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The problem of estimating a tight and safe Worst-Case Execution Time (WCET), needed for certification in

safety-critical environment, is a challenging problem for modern embedded systems. A possible solution

proposed in last years is to exploit statistical tools to obtain a probability distribution of the WCET. These

probabilistic real-time analyses for WCET are however subject to errors, even when all the applicability

hypotheses are satisfied and verified. This is caused by the uncertainties of the probabilistic-WCET distribution

estimator. This article aims at improving the measurement-based probabilistic timing analysis approach

providing some techniques to analyze and deal with such uncertainties. The so-called region of acceptance

model based on state-of-the-art statistical test procedures is defined over the distribution space parameters.

From this model, a set of strategies is derived and discussed, to provide the methodology to deal with the

trade-off safety/tightness of the WCET estimation. These techniques are then tested over real datasets,

including industrial safety-critical applications, to show the increased value of using the proposed approach

in probabilistic WCET analyses.
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1 INTRODUCTION
In recent years the increasing computational power demand of applications leads to the evolu-

tion of computing platforms towards complex processor architectures and sophisticated system

components. To overcome the single-core performance barrier, today’s processor manufactures

have introduced several advanced features like multi-/many-core, complex pipelines, multi-level

caches, memory prefetcher, and many others. Unfortunately, this makes the problem of computing

the Worst-Case Execution Time (WCET) with traditional static timing analyses extremely difficult

[27], thus limiting the use of modern architectures in some classes of embedded systems, e.g. in

safety-critical systems. To reduce the design cost of embedded systems, industry has recently

looked at Commercial-Off-The-Shelf (COTS) platforms. The use of COTS components in real-time

applications is challenging and adds another layer of complexity in WCET estimation, due to the

numerous sources of unpredictability of these platforms [12]. In fact, COTS platforms are built
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0:2 Reghenzani, et al.

with average performance in mind and not intended to provide an execution time upper-bound,

needed by safety-critical embedded systems.

To obtain a valid and tight WCET estimation, traditional static analyses rely on the detailed

knowledge of the hardware and on the task control flow graph. The WCET estimation process

requires the exploration of all the input and processor state spaces to identify the worst-case

scenario. When the analysis is performed in modern architectures, this process usually demands

an infeasible quantity of computational power to carry out the result in a reasonable time, due to

the aforementioned complexity issues. Alternatively, considerable approximations are introduced

to reduce the exploration space and to make the estimation process feasible, however this leads to

an extremely pessimistic, and therefore unusable, WCET result.

To cope with the traditionalWCET static analysis problems, measurement-based approaches have

been proposed [35]. The main advantage of such techniques is that they do not require an accurate

model of the hardware and of the workload, thus overcoming the issues of static timing analysis.

The task execution time is measured several times across different inputs and processor states.

Then a deterministic or probabilistic analysis is performed on the sampled time trace. In particular,

the probabilistic approaches have been recently developed with the help of the Extreme Value

Theory (EVT), that is the cornerstone of probabilistic real-time computing [4] [18]. This statistical

theory is a well-assessed mathematical proved method used to model the extreme behaviour of a
statistical distribution, i.e. the values in the tails of that distribution. Common applications of this

theory include financial risk assessment and natural disaster prediction. EVT is briefly described

later in Section 2.1. The overall process that exploits EVT to obtain a probabilistic distribution

of the WCET (probabilistic Worst-Case Execution TIme - pWCET) is called Measurement-Based

Probabilistic Timing Analyses (MBPTA). However, measurement-based methods are affected by

several issues intrinsic of the estimation phase. Among them, the input representativity is still a

substantial open problem: how can we be sure that the inputs we provide to our system are able

to gather representative time measurements to correctly describe the WCET behaviour? In this

work, we voluntarily omit this aspect which is approached in other lines of work [1, 2, 22]. We

assume to explore a representative set of inputs and, consequently, that the time measurements

are representative of the real execution time. Instead, we focus on the uncertainties that affect the

parameters of the estimated EVT distribution and on how they impact the quality of the WCET

estimation. The omit made is to be able to focus on other aspects of MBPTA, and push forward its

maturity in different needed directions.

