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ABSTRACT
Post-quantum cryptosystems have currently seen a surge in inter-

est thanks to the current standardization initiative by the U.S.A.

National Institute of Standards and Technology (NIST). A com-

mon primitive in post-quantum cryptosystems, in particular in

code-based ones, is the computation of the inverse of a binary

polynomial in a binary polynomial ring. In this work, we analyze,

realize in software, and benchmark a broad spectrum of binary

polynomial inversion algorithms, targeting operand sizes which

are relevant for the current second round candidates in the NIST

standardization process. We evaluate advantages and shortcomings

of the different inversion algorithms, including their capability to

run in constant-time, thus preventing timing side-channel attacks.
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1 INTRODUCTION
The research interest in post-quantum cryptography has been grow-

ing since August 2015 when the U.S.A. National Security Agency

published an online note
1
announcing preliminary plans for transi-

tioning from factoring- and discrete logarithm-based cryptographic

algorithms to quantum-computing resistant ones. The popularity

of the topic further increased in December 2016 with the U.S.A.
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National Institute of Standards and Technology (NIST) announcing

an international call for proposals for post-quantum cryptographic

algorithms
2
. The proposals currently selected for the second round

of the contest encompass a large part of the state-of-the-art in com-

putational techniques such as algorithms in algebraic geometry,

coding theory, and lattice theory. An essential requirement for the

proposals that will be recommended in the future portfolio of post-

quantum cryptographic primitives is to provide efficient software

implementations optimized for x86_64 architectures, with the NIST
specifying Intel Haswell as its primary benchmark target.

Code based cryptosystems have a remarkably good security

track; however, such strength comes at the disadvantage of quite

large public key sizes (in the megabyte range). A promising av-

enue to reduce the key size, is to employ code families admitting

a space-efficient representation, such as quasi-cyclic moderate-

density parity-check (QC-MDPC) codes. Quasi-cyclic codes are

characterized by quasi-cyclic generator and parity check matrices,

i.e., they are composed by circulant, square sub-matrices, where

all the rows are obtained by cyclically shifting the first one. The

arithmetics of such matrices with size p is isomorphic to the one

of the polynomials modulo xp − 1 over the same field as the co-

efficients of the circulant matrices. In particular, in the case of

binary linear block codes, the arithmetics of p×p circulant matrices

over Z2 can be substituted with the arithmetics of polynomials in

Z2[x]/(x
p − 1). This, in turn, implies a reduced size of the keypairs

and faster arithmetic operations.

Contributions.We analyze four efficient algorithms for polyno-

mial inversion over Z2[x]/(x
p − 1), which represents the most time

consuming operation in the key-generation of LEDAcrypt [1–4], a

current second round candidate to the U.S.A. NIST standardization

effort. We describe in detail the state-of-the-art of the inversion

techniques relying on Euclid’s algorithm, highlighting the non

straightforward similarities between the approaches, and provid-

ing a detailed version of the strategy introduced in [5], tailored to

inverses over Z2[x]/(x
p − 1). We also tailor the approach based on

Fermat’s little theorem, describing an optimal square and multiply

chain to compute the required exponentiation. We benchmark our

implementation of all four algorithms, employing the features of-

fered by the extensions of the Instruction Set Architecture (ISA)

available in Intel Haswell CPUs, and validate the constant time

nature of the algorithms which are expected to enjoy this property.

Organization of the paper. In Section 2, we provide an overview

of the LEDAcrypt primitives and introduce the schoolbook Eu-

clid’s algorithm for the computation of polynomial multiplicative

2
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inverses. In Section 3, we present our systematization of the opti-

mized algorithms to compute polynomial multiplicative inverses

reporting a description of the approaches employed by Brunner et
al. [7], Kobayashi et al. [11] and Bernstein et al. [5]. The section
ends with the presentation of our approach to optimize the inver-

sion algorithm based on the Fermat’s Little Theorem. In Section 4

we report the implementation details of the presented algorithms

to end of comparing both their performance and their behavior

w.r.t. the information leakage (possibly) arising from the timing

side channel. Finally, Section 5 reports our concluding remarks.

2 PRELIMINARIES
The current LEDAcrypt specification [3] describes an IND-CPA and

an IND-CCA2 Key Encapsulation Methods (KEMs) relying on the

Niederreiter cryptoscheme [13], named LEDAcrypt-KEM-CPA and

LEDAcrypt-KEM, respectively. Moreover, a Public Key Encryption

(PKC) system, named LEDAcrypt-PKC, relying on the McEliece

cryptoscheme [12] plus the IND-CCA2 Kobara-Imai γ -construction
is reported as well. The three systems employ a binary QC-MDPC

code having a systematic public parity-check matrix representa-

tion. The Key-Generation algorithms of all mentioned primi-

tives consider a QC-MDPC error corection code C(n,k), with code-

word length n=pn0 and information word length k=p(n0−1), where
n0∈{2, 3, 4}, p is a large prime number such that ordp (2) = p − 1
(i.e., 2 is a primitive element of the Galois field GF(p)� Z/pZ). The
private key is composed by the quasi-cyclic p×pn0 parity-check

matrix of the code C(n,k), i.e.: sk={H }, which is in turn structured

as 1×n0 circulant blocks, each of which with size p×p and with v
non-null elements per row/column, where v is an odd number to

guarantee full-rank blocks: H=[H0,H1, . . . ,Hn0−1]. The matrix H
is generated ensuring that each one of the full-rank n0 circulant
blocks H=[H0,H1, . . . ,Hn0−1] has a number of asserted bits in the

first row equal tov (n0 ·v ≈
√
pn0). Subsequently, starting from the

multiplicative inverse of Hn0−1, the public key pk of the KEM prim-

itive is obtained as:M = H−1n0−1
H =

[
M0 |M1 | . . . |Mn0−2 |I

]
, where

I is a p×p identity matrix. The public key of the LEDAcrypt-PKC is

obtained by convertingM into the corresponding systematic gen-

erator matrix of the same code as pk =
[
D | [M0 | . . . | Mn0−2]

T ]
,

where D is a block matrix with n0−1 replicas of I on its diagonal.

