of the closed-loop

system. To ensure local asymptotic stability, the gains of the diagonal matrices must be selected in order to make the

polynomial in (47) Hurwitz for 8 = 1, 2, 3. A different path is to exploit the knowledge of identified models �l8 (B), as

done for the cascade architecture, and tune the gains in order to achieve satisfactory performance when referring to the
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sensitivity function from 38 to \8 , given by:

(\8 (B) :=
1

1 + 1
B
)l8 (B)�\8 (B)

=
\8

38
(48)

where

)l8 (B) :=
�l8 (B)

1 + �l8 (B)�l8 (B)

�l8 (B) :=  l8 +
1
B
 �8 l�8

�\8 (B) :=  ̃'8

(
1 + 1

B
 �8

)
.

The block diagram of the linearized geometric PI-like architecture for a single axis is depicted in Figure 4.

 ̃'8

 l�8

 l8

1
B

 �8

UAV
attitude
dynamics

B

\38

l38

\48

l48

+ 4�8 + +
+

g28

\8

l8

−

−
38

+

Fig. 4 Linearized geometric PI-like control architecture (single axis).

Remark 7 The control torque in equation (38) requires both the desired angular velocity and acceleration to be

implemented. In the position tracking scenario depicted in Section III this means that the position controller should

provide not only a desired attitude '3 but l3 and ¤l3 as well. However, computing analytically l3 and ¤l3 requires

continuously differentiable position trajectories up to the fourth order [6]. This not only makes the controller structure

more complex but has potentially negative effects when only a roughly estimated inertia matrix is available. Furthermore,

in case the vehicle is manually piloted, the pilot sends commands in terms of desired angles to the on-board controller

and the corresponding angular velocity and acceleration must be somehow computed on-line, unlike the scenario in

which both the attitude and its derivatives are provided, for instance, by a ground control computer. One option is to set

l3 , ¤l3 = 0, namely, set-point tracking. This, however, represents a limitation in achievable performance in terms of

attitude response to reference, resulting in a sluggish response. In practice this work adopts the approach of [19, 31],

where (38) is implemented with good approximation as g32 ≈ −4' ('4) −  l4l −  � 4� which does not depend upon

the UAV inertia and does not require the reference ¤l3 . Note that when the approximated torque is linearized it yields
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exactly the closed-loop equation (44). Such control torque still requires the desired angular velocity l3 to compute the

error 4l , therefore a continuously differentiable signal with its derivative must be provided to the controller. This issue

is addressed in detail in the next section.

C. Reference signal related issues

In Remark 7 it has been pointed out that the geometric PI-like architecture requires the desired attitude '3 and at

least the corresponding angular velocity l3 in the approximated case which neglects the feed-forward contribution

in (38). Following up on the comments presented above, a smooth trajectory generator is therefore needed to provide

the controllers with that information and to carry out a fair comparison between the two architectures. The trajectory

generator has been implemented on-board in the form of a filter so that the existing software architecture should not be

modified: the idea is to pass the pilot/computer command through a suitable filter, so that a continuously differentiable

signal and its derivative (at least) can be provided to the controllers. Since both controllers are geometric, the filter

should be developed directly on SO(3). To this end, we propose the geometric counterpart of the Euclidean second-order

filter ¥\ 5
3
= −l2

= (\
5

3
− \3) − 2bl= ¤\ 53 (l=, b ∈ R>0) which, in transfer function form, can be written as:


\
5

3

l
5

3

 =

�\ (B)

B�\ (B)

 \3 = � (B)\3 , �\ (B) :=
l2
=

B2 + 2bl=B + l2
=

. (49)

Specifically, the following geometric filter has been developed:

¤' 5
3
= '

5

3
l̂
5

3
(50)

¤l 5
3
= −l2

=4' ('
5
4 ) − 2bl=l

5

3
(51)

where ' 54 := ')
3
'
5

3
∈ SO(3) and 4' (·) is defined as in (19). It can be verified that (49) is the linearized version of

(50)-(51) for a small attitude motion C ↦→ '3 (C) ≈ �3 + \̂3 (C).