Contributions. Even assuming that all the hypotheses of MBPTA are true, the estimation of the

probability distribution of WCET is naturally subject to uncertainty. This is due to the fact that the

number of samples used to estimate the distribution of execution times is necessarily finite. This

paper wants to deal with this uncertainty, proposing a methodology to study the errors affecting the

probabilistic WCET estimation and to accordingly deal with the trade-off safety/tightness. To the

best of our knowledge, this problem has not been adequately tackled by the probabilistic real-time

community yet and it lacks of a precise mathematical formulation. Please note that this paper is not

a "statistical work" in the sense that we do not advance any statistical theory. Instead, we focus on

how already available and well-assessed statistical concepts can be applied to the pWCET problem,

and how they can affect the pWCET reliability from a real-time point of view.

Organization of the paper. After presenting the necessary background (Section 2), we system-

atically define the space of uncertainties with its relative properties (Section 3). Then, methods

to upper-bound and lower-bound these uncertainties are proposed together with the analysis on

their effects on WCET (Section 4). By exploiting the defined mathematical tools, we propose some

strategies to deal with the tradeoff safety/tightness of the WCET (Section 5). Finally, the proposed

tools are tested on industrial datasets to show their benefits when used with MBPTA (Section 6).

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2020.
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Dealing with uncertainty in pWCET estimations 0:3

1.1 State of the art
In the last decade, several works on both the theoretical and the practical aspects of probabilistic

real-time have been published. A couple of comprehensive surveys has been recently published

[13] [5]. The probabilistic approach is conceived in 2001-2002 by Edgar et al. [18], and Bernat et

al. [4]. From that moment onward, although the methodology has improved substantially, several

challenging problems still remain open [22]. Some of these challenges are in common between

deterministic and probabilistic measurement-basedmethods and others are shared by static analyses.

The categorization among static and measurement-based, deterministic and probabilistic analyses

has been provided by Abella et al. [1], focusing on certifiability aspects.

Concerning the MBPTA approach, that is the subject of this work, a general overview of the

methods has been presented in [10] and [44]. Initially, the trend has been to propose randomized

architectures to fulfill the EVT requirements [6, 29]; MBPTA has also applied to some industrial

case studies [19, 48] and probabilistic-energy estimation [39]. Lately, a generalization of the EVT

approach has been proposed [30] with the relaxing of some of the EVT requirements; the focus

here is on the EVT applicability, i.e. the satisfaction of EVT hypotheses, to improve the pWCET

reliability in realistic real-time systems
1
. A selection of statistical tests to verify these hypotheses

has been proposed in [40]. A recent work [14] described how MBPTA and epistemic variability are

related and how they impact on pWCET. The work most similar to ours is [46], in which the authors

build a confidence region on the EVT distribution. As subsequently discussed in Section 3.4, the

authors tried to select the best distribution model through an empirical evaluation. Despite having

some practical applications, its empirical nature makes necessary more rigorous mathematical

formulations and discussions. The paper of Civit et al. [7] is another example contribution seeking

for the best distribution to represent pWCETs. In opposition to that, our approach is not limited to

the exponential version of the pWCET and exploits statistical testing to increase the final pWCET

reliability.

2 BACKGROUND
This section aims at providing the reader the necessary background on extreme statistics, how it

could be applied to derive a probabilistic-WCET (pWCET), and which are the reliability implications

of using such statistical techniques for pWCET estimations.

2.1 Extreme value theory
The EVT has been proposed at the beginning of the 20th century, to overcome the limits of the

well-known Central Limit Theorem. This theorem provides indeed information on the mean value of

the distribution and no information can be inferred on the tail values, i.e. the extreme values. Given

a sequence of independent and identically distributed (i.i.d.) random variables X1,X2, ...,Xn ,

the EVT process looks for the distribution of the following cumulative distribution function

(cdf): F (x) = 1 − P(x > max(X1,X2, ...,Xn)). This distribution converges to well-known forms,

independently on the original distribution of random variables Xi . The fundamental cornerstone

of this statistical theory is the following theorem:

Theorem 2.1 (Fisher-Tippett-Gnedenko theorem [20] [23]). There exist two constants an and
bn such that: limn→∞ F (anx + bn) = G(x), whereG(x) is the cdf of the extreme value distribution G

that can assume only three forms: the Gumbel, the Weibull, or the Fréchet distribution.

1
With realistic real-time systems it is intended real-time systems that are "real": implemented and used in industrial applica-

tion. This in opposition to unrealistic real-time systems which most of the time are assumed for theoretical analyses/results.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2020.
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0:4 Reghenzani, et al.