2.1 Polynomial Multiplicative Inverses
The key-generation algorithm of all LEDAcrypt primitives require

n0 − 2 multiplications between p × p binary blocks, each of which

represented as an invertible polynomial in the ring Z2[x]/(x
p − 1)

with an odd and small number of asserted coefficients v ≈
√
p/n0.

In particular, the first factor of each multiplication is given by the

multiplicative inverse of the polynomial a(x) ∈ Z2[x]/(x
p − 1)

corresponding to the first row of the last circulant-block of the

secret parity-check matrix H=[H0,H1, . . . ,Hn0−1].

Although the computation of a multiplicative inverse polynomial

is required only once during the execution of the Key-Generation

algorithm for the IND-CCA2 LEDAcrypt-KEM and the IND-CCA2

LEDAcrypt-PKC system, the length/degree of the involved operand

a(x), 7·103<deg(a(x))<9·104, requires to implement carefully this

operation by establishing the inversion strategy that fits best the

Algorithm 1: Inversion using the Euclid’s gcd Algorithm

Input: f (x ) irreducible polynomial of GF(2
m
),m ≥ 2,

a(x ) invertible element of GF(2
m
)

Output: V(x ), polynomial such that a(x )−1 ≡ V(x )mod f (x )

1 begin
2 S(x ) ← f (x ), R(x ) ← a(x )
3 V(x ) ← 0, U(x ) ← 1

4 repeat
5 Q(x ) ← ⌊S(x )/R(x )⌋

6 tmp(x ) ← S(x ) − Q(x ) · R(x ), S(x ) ← R(x ), R(x ) ← tmp(x )

7 tmp(x ) ← V(x ) − Q(x ) · U(x ), V(x ) ← U(x ), U(x ) ← tmp(x )
8 until (R(x ) = 0)

9 return V(x )
10 end

length of the involved operand. Furthermore, the LEDAcrypt-KEM-

CPA system generates ephemeral private/public key pairs to trans-

mit a session key at each run, requiring the computation of a mul-

tiplicative inverse polynomial each time. Finally, another feature

steering the choice of the best polynomial inversion algorithm for

a given primitive and operand size is the posssibility to exhibit a

constant-time implementation to prevent timing based side-channel

analyses aimed at the recovering of the secret key sk = {H }.

2.2 SchoolBook Euclid’s Algorithm
The Euclid’s algorithm to compute the greated common divisor,

gcd, between two polynomials is commonly employed to derive a

polynomial time algorithm yielding the multiplicative inverse of an

element in the multiplicative group of a Galois field represented in

polynomial basis, e.g., the multiplicative group of GF(2m ),m ≥ 2

with GF(2m ) � Z2[x]/(f (x)), where f (x) is an irreducible polyno-

mial with deg(f (x)) =m.

A schoolbook analysis considers a polynomial a(x) and the ir-

reducible polynomial f (x), employed to represent the field ele-

ments (deg(a(x)) < deg(f (x))), to iteratively apply the equality

gcd(f (x),a(x))= gcd(a(x), f (x)moda(x)) and derive the computa-

tion path leading to the non-null constant term r epresenting the

greatest common divisor d (e.g., d = 1, when Z2[x] is considered).

deg(f (x)) > deg(a(x)) > 0 d=gcd(f (x),a(x))
r0=f (x), r1=a(x) d=gcd(r0(x), r1(x))
r2=r0mod r1, 0≤deg(r2)<deg(r1) d(x)=gcd(r1(x), r2(x))
· · · · · ·

ri=ri−2mod ri−1, 0≤deg(ri )<deg(ri−1) d = gcd(ri−1(x), ri (x))
· · · · · ·

rz=rz−2mod rz−1, rz (x)=0 d=gcd(rz−1(x), 0)=rz−1(x)

for a proper number of iterations, z ≥ 2. A close look to the previous

derivation shows that two series of auxiliary polynomialswi (x) and
ui (x), 0 ≤ i ≤ z−1, can be defined to derive the series of remainders

ri (x) as: ri (x) = ri−2 − qi (x) · ri−1(x) = wi (x) · f (x) + ui (x) ·

a(x), where qi (x) =
⌊
ri−2(x )
ri−1(x )

⌋
, with r0(x) = f (x) and r1(x) = a(x).

Specifically, the computations shown above can be rewritten as

follows.
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deg(f (x)) > deg(a(x)) > 0

r0 = 1 · f (x) + 0 · a(x) = w0(x) · f (x) + u0(x) · a(x)
r1 = 0 · f (x) + 1 · a(x) = w1(x) · f (x) + u1(x) · a(x)
r2 = r0mod r1 =

= (w0(x) · f (x) + u0(x) · a(x)) −
⌊
r0
r1

⌋
(w1(x) · f (x) + u1(x) · a(x)) =

= w2(x) · f (x) + u2(x) · a(x)
· · ·

ri = ri−2mod ri−1 = wi (x) · f (x) + ui (x) · a(x)
· · ·

rz−1 = rz−3mod rz−2 = wz−1(x) · f (x) + uz−1(x) · a(x)
rz = rz−2mod rz−1 = 0

Finally, the multiplicative inverse of a(x) is obtained from the equal-

ity d = wz−1(x) · f (x) + uz−1(x) · a(x), by computing:

a(x)−1 ≡
(
d−1 · uz−1(x)mod f (x)

)
.

In the last derivation of remainder polynomials, it is worth noting

thatwi (x) = wi−2(x)−qi (x) ·wi−1(x), and ui (x) = ui−2(x)−qi (x) ·
ui−1(x), withw0(x) = 1, u0(x) = 0 andw1(x) = 0, u1(x) = 1.