VII. Tuning
The linearized version of the two control architectures presented in Sections V and VI, respectively, were used to

carry out tuning of the gains. This allows one to resort to systematic tuning methods for linear systems. In particular,

in this work the structured �∞ approach is considered. The tuned gains are then plugged in the respective nonlinear

control law architectures for validation in the time domain. The approach is shown for only the pitch axis, however,

it can be straightforwardly applied to the other axes. In order to ease the notation, the superscript 8 will be dropped,

referring to the pitch axis (i.e., 8 = 2).
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Fig. 5 Quadrotor used for the tests.

A. Hardware set-up

In this work, the quadrotor depicted in Figure 5 was considered; it is a lightweight custom model with a distance

of 160mm between opposite rotor axes and an overall take-off weight of about 230g. The relevant parameters are

reported in Table 1. The flight control unit is a Pixfalcon board, an open autopilot shield suitable for remotely controlled

vehicles such as multirotors and fixed wing aircraft. It is equipped with a 3 axes accelerometer, a 3 axes gyroscope, a

magnetometer and a pressure sensor. The firmware running on the Pixfalcon board is the open-source software PX4 Pro

Autopilot. The firmware features attitude and position controllers and estimators, and has been customized to allow

replacing the baseline attitude controller with user-defined controllers.

Table 1 Main quadrotor parameters.

Variable Value

Frame Config. X
Propellers Gemfan Bullnose 3035 3 blade

Arm length 1 80 mm
Take-off weight < 230 g

Motors QAV1306-3100kV brushless
ESC ZTW Spider series 18A

Battery Turnigy nano-tech 950mAh LIPO

B. Model identification

A black-box model of the pitch attitude dynamics of the UAV was identified with the PBSID subspace model

identification algorithm using closed-loop experimental data [32] and was used as the basis for control law tuning.
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The identified model, from the (adimensionalized) pitch moment input " to the pitch rate output @, is of order five

and contains a time delay. Figure 6 shows the frequency response of the identified model against the estimate of

the non-parametric frequency response function (computed accounting for the bias introduced by feedback in the

closed-loop experiment). The coherence function indicates that the experimental data is valid in the frequency range

from 10 rad/s to 100 rad/s, which is consistent with the expected attitude control bandwidth. Both magnitude and phase

of the identified model feature excellent fit to the nonparametric frequency response in this frequency range. The model

was validated against flight data collected in a manually piloted experiment: Figure 7 shows the measured response

(blue line) to the pitch attitude reference signal (red line), against the simulated closed-loop attitude angle response

(black line) obtained with the identified model, showing a close match to the measured data.
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Fig. 7 Validation of the identified model.

C. Requirements definition

The control requirements for mixed-sensitivity structured �∞ synthesis are stated in the form of weighting functions

in the frequency domain. In particular, weighting functions are rational, stable, proper transfer functions. Two different

requirements were taken into account:

• performance: the requirement on performance is defined as a weighting function on the attitude angle sensitivity,

i.e., the transfer function from the disturbance on the pitch angle 3 to \ (compare with equations (37) and (48) for

the cascade and the geometric PI architectures, respectively);

• control moderation: the requirement on control moderation is defined as a weighting function on the control

sensitivity, i.e., the transfer function from 3 to " .

It was decided to characterize performance in terms of disturbance rejection [14, 33] (i.e., breaking the loop in the

output), rather than in terms of the response to the reference input (i.e., breaking the loop in correspondence of the
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Table 2 Sensitivity weighting function parameters.

l�'� rad/s  �� dB  !� dB :( ?( I(

��, 9 8 -40 0.398 0.122 30.64
!�, 2 3 -40 0.708 0.02445 3.454

tracking error signal): indeed, the latter inherently depends both on the feedback and feed-forward properties of the

system, while the former only depends on the feedback regulator. This approach allows comparing the performance of

the two considered control architectures in terms only of the feedback properties (see also the discussion in Remark 7).