In the ’70, it has been proved [32] that these three distributions can be generalized in one single

form called Generalized Extreme Value (GEV) distribution:

G(x) =

{
e−e

x−µ
σ ξ = 0

e−[1+ξ (
x−µ
σ )]−1/ξ

ξ , 0

The GEV distribution has three parameters: the location µ, the scale σ and the shape ξ . The sign of

ξ determines the distribution class: if ξ > 0, the GEV converges to the Fréchet distribution; if ξ < 0,

it converges to the Weibull distribution; and if ξ → 0, it converges to the Gumbel distribution.

In order to estimate the GEV distribution parameters, it is possible to use the Block-Maxima (BM)

approach: the input data are filtered in order to obtain the significant measures for the distribution

tail only. In particular, selecting a block size B we define the following sequence of m random

variables X =
{
X BM

1
,X BM

2
, ...,X BM

n/B

}
where X BM

k = max

(
XB(k−1)+1, ...,XB(k−1)+B

)
. Using

the sequence of maxima X it is possible to run any well-known estimator, e.g. the Maximum

Likelihood Estimator, to obtain the estimation of the GEV parameters (µ,σ , ξ ).
For completeness, it is necessary to cite the alternative method to Block-Maxima to estimate

the extreme distribution: Peak-over-Threshold (PoT). This approach applies a filter on the input

measurements based on a predefined thresholdu: X = {Xi s.t. Xi > u,∀i}. This set of exceedances
can be used to estimate a different distribution called Generalized Pareto Distribution (GPD). GEV
and GPD are asymptotically equivalent. In this work we consider only the GEV distribution class,

however the proposed analyses and methods are still valid and general enough to be applicable to

GPD distributions as well.

2.2 Probabilistic-WCET
In probabilistic WCET estimation with measurement-based approaches, the EVT is exploited to

estimate theWCET by using a sequence of measurements of the task execution time. The input of the

EVT estimation process, i.e. the realization of previously defined random variables X1,X2, ...,Xn ,

is the sequence of the measured execution times of a real-time task.

The output of probabilistic approaches is not a single WCET value, rather it is a statistical

distribution and, in particular, the distribution which results from the EVT process. This distribution

is the so-called probabilistic-WCET (pWCET) and it relates the multiple worst-case values with

their associated probability of being exceeded. The pWCET is a generalization of the classical

deterministic WCET as a distribution able to upper bound task execution timing behaviors [14]

[15].

The pWCET is usually expressed with its complementary cumulative distribution function (ccdf):

p = 1 − F (WCET) = 1 − P(X ≤ WCET) = P(X > WCET)

where F (x) is the cumulative distribution function (cdf). It is possible to use this notation, chosen a

WCET value, and to obtain the probability of violation p, i.e. the probability of observing execution

times larger than WCET. Alternatively, it is possible to compute the WCET at a given probability

of violation p by using the notation WCET = F ′(p), where F ′(·) is the inverse complementary

cumulative distribution function (iccdf).

2.3 EVT hypotheses and pWCET reliability
The EVT requires to fulfill some requirements in order to produce a valid estimation of the dis-

tribution tail. In particular, two main theoretical hypotheses must be satisfied: the fact that the

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2020.
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Dealing with uncertainty in pWCET estimations 0:5

random variables are independent and identically distributed (i.i.d.)
2
and the Maximum Domain of

Attraction (MDA). In probabilistic real-time computing, the i.i.d. hypothesis on execution times is

mainly influenced by the processor state space and by the presence of a multi-path control flow

graph in the task under analysis. Regarding the MDA, this hypothesis requires that the distribution

of the input measurements has to be in the domain of attraction of one of the three extreme value

distributions of a GEV or GPD. It is harder to find a direct relationship of MDA with the computing

system. The MDA hypothesis is satisfied for the large majority of continuous distributions while

this is not true for the discrete distribution [43], e.g. the Poisson distribution is not in the MDA of

any extreme value distribution form.

In addition to these two hypotheses, the input representativity problem still represents the major

barrier to the use of probabilistic real-time in safety-critical systems. This article assumes i.i.d. and

input representativity to be valid and, consequently, the EVT method as applicable. We focus on the

MDA hypothesis and on how the Goodness-of-Fit (GoF) tests can help in improving the estimated

pWCET distribution. The goal of GoF tests is to check the validity of the MDA hypothesis, i.e.

they verify if the estimated distribution G(x) fits the X set or not. A GoF test allows us to detect

ill-formed distributions, e.g. due to the violation of MDA hypothesis, an error during the estimation

routine, a wrong selection of the block size B, or a too small sample size. The most commonly

used GoF tests for EVT distributions are the Chi-Squared (CS), the Kolmogorov-Smirnov (KS), the

Cramer-von Mises (CvM) and the Anderson-Darling (AD) ones [26]. To obtain the reject/non-reject
result, a statistical test usually computes a value from the data, called statistic, and compares it

against a tabular data called critical value. When the chosen test rejects the null hypothesis, the

estimated distribution G is not valid and the analysis must stop. In this case, in fact, the obtained

pWCET is not representative of the real WCET distribution.