Restricting ourselves to the case of binary polynomials, Algo-

rithm 1 shows the pseudo-code for computing an inverse employing

only the strictly needed operations. Note that the execution of an

actual division would prevent the efficient implementation of the

algorithm, therefore in the following section we consider the opti-

mizations to this algorithm that circumvent its computation. The

naming conventions adopted in Algorithm 1 denote as R(x) the i-th
remainder of the gcd procedure described before, and as S(x) the
(i − 1)-th remainder, with i ≥ 1. Furthermore, the i-th u(x) value
is denoted as U(x), while the value it took at the previous iteration

(i.e., the (i − 1)-th u(x) value) is denoted as V(x), with i ≥ 1.

Note that in the last iteration (the z-th one, counting the first as 1)

R(x) = rz (x) = 0, while S(x) = rz−1(x) = 1.

The rationale to keep the notation of the pseudo-code variables

as polynomials in x lies on the willingness of not specifying the

implementation dependent choice for the endianness of values

stored in array variables, i.e., if the least significant coefficient of a

polynomial is stored in the first or last cell of an array.

In the case of LEDAcrypt where the arithmetic operations are

performed in Z2[x]/(x
p − 1), with ordp (2) = p − 1, it is worth

noting that the Euclid’s algorithm can still be applied to compute the

inverse of invertible elements as the factorization of f (x) = xp − 1

in irreducible factors, i.e., f (x) = (x + 1) · (
∑p−1
i=0 x

i ), shows that

every binary polinomial a(x) with degree less than p and an odd

number of asserted coefficients, that is also different from the said

factors, (i.e., any polynomial representing a circular block in the

LEDAcrypt) always admits a greater common divisor equal to one

(i.e., gcd(a(x), f (x)) = 1). As a consequence, the steps of the Euclid’s

algorithm to compute inverses remain the same shown before.

3 OPTIMIZED POLYNOMIAL INVERSIONS
In [7] Brunner et al. optimized the computation performed by Al-

gorithm 1 embedding into it the evaluation of the quotient and

remainder of the polynomial division ⌊S(x)/R(x)⌋. Indeed, Algo-
rithm 2 performs the division operation by repeated shifts and

subtractions, while keeping track of the difference δ between the

degrees of polynomials in S(x) (which is the dividend and starts

by containing the highest degree polynomial, that is, the modulus

Algorithm2: Brunner et al. (BCH) InversionAlgorithm [7]

Input: f (x ) irreducible polynomial of GF(2
m
),m ≥ 2,

a(x ) invertible element of GF(2
m
)

Output: V(x ), such that a(x )−1 ≡ V(x ) ∈ GF(2m )

Data: polynomial variables R(x ), S(x ), U(x ), V(x ) are assumed to have at

mostm+1 coefficients each (e.g., R(x )=Rm ·xm+Rm−1 ·xm−1+· · ·
+R1 ·x+R0 , with Ri ∈ Z2, 0 ≤ i ≤ m) to prevent reduction operations

(i.e., mod f (x )) among the intermediate values of the computation;

δ stores a signed integer number

1 begin
2 S(x ) ← f (x ), R(x ) ← a(x )
3 V(x ) ← 0, U(x ) ← 1, δ ← 0

4 for i ← 1 to 2 ·m do
5 if (Rm = 0) then
6 R(x ) ← x · R(x )
7 U(x ) ← x · U(x )
8 δ ← δ + 1
9 else

10 if (Sm = 1) then
11 S(x ) ← S(x ) − R(x )
12 V(x ) ← V(x ) − U(x )
13 else
14 S(x ) ← x · S(x )
15 if (δ = 0) then
16 tmp(x ) ← R(x ), R(x ) ← S(x ), S(x ) ← tmp(x )
17 tmp(x ) ← U(x ), U(x ) ← V(x ), V(x ) ← tmp(x )
18 U(x ) ← x · U(x )
19 δ ← 1

20 else
21 U(x ) ← U(x )/x
22 δ ← δ − 1

23 return V(x )

f (x)) and R(x) (which is the divisor, and is initialized to the polyno-

mial of which the inverse should be computed, a(x)). The difference
between the degrees, δ = deg(S) − deg(R) is updated each time the

degree of either S(x) or R(x) is altered, via shifting.
Brunner et al. in [7] observed that, since either a single bit-

shift or a subtraction is performed at each iteration, the number

of iterations equals 2m, that is the numberm of single bit-shifts

needed to consider every bit of the element to be inverted, plus the

number of substractions to be performed after each alignment. The

last iteration of the Algorithm 2 computes R(x) = 0, S(x) = 1 (i.e.,

deg(R) = deg(S) = 0), and outputs the result in V(x). The part of
Algorithm 2 dealing with computations on U(x) and V(x) mimics

the same operations, in the same order, that are applied to R(x) and
S(x), respectively, as the schoolbook algorithm does (Alg. 1).

3.1 Kobayashi-Takagi-Takagi Algorithm
The target implementation of Algorithm 2 is a dedicated hardware

one, therefore the algorithm simplifies the computations to be per-

formed in it, reducing them to single bit-shifts, bitwise xors and
single bit comparison. While this approach effectively shortens the

combinatorial cones of a hardware circuit, yielding advantages in

timing, when directly transposed in a software implementation it

may fail to exploit the wide computation units that are present in

a CPU to the utmost. In particular, modern desktop, and high-end

mobile CPUs are endowed with a so-called carryless multiplier

computation unit. Such a unit computes the product of two binary

polynomials with degree lower than the architecture word size,

w with a latency which is definitely smaller than computing the
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same operation with repeated shifts and xors (3–7 cycles on Intel

CPUs [9]). To maximize the exploitation of the available carryless

multipliers, Kobayashi et al. [11] optimized further the gcd based
Algorithm 2. The main assumption in this sense is that aw-bit in-

put carryless multiplier is available on the target CPU architecture.