The weighting function on the sensitivity is defined as:

,( (B) := :(
B + I(
B + ?(

(52)

where the inverse of the frequency response magnitude
��,( ( 9l)−1

�� represents an upper bound on the sensitivity

frequency response magnitude |(( 9l) |; the parameters of the weighting function are chosen so as to enforce a low-

frequency constraint
��,( ( 90)−1

�� =  !� , a high-frequency constraint ��,( ( 9∞)−1
�� =  �� , and a bandwidth constraint��,( ( 9l�'�)−1

�� = −3 dB. In particular, l�'� represents the desired sensitivity bandwidth, also referred to in the

ADS-33 US army requirement specification standard [34] as the disturbance rejection bandwidth (DRB), while  ��

represents a constraint on the peak of the sensitivity magnitude, also referred to as the disturbance rejection peak

(DRP) [33, 34].

Two different levels of performance were defined:

• a high-bandwidth requirement (��, ), representing aggressive performance requirements, with a large bandwidth

and allowing for a large sensitivity peak;

• a low-bandwidth requirement (!�, ), featuring a more stringent constraint on the sensitivity peak, on the other

hand trading off a lower bandwidth.

The parameters of the corresponding weighting functions are reported in Table 2.

The control sensitivity weigthing function was chosen as follows:

,' (B) := :'
B + I'
B + ?'

(53)

with :' = 0.2, ?' = 23.26 and I' = 10−4, in order to limit high frequency control action beyond the actuators

bandwidth.
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D. Control law synthesis problem statement

Consider the vector of tunable controller parameters, which for the cascade architecture is d� :=
[
 %8 ,  �8 ,  �8 ,  ̃'8

])
and for the geometric PI architecture is d� :=

[
 ̃'8 ,  l8 ,  �8 ,  l�8

])
, where 8 = 1, 2, 3 indicates respectively the roll,

pitch or yaw axis, and the control law tuning is carried out one axis at a time. Let ((B, d) be the sensitivity function and

'(B, d) the control sensitivity function, where the dependence on d is made explicit. Let �( (d) be the cost function

related to the performance requirement, and let �' (d) be the cost function related to the control moderation requirement:

�( (d) := ‖,( (B)((B, d)‖∞ (54)

�' (d) := ‖,' (B)'(B, d)‖∞ . (55)

The synthesis problem can be stated as an optimization problem:

d∗ = arg min
d

�( (d) (56)

subject to (57)

�' (d) ≤ 1 (58)

with d∗ being the optimal value of the controller gain vector.

E. Numerical results

Three different control law gain sets were obtained for the cascade architecture:

• a high-bandwidth cascade control law, denoted as �� , which is subject to the ��, performance requirement

defined in Section VII.C;

• a low-bandwidth cascade control law, denoted as �! , subject to the !�, performance requirement defined in

Section VII.C;

• a low-bandwidth cascade control law with no derivative action in the inner loop, denoted as ��0
!

, which is subject

to the same !�, performance requirement as the �! controller, but with the additional constraint  � = 0.

Numerical optimization was carried out by means of the MATLAB systune routine. The gain values for the three

cascade control laws are shown in Table 3, along with the achieved sensitivity bandwidth l�'� and complementary

sensitivity l) .

Finally, gains for the geometric PI architecture were tuned according to the !�, performance requirement and are

stated in Table 4; this control law is denoted as �! . Unlike the cascade architecture, it was not possible to obtain a

solution achieving the ��, requirements with the geometric PI control architecture, likely due to the absence of a

derivative action on the angular rate.
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Table 3 Cascade control architecture gain values: pitch axis (8 = 2).

Gain �� �! ��0
!