3 REGION OF ACCEPTANCE
The estimation of the extreme value distribution G, which results from the EVT process, is naturally

subject to errors: the necessary condition to obtain the exact distribution for any estimator algorithm

is to have infinite measurements, that is clearly not realistic. To this extent, the estimator routine

provides us the GEV parameters tuple (µ,σ , ξ ) that can be rewritten as (µ⊛ + ϵµ ,σ
⊛ + ϵσ , ξ

⊛ + ϵξ ),
where (µ⊛,σ⊛, ξ⊛) is the exact unknown distribution and the symbols (ϵµ , ϵσ , ϵξ ) represent the
unknown errors in our estimation. The goal of the GoF tests previously described is to detect

these uncertainties and to reject the estimated distribution when the errors are excessively high.

However, because of the finite number of measurements, the GoF test is also imperfect, i.e. it is not

able to reject the distributions when (ϵµ , ϵσ , ϵξ ) are low enough to be undetected. For this reason,

it exists a multi-dimensional cloud of points in the GEV (or GPD) parameters space that represents

the distributions which are not rejected by the GoF test. In this section we explore this region and

how its statistical properties affect the reliability of our pWCET estimation.

3.1 Definitions and basic concepts
From now on, we assume that we have already performed the EVT estimation of the pWCET

distribution: the input set of the execution time measurements has been filtered by the BM approach

to obtain a set X , from which we have estimated the GEV distribution G. We often refer to this

set as the time trace of the execution time measurements.

Before formally defining the uncertainties of the GEV parameters space, we specify the following

helper function:

2
The i.i.d. hypothesis can be relaxed less strict hypotheses [44], however this discussion is out of scope of this paper.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2020.
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(a)

Best Fit Point

Best Statistic Point

(b)

Fig. 1. The Region of AcceptanceR(X ) plotted for a real set of timemeasurementsX : (a) by color representing
the value of statistics D(·) (color scale red-green: the red color identifies values near the critical value, the
green color identifies – in the middle of the region – values far form it); (b) by green dots where the T (·) = 0

and the highlighted BFP and BSP points.

Definition 3.1 (Test result function). Given a certain statistical test identified by its statistic function
D(·), a time trace X , an estimated distribution G, and the critical value

3 CV , its test result function
is defined as:

T (X ,G) :=

{
1 if D(X ,G) ≥ CV (G)

0 if D(X ,G) < CV (G).
◁

This definition is a formal notation to state the result of a statistical test: the rejection of the null

hypothesis (T (X ,G) = 1) – i.e. the values X show a strong evidence that have not been drawn

from the distribution G – or the non-rejection of the null hypothesis (T (X ,G) = 0) – i.e. the values

X have been probably drawn from the distribution G. This definition can be used to identify the

region of points in the parameter space of the GEV distributions for which the test accepts the null

hypothesis. Note that this is an abuse of the common notation of hypothesis testing. In statistics

we never say that a statistical test accepts the null hypothesis, rather we say that it is not able to

reject it. In this paper we abuse the accepts notation for clarity purposes. More details on this are

available in Section 3.4.

By exploiting the test result function, we can formally define the three-dimensional cloud of

points in the GEV parameters space where the test accepts the distributions:

Definition 3.2 (Region of Acceptance). Given a time trace X , the Region of Acceptance for a GEV

distribution of a statistical test with test result function T is the cloud of points R:

R(X ) := {(µ,σ , ξ ) ∈ R3
: T (X , (µ,σ , ξ )) = 0}. ◁

A visual example of the Region of Acceptance is depicted in Figure 1. To shorten the notation,

we sometimes avoid to write the measurements parameter R = R(X ). In the same parameters

space, it is possible to identify the tuple (µ,σ , ξ ) as the point that represents the output of the EVT
estimator. We call this point the Best Fit Point (BFP). This point may or may not be inside the

region R, i.e. it may be accepted (T (·) = 0) or rejected by the GoF test (T (·) = 1). If this point is

outside the region, the estimator fails to provide a valid distribution. The region may even not exist,

3
For some GoF statistical tests, the critical value depends on the reference distribution (e.g. the Anderson-Darling test). We

write it as a function of the reference distribution CV (G) or simply CV .