Algorithm 3 reports the result of the optimization proposed in [11],

which still takes as input an irreducible polynomial of GF(2
m
), em-

ployed to build a representation for all its elements, and one of

its invertible elements. However, these polynomials and the ones

computed as intermediate values of the algorithm, are now thought

as polynomials of degree at most M − 1, with M = ⌈(m + 1)/w⌉,
having as coefficients binary polynomials with degreew − 1. For
example,the polynomial S(x) = sm ·x

m+sm−1 ·x
m−1+· · ·+s1 ·x+s0,

with sj ∈ {0, 1} and 0 ≤ j ≤ m, is processed by considering

it as S(x) = SM−1(x) · (x
w )M−1 + · · · + S1(x) · (x

w )1 + S0(x),
Si (x) = siw+w−1 · x

w−1 + · · · + siw+1 · x + siw , where siw+l = 0 if

iw + l > m, with 0 ≤ l ≤ w − 1, and 0 ≤ i ≤ M − 1.
Employing this approach, the loop at lines 5–22 of Algorithm 2

is rewritten to perform fewer iterations, each one of them corre-

sponding to the computation made inw iterations of Algorithm 2.

The crucial observation is that the computations performed by

Algorithm 2 on U(x), V(x), R(x),and S(x) at each iteration can be

represented as a linear transformation of the vectors

(
U(x)
V(x)

)
and(

R(x)
S(x)

)
. Indeed, the authors represent the computation portions

of Algorithm 2, driven by the values of S(x) and R(x), present at

lines 6–7 as

(
U(x)
V(x)

)
=

(
x 0

0 1

)
×

(
U(x)
V(x)

)
,

(
R(x)
S(x)

)
=

(
x 0

0 1

)
×

(
R(x)
S(x)

)
, and

rewrite similarly also lines 11–12, line 14, lines 16–18 and line 21.

With this representation of the computation, Algorithm 3 selects

a portion of R(x) and S(x) as large as an architectural word (line

5 of Algorithm 3) and makes a copy of them (variables C(x) and
D(x)). Employing these copies, Algorithm 3 computes a single linear

transformation, H cumulating the effects of w computations of

the main loop of Algorithm 2, to apply them all at once (line 33,

Algorithm 3). While this approach appears more expensive, as

polynomial multiplications are employed to compute the values of

U(x), V(x), R(x),and S(x) at the end of each iteration of the loop at

lines 5–33, we recall that such multiplications can be carried out at

the cost of a handful of xors by the carryless multipliers present on

modern CPUs, effectively resulting in a favourable tradeoff for the

strategy described by Algorithm 3. To provide a further speedup,

Algorithm 3 has a shortcut in case entire word-sized portions of

R(x) (which is initialized with the input polynomial to be inverted)

are filled with zeroes, a fact which can be efficiently checked in

one or a few CPU operations in software. Indeed, in that case, the

resulting transformation to be applied is given byH =

(
xw 0

0 1

)
;

therefore the authors of Algorithm 3 insert a shortcut (lines 6–

9) to skip the expensive execution of the loop body computing

a trivial transformation, simply applying the aforementioned H ,

which boils down to two word-sized operand shifts (line 7). We note

that this efficiency improvement trick, while effectively making

the inversion faster, it also provides an information leakage via

the timing side channel. Indeed, due to this shortcut, the inversion

Algorithm3:Kobayashi et al. (KTT) InversionAlgorithm [11]

Input: f (x ) irreducible polynomial of GF(2
m
),m ≥ 2,

a(x ) invertible element of GF(2
m
)

Output: V(x ), such that a(x )−1 ≡ V(x ) ∈ GF(2m )

Data: Polynomials R(x ), S(x ), U(x ), V(x ) have at mostm+1 binary
coefficients to prevent the execution of modulo operations in the

intermediate computations. Furthermore, they are assumed to be

processed aw -bit chunk at a time, i.e., M = ⌈(m + 1)/w ⌉ and
R(x )=RM−1(x )·(xw )M−1+· · ·+R1(x )·(xw )1+R0(x ), with
0 ≤ deg(Ri (x )) < w , 0 ≤ i ≤ M − 1;
Polynomials C(x ) and D(x ) are such that 0 ≤ deg(C), deg(D) < w .

1 begin
2 S(x ) ← f (x ), R(x ) ← a(x )
3 V(x ) ← 0, U(x ) ← x , degR← M ·w−1, degS← M ·w−1
4 while degR > 0 do
5 C(x ) ← RM−1(x ), D(x ) ← SM−1(x )
6 if C(x ) = 0 then
7 R(x ) ← xw · R(x ), U(x ) ← xw · U(x )
8 degR← degS −w
9 goto line 4

10 H ←

(
1 0

0 1

)
, j ← 1

11 while j < w and degR > 0 do
12 j ← j + 1
13 if Cw−1 = 0 then

14

(
C(x )
D(x )

)
←

(
x 0

0 1

)
×

(
C(x )
D(x )

)
15 H ←

(
x 0

0 1

)
× H

16 degR← degR − 1
17 else if (degR = degS) then
18 degR← degR − 1
19 if Dw−1 = 1 then

20

(
C(x )
D(x )

)
←

(
x −x
1 0

)
×

(
C(x )
D(x )

)
21 H ←

(
x −x
1 0

)
× H

22 else

23

(
C(x )
D(x )

)
←

(
0 x
1 0

)
×

(
C(x )
D(x )

)
24 H ←

(
0 x
1 0

)
× H

25 else
26 degS← degS − 1
27 if Dw−1 = 1 then

28

(
C(x )
D(x )

)
←

(
1 0

x −x

)
×

(
C(x )
D(x )

)
29 H ←

(
1 0

x −x

)
× H

30 else

31

(
C(x )
D(x )

)
←

(
1 0

0 x

)
×

(
C(x )
D(x )

)
32 H ←

(
1 0

0 x

)
× H

33

(
R(x )
S(x )

)
← H ×

(
R(x )
S(x )

)
;

(
U(x )
V(x )

)
← H ×

(
U(x )
V(x )

)
34 if deg(R) = 0 then
35 return U(x )/xwM

36 return V(x )/xwM

algorithm will be running faster if it is consuming words of the

polynomial to be inverted which contain only zeroes. As a result,

some information on the length of the zero runs of the operand

is encoded in the timing side channel. We note that, many code-

based cryptoschemes, the position of the asserted coefficients of the

polynomial to be inverted represent the private key of the scheme.
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As a final step, Algorithm 3 returns either the value of U(x) or the
value of V(x), detecting which is the variable containing the actual

pseudo inverse (i.e., a(x)−1xwM
), and performing an exact division

by xwM
(i.e., a shift byM words).