 % 0.142 0.187 0.0646
 � 0.287 0.362 0.107
 � 0.00263 0.00344 0
 ̃' 12.5 3.30 3.10

l�'� [rad/s] 10.0 2.98 2.26
l) [rad/s] 35.9 3.26 2.47

Table 4 Geometric PI control architecture gain values: pitch axis (8 = 2).

Gain �!

 ̃' 0.264
 l 0.0757
 � 0.3
 l� 0.0390

l�'� [rad/s] 2.83
l) [rad/s] 39.65

Figure 8 shows the sensitivity function magnitude of the system closed in loop with controllers �! , ��0
!

and �! ,

along with the inverse of the weighting function associated with the low performance requirement; in all the cases,

the optimization routine is able to meet the constraint. The effect of the derivative action on angular rate can be

appreciated in that the �! controller achieves a significantly lower sensitivity magnitude peak with respect to the other

two controllers (which are not provided with angular rate derivative action), and a larger bandwidth with respect to the

required one.

Figure 9 shows the Bode magnitude plot of the complementary sensitivity function for the four controllers. It can

be noticed that the �! and ��0
!

controllers achieve a similar complementary sensitivity magnitude shape, while the

�� controller achieves higher bandwidth to reference response, as expected; on the other hand, the complementary

sensitivity for the �! controller features a magnitude shape closer to the high-bandwith �� controller rather than the

cascade low-bandwith controllers �! and ��0
!

, despite having been designed for low-bandwidth requirements. It is

thus expected that the �! controller achieves a fast response, though with some oscillations (due to the presence of a

resonance peak). Furthermore, from the phase plot it can be noticed that �! features the smallest phase lag among the

four controllers.

The filter � (B) of equation (49), described in Section VI.C, was appended upstream the geometric PI controller,

and the part of filter �\ (B) related to attitude angle reference was appended upstream the cascade controller; in this

way, a fair comparison between the two control architectures can be carried out, in terms of response to piloted attitude
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angle reference. The step responses of the system closed in loop with the four controllers are shown in Figure 10, along

with the response of the filter �\ (B) to a step reference, which itself acts as a reference signal to be tracked by the four

controllers.
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VIII. Experimental results
In this section the tuning technique is validated on the quadrotor platform described in Section VII.B and a thorough

experimental comparison between the two proposed architectures is shown.

First of all, we verify that the actual closed-loop systems have a behavior comparable with the analysis of the

previous section by considering test-bed experiments in which all the degrees of freedom except pitch rotation are

constrained. To this end, three experiments were designed to test the closed-loop response to the attitude angle reference:
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• a series of doublets at small attitude angle, to test the system behaviour close to the equilibrium condition;

• a series of doublets at large attitude angle, to test the system behaviour far from the equilibrium;

• a sweep signal to excite the closed-loop system within the control bandwidth, to assess tracking performance.

The doublet half-period is ) = 0.5 s, with an amplitude of � = 10 deg for the small-amplitude experiment and

� = 30 deg for the large-amplitude experiment; the sweep signal has an amplitude � = 10 deg and excites the system in

the frequency range from 1.4 rad/s to 14 rad/s.

Figure 11 shows a comparison between the attitude angle responses of the system closed in loop with the �� and

�! controllers to the large-amplitude doublet input. Consistently with the simulation (compare with Figure 10), the ��

controller achieves a faster response than �! , at the price of slight oscillations in the response; this can be interpreted in

the frequency domain as a trade-off between bandwidth and damping ratio.