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2020.
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Dealing with uncertainty in pWCET estimations 0:7

e.g. when the original distribution is not in the domain-of-attraction of any GEV distribution. It is

worth reminding that the GoF test has a false positive rate that is equivalent to the chosen level of

significance α , i.e. the GoF test wrongly rejects a distribution with α probability. In a probabilistic

real-time scenario, this means that with α probability a valid pWCET distribution is mistakenly

rejected. This has however safe consequences, since this is a failure condition for the EVT analysis

that does not produce any pWCET distribution.

From now on, we consider this point BFP as part of the region, i.e. we assume to have estimated a

distribution G that successfully passed the statistical testing procedure. We will discuss this further

in the experimental evaluation (Section 6), when we obtain a BFP rejected by the GoF test during

the analysis of a real dataset. According to this assumption and Definition 3.1, the test assigns a

statistic value D(X , (µ,σ , ξ )) to the BFP, that is lower than the critical value CV . In general, the

BFP point does not correspond to the point with the minimum statistic value provided by the test.

In particular, we can define the following point as:

Definition 3.3 (Best Statistic Point, BSP). Given a time trace X , the Best Statistic Point for a

statistical test with statistic D(·) is:

(µ∗,σ ∗, ξ ∗) := arg min

µ,σ ,ξ
D(X , (µ,σ , ξ )). ◁

Examples of BFP and BSP points are depicted in Figure 1b. According to the previous assump-

tion, the region R has at least one point, i.e. the BFP. Thus the BSP point always exists with

D(X , (µ,σ , ξ )) < CV . Before proceeding with the region analysis, we define the following property

of the statistic of a statistical test:

Definition 3.4 (Correct statistic). Given a sample X of size n drawn from a distribution A, we

say that a statistic D(X ,A) of a given statistical test is correct iff D(X ,A) → K for n → ∞ with

K ∈ R and D(X ,A) ≥ K for any finite value of n. ◁

To put it less formal, a statistic is correct if, when applied to the exact distribution of samples and

having a sample of infinite size, it provides the minimal possible value (e.g. D = 0 in KS test). This

property and the well-known consistent estimator property enable the following asymptotic result:

Lemma 3.5. If the estimator is consistent and the statistic computed by the statistical test is correct,
then both the best fit point and the best statistic point converge to the real unknown pWCET distribution
point (µ⊛,σ⊛, ξ⊛):

(µ,σ , ξ ) → (µ⊛,σ⊛, ξ⊛) n → ∞;

(µ∗,σ ∗, ξ ∗) → (µ⊛,σ⊛, ξ⊛) n → ∞

where n is the size of the set X used for training or testing the pWCET distribution. ◁

Proof. This result is an immediate consequence of the definitions of consistent estimator and

correct statistic of the test. □

This asymptotic result can be exploited to derive the following theorem.

Theorem 3.6. Given a time trace X , if the statistic of the considered statistical test is correct, the
exact true distribution P⊛ is inside the acceptance region R:

(µ⊛,σ⊛, ξ⊛) ∈ R. ◁

Proof. Let be n the size of the set X and P∗
n ∈ R the best statistic point of Definition 3.3. We

provide this proof by contradiction. Let assume that P⊛ < R. It follows that D(X , P⊛) > CV
and, consequently, D(X , P⊛) > D(P∗

n). When n → ∞, P∗
n → P⊛

and D(P∗
n) → D(P⊛). Since the

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2020.



P
R
E
-
P
R
O
O
F

A
C
C
E
P
T
E
D

V
E
R
S
IO
N

0:8 Reghenzani, et al.

WCET

F(x)
G (x)

1

(a) Varying µ parameter

WCET

F(x)
G

2
(x)

(b) Varying σ parameter (c) Varying ξ parameter

Fig. 2. Comparison of the complementary-cdfs F̄ (x) = 1 − F (x) = P(x ≥ X ) varying the different parameters
of the reference GEV distribution.

statistic is correct as Definition 3.4, D(P∗
n) → K , consequently D(P⊛) = K . But ∀n D(P∗

n) ≥ K and

K < D(P∗
n) < CV , therefore D(P⊛) < CV that is in contradiction with the hypothesis P⊛ < R. □

This theorem states, from a real-time viewpoint, that the true – but unknown – pWCET distri-

bution is always inside the region R. This has impact on the evaluation of the confidence of the

pWCET result, as described below.