3.2 Bernstein-Yang Algorithm
The last approach to polynomial inversion via improved Euclid

algorithms, is the one recently proposed in [5]. Bernstein et al. pro-
vide a comprehensive study [5] of modular inversion and greatest

common divisor (gcd) computation both for integer and polynomial

Euclidean domains. In this work, we specialize the divide-et-impera

strategy devised for the computation of gcds and modular inverses

for polynomial rings having coefficients over a generic GF(p) onto
one which only performs the computation of modular inverses

of binary polynomials. We report the said specialized algorithm

as Algorithm 4. A full proof of the correctness of the algorithmic

approach is provided in [5], and we will omit it from the current

work for space reasons. However, to provide an intuition of the

inner working of Algorithm 4, we note that it is possible to obtain

Algorithm 3 as a special case of it,highlighting the conceptual sim-

ilarities. The key observation made in [5] is that it is possible to

split the operands recursively up to a point where the operands

become as small as the designer deems useful (a machine word,

in our case) and then proceed to compute a portion of the linear

transform over GF(2m ) which operates on the inputs to provide

the modular inverse. Once such a transform is computed for the

operand fragments, the transform can be recombined by means

of a multiplication of matrices over GF(2m ) yielding the modular

inverse. Algorithm 4 performs the operand splitting phase in the

jumpdivstep function (defined at lines 17–25), taking two polyno-

mials f (x),д(x) of maximum degree n and the difference between

their degrees δ , and picking a splitting point j (line 20). The splitting
point can be chosen as any non null portion of the maximum degree

n, although splitting the operands in half is likely to be optimal. We

report that the intuition of optimality of splitting the operands in

half was verified to be the optimal choice in our implementations.

Two subsequent recursive calls to the jumpdivstep function are

made, splitting the input polynomials at their j-th degree term (lines

21 and 34), until the maximum degree n is equal or smaller than

the machine word size (w in the algorithm). When this happens

(“branch taken” at line 18 of Algorithm 4), the function handling

the base case of the recursion, divstep is invoked. divstep can be

seen as a clever reformulation of n iterations, of the loop body of

Algorithm 2, with n being the parameter taken as input by divstep.
The computation of the loop body is decomposed into a conditional

swap (lines 5–9), depending only on the value of the difference

between the operand degrees δ being positive and the constant

term of д(x) being equal to 1, and a sequence of steps (lines 10–13)

performing the correct operation between the two portions of the

source operands f (x),д(x) and the auxiliary values.

This approach allows a constant-time implementation using for

the if construct Boolean-predicate operations (lines 5–9).
To compute the polynomial inverse, Algorithm 4 invokes the

jumpdivstep function on the reflected representation of both the

modulus and the polynomial to be inverted, that is it considers the

polynomials S, R of the same degree of f (x) and a(x), respectively,

Algorithm4: Bernstein et al. (BY) Inverse [5] specialized for GF(2m )
Input: f (x ) irreducible polynomial of GF(2

m
),m ≥ 2,

a(x ) invertible element of GF(2
m
)

Output: V(x ), such that a(x )−1 ≡ V(x ) ∈ GF(2m )

Data:w : machine word size

// Base case, solved iteratively on n ≤ w
1 function divstep(n, δ , f (x ), д(x )):
2 U(x ) ← xn−1; V(x ) ← 0

3 Q(x ) ← 0; R(x ) ← xn−1

4 for i← 0 to n − 1 do
5 if (δ > 0 ∧ д0 = 1) then
6 δ ← −δ
7 Swap(f (x ), д(x ))
8 Swap(U(x ), Q(x ))
9 Swap(R(x ), V(x ))

10 δ = δ + 1
11 Q(x ) ← (f0 · Q(x ) − д0 · U(x ))/x // dropping the remainder

12 R(x ) ← (f0 · R(x ) − д0 · V(x ))/x // dropping the remainder

13 д(x ) ← (f0 · д(x ) − д0 · f (x ))/x // dropping the remainder

14 H ←

(
U(x ) V(x )
Q(x ) R(x )

)
15 return δ , H
16

// Splitting case, shortens operands until n ≤ w
17 function jumpdivstep(n, δ , f (x ), д(x )):
18 if n ≤ w then
19 return divstep(n, δ , f (x ), д(x ))

// any j > 0 is admissible, intuitive optimum at ⌊ n
2
⌉

20 j ← ⌊ n
2
⌉ // integer part of n

2

21 δ , P ← jumpdivstep(j , δ , f (x ) mod x j , д(x ) mod x j )
22 f ′(x ) ← P0,0 · f (x ) + P0,1 · д(x )
23 д′(x ) ← P1,0 · f (x ) + P1,1 · д(x )

24 δ , Q ← jumpdivstep(n − j , δ , f
′(x )
x j

,
д′(x )
x j
) // dropping remainders

25 return δ , (P × Q)
26

// Main inverse function calling recursion splitting case

27 S(x ) ← mirror(f (x )), R(x ) ← mirror(a(x ))
28 δ , H ← jumpdivstep(2m − 1, 1, S(x ), R(x ))
29 V(x ) ← mirror(H0,1)

30 return V(x )

obtained swapping the coefficient of the x i term with the one of

the xdeg(S)−i (resp., xdeg(S)−i ) one. Both polynomials, represented

as degree 2m − 1 ones, adding the appropriate null terms, are pro-

cessed by the jumpdivstep call, which returns the final difference

in degrees (expected to be null), and the reflected representation of

the polynomial inverse in the second element of the first row ofH .