Figure 12 shows a comparison between the doublet responses obtained with the controllers ��0
!

and �! . These

two controllers are comparable from the point of view of bandwidth and do not include any derivative action on the

attitude rate; however, the response of �! is more aggressive and presents many oscillations, which is consistent with

the expected behavior of the linearized closed-loop system obtained in Section VII.E. The response of controllers �!

and ��0
!

is very similar.
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Figure 13 shows a comparison between the sweep responses obtained with the �! , ��0
!

and �� controllers, with

focus on the initial time instants. Note that the sweep reference is filtered by (49) so that the signal is subject to a roll-off

in magnitude as frequency increases. By inspecting Figure 13, the geometric PI-like architecture achieves better tracking

than the cascade architectures, both in terms of amplitude of the response and limited phase lag with respect to the

reference signal. As expected, the ��0
!

controller features a significant lag in the response, even at low frequencies,

and a quick decrease in peak magnitude as the frequency increases. On the contrary, the �� achieves satisfactory

24



performance and only a minimum lag with respect to the �! controller. However, by looking at Figure 14, the response

of the �! shows a resonance effect as the sweep frequency increases with time, resulting in an attitude response even

larger than the reference signal. This is again expected by looking at the complementary sensitivity function of the �!

controller in Figure 9.
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Overall, the experiments confirm the validity of the proposed tuning methodology since the responses obtained with

the different controllers are in good agreement with the expected behavior according to the complementary sensitivity

functions. Furthermore, the test results, conducted at large amplitude angle, showed an attitude response comparable to

the small amplitude experiments (not shown for conciseness); this confirms that the two nonlinear control laws are able

to handle large displacements from the equilibrium condition without impairing performance.

In addition to test-bed experiments, flight tests were carried out on the unconstrained quadrotor in order to show

that the decoupled controller strategy can provides good results, even for highly aggressive maneuvers. First of all,

several flight tests were performed with the UAV manually piloted in attitude control mode. The different controllers

were tuned on both the pitch and roll axis. This experiments confirmed the results obtained on the test-bed, with all the

controllers guaranteeing stability and acceptable maneuverability from the pilot’s point of view. Based on the pilot’s

opinion, the best performance in terms of speed of response is obtained with the �� controller, while the �! controller

features some oscillations, mitigated by reducing the bandwidth of the set-point filter. This, however, is a trade-off

between ease of flight and speed of response.

Finally, a series of doublets at 45 deg was given as a reference for both the roll and pitch angle. The experiment

was carried out with the �� controller, which was the best candidate for such a challenging test. To cope with a

slight asymmetry in the mass distribution, the robust tuning procedure outlined in Section VII was applied to the
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Fig. 15 Combined in-flight roll and pitch doublet responses: �� controller.

roll axis as well (not shown for the sake of conciseness). Figure 15 confirms that the controller performance is only

slightly deteriorated with respect to the single axis experiments: it is worth remarking that a larger maximum angle

is commanded with respect to the single axis experiments and that flight tests in attitude control are characterized by

translational motion, which can induce significant aerodynamic disturbances.

IX. Concluding remarks
In this paper we presented a systematic methodology, based on structured �∞, to tune the gains of nonlinear

control laws for attitude control in multirotor UAVs. Moreover, a cascade P/PID-like architecture was developed

in the framework of geometric control theory and was compared with a nonlinear PI-like controller borrowed from

the literature. The tuning methodology was validated on both control architectures: the proposed cascade controller

was easily tuned to achieve a desired level of performance and a major advantage over the PI controller, in terms

of architecture complexity, is that it requires only a desired attitude signal to be implemented on-board, which has

two practical implications. First, when included in a hierarchical strategy for position tracking, it does not require

the computation of a desired angular velocity and acceleration, which depends upon the snap of the desired position

trajectory. Moreover, when manually piloted, the PI-like controller cannot exploit information about the desired angular

velocity and acceleration, which significantly reduces the expected performance. A nonlinear trajectory generator filter,

which could be easily implemented on-board, has been developed to mitigate such deficiency and to allow for a fair

experimental comparison. In this case, as expected by looking at the complementary sensitivity function obtained

with the PI-like controller, tests performed with a quadrotor UAV have shown the superior tracking performance over

the cascade architecture when the frequency content of the reference signal is not too high. However, the response
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is aggressive and features some oscillations which makes it less convenient to be used in manual flight unless the

bandwidth of the set-point filter is reduced, which is clearly a trade-off between maneuverability and performance.
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