WCET over-estimation result. Each point in the region R(X ) corresponds to a pWCET distribu-

tion with parameter tuple (µ,σ , ξ ). Thanks to the result of Theorem 3.6, we can state the following

corollary:

Corollary 3.7. Given a region R(X ), a violation probability p, and a point P̂ ∈ R(X ) such that
P̂ = arg maxP F

′
P (p), then either P̂ = P⊛ or the pWCET associated to P̂ overestimates the real pWCET

given by P⊛ at violation probability p.

In other words, given a fixed value for the violation probability p we can compute the WCET

for each point of region R. Then, the maximum of these WCETs is either the true WCET or a safe

overestimation of the WCET, at violation probability p. Conversely, there is no point P ∈ R that, in

general, overestimates the WCET for any probability p. A possible solution to this issue is presented

later in Section 4.

3.2 Exploring the Region of Acceptance
The region R(X ) describes the estimation uncertainty of the three parameters of the GEV dis-

tribution. Its size along the three axes depends on several factors, including the distribution of

the input data, the chosen test statistic, the significance level α and the number of samples n. In
particular, when increasing the sample size n, the ability of the test to detect invalid distributions

improves, leading to, in general, a decrease of the region size. Moreover, the three dimensions

are strictly correlated. For example, experimental evidences show that points inside the region

representing a Fréchet distribution (ξ > 0) have usually lower values of σ than points inside the

region representing a Weibull distribution (ξ < 0)
4
. To compare the distributions corresponding

to the points inside the region, it is necessary to clearly define the order relations between two

pWCETs.

pWCET ordering via statistical dominance. In previous articles on probabilistic real-time [44,

45], the ordering relation between pWCET has been defined by using the simplest form of partial

ordering between distributions:

4
This is neither a formal nor a general rule, but a recurring behaviour experienced by performing EVT estimations.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2020.
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Dealing with uncertainty in pWCET estimations 0:9

Definition 3.8 (First-order stochastic dominance [36]). A probabilistic-WCET pWCETA dominates
a pWCETB iff the probability of observing a WCET larger than x is always equal or higher in

pWCETA with respect to pWCETB , but the two distributions must not be exactly the same. In

notation form:

pWCETA ≻ pWCETB ↔ [∀x : FA(x) ≤ FB (x)

∧∃y : FA(y) < FB (y)] ,

where FA(x) and FB (x) are respectively the cdf of pWCETA and of pWCETB . ◁

An example of first-order stochastic dominance is shown in Figure 2a
5
: the distributionG1(x)

dominates the distribution F (x). However, this is a very restrictive partial ordering: it is not possible
to apply it to situations like the one depicted in Figure 2b. Econometrics analyses frequently

overcome this problem using the so-called second-order stochastic dominance that has been studied

in [47] for extreme value distributions. Even if this dominance is widely used in financial risk

analysis, it does not provide the necessary guarantees for the distribution tail. This non-applicability
to pWCET is described in details in Appendix A. Rather, we suggest to use a less restrictive

dominance that keeps the safety of real-time requirements valid:

Definition 3.9 (Left tail-restricted first-order stochastic dominance [34]). A probabilistic-WCET

pWCETA left dominates a pWCETB iff the probability of observing a WCET larger than x is always

equal or higher in pWCETA with respect to pWCETB with x ∈ [x ,+∞), but the two distributions

must not be exactly the same. In notation form:

pWCETA
L

≻ pWCETB ↔ ∃x [∀x > x : FA(x) ≤ FB (x)

∧∃y > x : FA(y) < FB (y)] .

Every first-order stochastic dominance is also a left tail-restricted first-order stochastic dominance:

pWCETA ≻ pWCETB =⇒ pWCETA
L

≻ pWCETB . ◁

Although this definition is still a partial ordering, we can describe a larger set of relation, e.g.

the scenario of Figure 2b
5
: the cdfG1(x) left dominates the cdf F (x), i.e. fixed a WCET value, the

pWCET related to G1(x) provides an higher violation probability p for any x > x with x = 100 in

the depicted example.