3.3 Inversion with Fermat’s Little Theorem
Finally, an approach to perform a constant-time implementation

of the binary polynomial inversion is to employ the Fermat’s little

theorem. While this procedure is usually slower on a polynomial

ring with a generic modulus, we obtain an efficient implementa-

tion of Fermat’s method to compute inverses in Z2[x]/(x
p − 1),

in case p is prime and ordp (2) = p − 1 (i.e., 2 is a primitive ele-

ment of GF(p)), as it is the case in the LEDAcrypt parameters. In-

deed, Z2[x]/(x
m − 1),m ≥ 1 can be seen as

∏
i
Z2[x]/((f

(i)(x))λi ),

where f (i)(x) are the irreducible factors of xm − 1 ∈ Z2[x], each
with its own multiplicity λi ≥ 0. As a consequence, the number
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of elements in each Z2[x]/

((
f (i)(x)

)λi )
admitting an inverse is:���(Z2[x]/(f (i)(x))λi )∗��� = 2

deg(f (i ))·λi − 2deg(f
(i ))(λi−1)

, and the mul-

tiplicative inverse of a unitary element in Z2[x]/(x
m − 1) can be

obtained by raising it to the least common multiple (lcm) of the
said quantities:

lcm(2deg(f
(1))·λ1−2deg(f

(1))(λ1−1), 2deg(f
(2))·λ2−2deg(f

(2))(λ2−1), . . .)−1.

In our case, where m = p and p is a prime number such that

ordp (2)=p−1, the polynomial xp−1 factors as the product (x + 1) ·

(
∑p−1
i=0 x

i ), and consequentially the number of invertible elements is(
2
1·1 − 21·(1−1)

)
·

(
2
(p−1)·1 − 2(p−1)·(1−1)

)
= 2

p−1−1, while the com-

putation of the inverse of a(x) ∈
(
(Z2[x]/(x

p − 1)∗, ·
)
is obtained

raising it to 2
p−1 − 2, i.e., a(x)−1 = a(x)2

p−1−2
.

Noting that the binary representation of 2
p−1 − 2 is obtained as

a sequence of p − 2 set bits followed by a null bit (i.e., 2
p−1 − 2 =

(11, . . . , 10)bin), a simple (right-to-left) square & multiply strategy

would compute the inverse employing p − 2 modular squarings

and p − 3 multiplications (i.e., a(x)−1 = a(x)2 · a(x)2
2

· · ·a(x)2
p−1

).

However, as reported first in [8], it is possible to devise a more

efficient square and multiply chain, tailoring it to the specific value

of the exponent. Indeed, we are able to obtain a dedicated algo-

rithm, reported as Algorithm 5, which computes the inversion with

only ⌈log
2
(p − 2)⌉ + HammingWeigth(p − 2) multiplications and

p − 1 squarings. Since the squaring operations are significantly

more frequent than the multiplications, it is useful to exploit the

fact that polynomial squaring can be computed very efficiently in

Z2[x]/(x
p − 1). Indeed, two approaches are possible.

The first approach observes the fact that computing a square of

an element of Z2[x] is equivalent to the interleaving of its (binary)

coefficients with zeroes, an operation which has linear complexity

in the number of polynomial terms (as opposed to the quadratic

complexity of a multiplication).

The second approach builds on the observation made in [10]:

given an element a(x) ∈ Z2[x]/(x
p −1), considering the set of expo-

nents of its non-zero coefficient monomials S allows to rewrite a(x)
as

∑
j ∈S x

j
. It is known that, on characteristic 2 polynomial rings

we have that ∀i ∈ N,
(∑

j ∈S (x
j )
)
2
i

≡
∑
j ∈S (x

j )2
i
, thus allowing us

to obtain the 2
i
-th power of a(x) by computing the 2

i
-th powers of a

set of monomials, and then adding them together. To efficiently com-

pute the 2
i
-th power of a monomial, observe that the order of x in

Z2[x]/(x
p −1) is p (indeed, xp −1 ≡ 0 in our ring, therefore xp ≡ 1).

We therefore have that (x j )2
i
= (x j )2

i
mod p

in Z2[x]/(x
p − 1). This

in turn implies that it is possible to compute the 2
i
-th power of an

element a(x) ∈ Z2[x]/(x
p − 1) simply permuting its coefficients

according to the following permutation: the j-th coefficient of the

polynomial a(x), 0≤j≤p−1, becomes the ((j · 2i ) mod p)-th coeffi-

cient of the polynomial a(x)2
i
. This observation allows to compute

the 2
i
-th power of an element in Z2[x]/(x

p − 1), again, at a linear

cost (indeed, the one of permuting the coefficients); moreover the

permutation which must be computed is fixed, and depends only on

the values p and 2
i
, which are both public and fixed, thus avoiding

any meaningful information leakage via the timing side channel.

The authors of [10] observe that, since the required permutations,

Algorithm 5: Inverse based on Fermat’s Little Theorem

Input: a(x ): element of Z2[x ]/(xp − 1) with a multiplicative inverse.

Output: c(x ) = (a(x )e )2 , and e=2p−2−1=(11 . . . 1)bin . The binary
encoding of e is a sequence of p−2 set bits.

Data: p : a prime such that ordp (2) = p − 1 (i.e., 2 is a primitive element of

GF(p)).
The algorithm is instrinsically constant-time w.r.t. to the value of a(x ),
as the control flow depends only on the value of p , which is not a

secret.