Points dominance analysis. Having defined the previously described orders for pWCET, we can

now formalize the dominance when we move along one direction from a chosen point inside the

region. In particular, Figures 2a, 2b, 2c depict the simplest scenarios. Using the notation inside the

figures, let be pWCETF ∼ GEV (µ,σ , ξ ) and pWCETG ∼ GEV (µ ′,σ ′, ξ ′), hence:

• if µ ′ > µ and σ ′ = σ , ξ ′ = ξ then pWCETG ≻ pWCETF

• if σ ′ > σ and µ ′ = µ, ξ ′ = ξ then pWCETG
L

≻ pWCETF
• if ξ ′ > ξ and µ ′ = µ,σ ′ = σ then pWCETG ≻ pWCETF

It is also possible to build more complex relations when two or more variables change:

• if ξ ′ > ξ and σ ′
and/or µ ′ change in any directions then pWCETG

L

≻ pWCETF ;

• if σ ′ > σ and ξ ′ = ξ and µ ′ changes in any direction then pWCETG
L

≻ pWCETF .

5
As a reminder, the cumulative distribution function is defined as F (x ) = P (x < X ). Instead, its complementary, F̄ =

1 − F (x ) = P (x ≥ X ), is depicted in the figures.
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Fig. 3. The Region of Acceptance R generated from a Gaussian distribution sample and test CvM with the σ
values collapsed. It is possible to notice that R includes all the three possible extreme value distributions.

Starting from these relations and according to the previous ordering definitions, it is possible to

know if, by moving from a specified point inside the region to an another point inside the region,

we are overestimating or underestimating the pWCET. When pWCETP ≻ pWCETP ′ the pWCET

related to point P ′
is safely overestimated by P for any violation probability value p. Rather if

pWCETP
L

≻ pWCETP ′ the pWCET related to point P ′
is safely overestimated by P for any violation

probability value p > p with p that can be computed solving the equivalence equation between the

iccdfs of both points. If p < p, the distributions may potentially intersect in several points, making

it impossible to conclude anything without further analyses.

3.3 EVT distribution classes
The Region of Acceptance may include more than one extreme value distribution classes. In order

to show this, we have generated a random sample X1,X2, ...,X50 000 from a Gaussian distribution

N(10000, 100). After applying BM, 80% of the sample is used to produce the pWCET estimation,

while the remaining 20% is used to run the CvM test and build its Region of Acceptance R depicted

in Figure 3. In this figure, we have not illustrated the scale parameter σ axis in order to clarify

the variation of the ξ parameter. It can be noticed that the region includes all the three possible

extreme value distributions: Fréchet (ξ > 0), Weibull (ξ < 0) and Gumbel (ξ = 0). Our estimator

produced a Weibull distribution (ξ < 0) and also the BSP is in the same distribution class. From

statistical theory, we know that any Gaussian is in the domain of attraction of a Gumbel, thus these

two points, for n → ∞, will converge to the Gumbel line of Figure 3.

Besides from the statistical interest on the distribution type, there is a significant effect on the

pWCET:

• The Weibull distribution is a truncated-tail distribution, i.e. there exists a maximum iccdf

F ′(p) value for p → 0, thus upper-limiting the WCET.

• The Gumbel distribution is a light-tail distribution, i.e. the iccdf F ′(p) → ∞ for p → 0, but

the F ′(p) goes to zero faster than the exponential distribution, making the WCET unbounded.

However, to obtain a linear increase of the WCET, the probability p should decrease faster

than an exponential function.

• The Fréchet distribution is a heavy-tail distribution, i.e. the iccdf F ′(p) → ∞ for p → 0, but

the F ′(p) goes to zero slower than the exponential distribution: arbitrarily large WCET has a

non-negligible probability to be observed. Moreover, if ξ > 1, the mean of the distribution is

infinite: E[X ] = ∞,X ∼ GEV (µ,σ , ξ > 1).
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Dealing with uncertainty in pWCET estimations 0:11

Fig. 4. The overlap of the CDFs of all distributions related to each point of the region of Figure 1. The
upper-bound of this area is the curve pWCET↑, while the lower-bound the curve pWCET↓.

According to Section 3.2 we can define the following ordering: pWCETξ >0

L

≻ pWCETξ=0

L

≻

pWCETξ <0
. The fact that a region spreads over different GEV distributions can then provide

a way to increase the pWCET estimation quality. If some knowledge of the system and the task is

available – e.g. it is known that the execution time must be bounded – then the exact distribution

P⊛
cannot be in the Fréchet region. In this case, if the estimator generates a pWCET P with ξ > 0

and if we consider as the worst-case the point P ′ ∈ R having ξ = 0, then P ′
is both safe and tighter

than P . Vice versa, if P has ξ < 0 and we known that the WCET can assume arbitrarily large values,

then we must move the point P towards the Fréchet region to obtain a more pessimistic but robust

estimation. The in-depth discussion and analysis of the system properties involving the concept of

maximum domain of attraction is left as future work.