Computational cost: ⌈log
2
(p − 2)⌉ − 1 + HammingWeight(p − 2)

polynomial multiplications, plus p − 1 squarings

1 exp← BinEncoding(p − 2)
2 expLength←⌈log

2
(p − 2)⌉

// scan of exp from right to left; i=0↔ LSB

3 b(x ) ← a(x ) // exp
0
=1 as p−2 is an odd number

4 c(x ) ← a(x )
5 for i ← 1 to expLength − 1 do

6 c(x ) ← c(x )2
2
i−1
· c(x ) // 2

i−1 squarings, 1 mul.

7 if expi = 1 then

8 b(x ) ← b(x )2
2
i

// 2
i squarings

9 b(x ) ← b(x ) · c(x ) // 1 multiplication

10 c(x ) ← (b(x ))2 // 1 squaring

11 return c(x )

one for each value of (2i mod p), with i ∈ {1, . . . , ⌈log
2
(p − 2)⌉}

are fixed, they can be precomputed, and stored in lookup tables.

We note that the precomputation of such tables, while feasible,

is likely to take a non-negligible amount of memory. Indeed, such

tables requirep ·(⌈log
2
(p−2)⌉−1)· ⌈log

2
(p)⌉ bits to be stored, assum-

ing optimal packing in memory. This translates into tables ranging

between 136 kiB and 2, 856 kiB for the recommended prime sizes

in LEDAcrypt [3]. While these table sizes are not problematic for

an implementation targeting a desktop platform, more constrained

execution environments, such as microcontrollers, may not have

enough memory to store the full tables.

To this end, we introduce and examine a computational tradeoff,

where only a small lookup table comprising the (⌈log
2
(p − 2)⌉ − 1)

values obtained as (2i mod p), with i ∈ {1, . . . , ⌈log
2
(p − 2)⌉}, is

precomputed and stored, while the position of the j-th coefficient,

0≤j≤p−1, of a(x)2
i
is computed via a multiplication and a (single-

precision) modulus operation online, as (j · (2i mod p)) mod p.
This effectively reduces the tables to a size equal to (⌈log

2
(p −

2)⌉ − 1) · ⌈log
2
(p)⌉ bits, which corresponds to less than 1 kiB for all

the LEDAcrypt parameters.

Finally, the authors of [10] also note that, on x86_64 platforms, it

is faster to precompute the inverse permutation with respect to the

one corresponding to raising a(x) to 2i , as it allows the collection of

binary coefficients of the result a(x)2
i
that are contiguous in their

memory representation. This is done determining, for each coeffi-

cient of a(x)2
i
, which was its corresponding one in a(x) through

the inverse permutation. The said inverse permutation maps the

coefficient of the l-th degree term in a(x)2
i
, 0≤l≤p−1, back to the

coefficient of the (l · (2−i mod p) mod p)-th term in a(x). We note

that, also in this case, it is possible to either tabulate the entire

set of inverse permutations, as suggested by [10], or simply tabu-

late the values of (2−i mod p) and determine each position of the

permutation at hand partially online.
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Figure 1: Experimental evaluation of the four modular inverse algorithms. (a) average running time in clock cycles over 103

computations. (b) absolute value of the t-statistic for a Student’s t with two populations of 103 execution times for each algo-
rithm. The dashed horizontal line highlights the upper bound of the range [−4.5, 4.5], pointing out no data-dependent changes
in the timing behaviors of the algorithms below it with a confidence of 99.999% (α = 10

−5)

4 EXPERIMENTAL EVALUATION
We realized a self-contained implementation in C11 of all the afore-

mentioned inversion algorithms, employing appropriate compiler

intrinsics to exploit the features of the AVX2 ISA extensions avail-

able on the Intel Haswell microarchitecture, selected by the U.S.A.

National Institute of Standards and Technology as the standard

evaluation platform (source code available at https://doi.org/10.

5281/zenodo.3760589). In particular, we employed vector Boolean

instructions to speed up the required xor and shift operations

which make up a significant portion of the reported algorithms.

We exploited the presence of the carryless multiplication instruc-
tion (pclmulqdq) which performs a polynomial multiplication of

two 64-bit elements in a 128-bit one. We implemented the polyno-

mial multiplication primitive applying the Toom-Cook (TC) opti-

mized interpolation proposed in [6] until the recursive operand-

splitting computation path yields operands below 50, 64-bit machine

words. Then we employ a Karatsuba multiplication technique, with

all multiplications involving operands below 9 machine words per-

formed picking the optimal sequence of additions & multiplications

according to [15]. We determined the number of machine words

where the multiplication strategy changes (between the TC and

Karatsuba ones) via exhaustive exploration of the tradeoff points.

Concerning the exponentiations to 2
i
, as required by the op-

timized Fermat’s little based inverse, we investigated the effects

of the tradeoff reported in [10], where it is noted that, for small

values of i , it can be faster to compute the exponentiation to 2
i

by repeated squaring, instead of resorting to a bitwise permuta-

tion. Indeed, it is possible to obtain a fast squaring exploiting the

pclmulqdq instruction which performs a binary polynomial multi-

plication of two, 64 terms, polynomials in a 128 terms one. While it

may appear counterintuitive, this approach is faster than the use

of the dedicated Parallel Bits Deposit (pdep) instruction available

in the AVX2 instruction set. Indeed, the throughput obtained with

the parallel bit deposit instruction is lower than the one obtained

via pclmulqdq. This is due to the possibility of performing two

pclmulqdq bit-interleaving starting from a 128-bit operand which

can be loaded in a single instruction, as opposed to two pdep which
need to expand a 64-bit wide operand only. This fact, combined

with the low latency of the pclmulqdq instruction (5 to 7 cycles,

depending on the microarchitecture, with a CPI of 1, while the pdep
instruction has a 3 cycles latency, to acts on operands having half

the size) provides a fast zero interleaving strategy. We also recall

that, the implementation of the pdep instruction on AMD CPUs is

quite slow (50+ cycles), and non constant-time, as it is implemented

in microcode. As a consequence, the use of the pdep instruction

would lead to a scenario where the non constant-time execution on

a (AVX2 ISA extension compliant) AMD CPU can compromise the

security of the implementation. Finally, we note that the pclmulqdq
bit-interleaving strategy performs better than the one relying on

interleaving by Morton numbers [14], employing the 256-bit regis-

ters available via the AVX2 ISA extension, plus the corresponding

vector shift and or instructions.

We ran our experimental campaign on two AMD64 machines, an

Intel Core i5-6600, and an AMD Ryzen 5 1600, both running Debian

GNU/Linux 10, compiling the implementations with GCC ver. 8.3.0,

enabling the architecture-specific code emission (-march=native
compilation option) and the maximum optimization level (-O3 op-
tion). We measured the running time of our implementations em-

ploying the rtdscp instruction available in the AMD64 ISA to

obtain the number of clock cycles taken by a run of each algorithm,

taking care of pre-heating the instruction cache running another

non-timed execution of the same algorithm before. To obtain prac-

tical results, we computed the polynomial inversions picking the

modulus f (x)=xp−1∈GF(2p )[x] for all the values of p indicated

in the LEDAcrypt specification [3] for use in the ephemeral key

exchange LEDAcrypt-KEM-CPA, and in the IND-CCA2 LEDAcrypt-

KEM with their two-iterations out-of-place decoder. Figure 1 (a)

provides a depiction of the average number of clock cycles taken to

https://doi.org/10.5281/zenodo.3760589
https://doi.org/10.5281/zenodo.3760589
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compute each polynomial inversion algorithm, computed over 10
3

runs of it, acting on a randomly drawn, invertible, polynomial on

the Intel based machine. As it can be seen, the inverse computation

strategy exploiting large tables and Fermat’s little theorem proves

to be the most efficient one for the entire range of primes which

are employed in the LEDAcrypt specification. Analogous results

were obtained on the AMD based machine, and are omitted for the

sake of brevity. A further noteworthy point is that, if a compact

memory footprint is desired, and the constant-time property is not

strictly required, as it is the case for ephemeral keypairs, Algo-

rithm 3 (KTT) provides a valid alternative to the method relying on

Fermat’s little theorem, with compact lookup tables (Fermat-comp

in the legend) for the low range of prime sizes. We also note that an

implementation of Fermat’s little polynomial inverse, employing

only repeated squarings via bit interleaving, instead of a permuta-

tion based computation of the exponentiation to 2
i
is significantly

slower (Fermat-sq in Figure 1) than all other methods. Finally, we

note that, if the modular inverse is not being computed on a poly-

nomial ring having a modulus with a peculiar structure, such as

Z2[x]/(x
p − 1), the benefits of performing the inversion via Fer-

mat’s little theorem may be smaller, or nullified, with respect to a

completely general purpose inversion algorithm such as the one by

Bernstein and Yang, which, from our analysis provides competitive

performance and is constant time.

We note that the implementation of the algorithms expected to

be running in constant time (Algorithm 4 (BY in the legend) and Al-

gorithm 5 (Fermat-sq, Fermat-comp, and Fermat-tab in the legend))

relies on their implementation not containing any secret-dependent

branches, nor any memory lookups whose address depends on a

secret value. To provide an experimental validation of the said fact

Figure 1 (b) reports the result of the validation of the constant-time

property by means of a Student t-test, for each value of p, done on
two timing populations of 10

3
samples each taken, one when com-

puting inverses of random invertible polynomials, and the other

when computing the inverse of the x2 +x + 1 trinomial. The choice

of a trinomial is intended to elicit the leakage of the position of the

(very sparse) set coefficients, which represents the secret not to be

disclosed in cryptoschemes such as LEDAcrypt, as the position of

the few set coefficients is clustered at one end of the polynomial.

The values of the t-statistic, represented in absolute value in

Figure 1 (b), for Algorithm 4 (BY in the legend) and Algorithm 5

(All Fermat variants in the legend) are within the range [−4.5, 4.5]

(dashed horizontal lines), in turn implying that the t-test is not
detecting data-dependent changes in the timing behaviors with a

confidence of 99.999% (α = 10
−5
). By contrast both the method by

Brunner et al. (BCH in the legend), and the method by Kobayashi et
al. (KTT in the legend) show t statistic values far out of the interval
[−4.5, 4.5], exposing (as expected) their non constant time nature.

Finally, we note that on a desktop platform, given a polynomial

to be inverted a(x), making the KTT and BCH algorithms immune

to the timing side channel by replacing the computation of a(x)−1

with λ(x)·(λ(x)·a(x))−1, where λ(x) is a randomly chosen invertible

polynomial, will increase further their performance penalty w.r.t.

the Fermat-tab solution. Indeed, this solution (known as operand

blinding) requires λ(x) to be a large, random polynomial in our

case, since a(x) is highly sparse, and a value of λ(x) having few

coefficients would not hide its structure.

5 CONCLUDING REMARKS
We analyzed, implemented and benchmarked a set of polynomial

inversion algorithms, taking as our case study the binary polyno-

mials over Z2[x]/(x
p − 1), which are of interest due to their use

in current post-quantum cryptosystems such as LEDAcrypt. Our

analysis and experimental evaluation shows that, on platforms

providing AVX2 ISA extensions, an optimized implementation of

the Fermat’s Little theorem turns out to be the best performing

strategy overall, in addition to exhibiting a constant-time behavior.

Furthermore, we observe that, even selecting a tradeoff between

computation and memory geared towards a smaller fingerprint, the

aforementioned method is still competitive in performance with

variable time algorithms when the prime p sizes exceed ≈ 30, 000

bits. Finally, we provided the general inversion algorithms intro-

duced in [5] adapted for the case of binary fields and verified its

competitive performance and strong constant-time guarantees.
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