Identifying the correct model for pWCET. Some effort has been dedicated in previous works to

identify the best model that fits the worst-case execution time values. The results are controversial:

some researchers [2, 10, 11, 25] claim we should consider only the Weibull or Gumbel distribution,

while others [30, 44] do not exclude the Fréchet too. The Gumbel distribution is often the only one

taken into account because it is an upper-bound of the Weibull, however, it is not always possible

to use such upper-bound strategy without hindering the result reliability [38]. All these works are

mostly based on empirical considerations, which lack strong mathematical justifications, that are

indeed difficult to achieve. For this reason, this work does not consider any GEV class restriction

and it does not aim at identifying the best model for WCET estimation. Instead, it provides general

methods, that work with any GEV class, to perform future investigations also in the direction of

finding the best pWCET model. In the experimental part of this paper (Section 6) a relevant result

on ξ uncertainty, intrinsic in the definition of Region of Acceptance, is discussed: it is not possible

to directly rely on the pWCET estimation provided by the estimator because its inaccuracies can

lead to unreliable or untight results.

3.4 The relation with statistical power
The Region of Acceptance is defined over the test result function of Definition 3.1. As we already

said, the ”acceptance“ term is used in contrast with the standard nomenclature used in statistical

tests. This is because, a statistical test can not prove the truthfulness of the null hypothesis but only

its falseness. However, the statistical power of the test can be used to obtain a confidence on the test

results when the null hypothesis is not rejected. In fact, the statistical power is the complement of

the probability of a false negative result, i.e. of not rejecting an invalid distribution. The estimation
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0:12 Reghenzani, et al.

of statistical power for GEV distributions is already available in literature [41], allowing us to select

a sample size for the input measurements that guarantees a certain confidence level [42].

4 ESTIMATION BOUNDS AND UNCERTAINTY
In Section 3.2 we discussed how to define the dominance between different points of the Region of

Acceptance. The upper-bound for a single probability value was provided in Section 3.1. However,

it does not exist, in general, one single point, i.e. one single valid distribution, able to dominate

the overall region. In this section we propose a method to overcome this problem by estimating a

pWCET curve that pessimistically bounds all the possible valid distributions of the region.

The pessimistic pWCET curve. The idea behind the pessimistic bound is to obtain a robust and

safe estimation of the pWCET by taking the worst-case curve generated by overlapping the CDF of

all the points inside the Region of Acceptance. The requirement for pessimism (safety of pWCET

estimates) is illustrated in Figure 4, and formalized in the following definition:

Definition 4.1 (Pessimistic pWCET Curve). The curve pWCET
↑
is defined as the locus of point

(WCET,p) such that WCET ∈ D and p = maxP ∈R [1 − FP (WCET)], where D is the domain of the

worst-case execution time and FP is the cdf corresponding to the point P in the region R. ◁

As the definition clearly points out this locus of points first-order stochastic dominates all the

other points pWCET
↑ ≻ pWCETP ∀P ∈ R, thus making the pessimistic pWCET curve a safe over-

estimation of the real distribution. However, when the region is computed in a real scenario, the

space of parameters cannot be explored continuously and the set of points inside the region must

be discretized. The pessimistic pWCET curve reliability depends also on the resolution selected

to build the region: in the unlucky case that P⊛
is in the proximity of the region boundaries, the

resolution of µ,σ , ξ used to build the region may not be sufficient to include P⊛
. More generally,

to obtain a safe pessimistic pWCET curve it is sufficient to consider one more layer outside the

region: (µ ± δµ,σ ± δσ , ξ ± δξ ) where δµ,δσ ,δξ are the parameter resolutions used in the region

exploration.

The tightest pWCET curve. The same definition used for the pessimistic pWCET curve can be

used to define its symmetrical tightest version i.e., the black lower curve in Figure 4:

Definition 4.2 (Tightest pWCET Curve). The curve pWCET↓ is defined as the locus of point

(WCET,p) such that WCET ∈ D and p = minP ∈R [1 − FP (WCET)], where D is the domain of the

worst-case execution time and FP is the cdf corresponding to the point P in the region R. ◁

It is important to remark that the pWCET↓ does not necessarily represent an optimistic bound

to the real pWCET distribution. This locus of points has indeed passed the goodness-of-fit test,

making it a valid extreme value estimation for the real pWCET. The pWCET↓ is, however, the less

robust estimation in the whole set of possible distributions. We will recall and extend this concept

later on in Section 5.

Uncertainty area. The area between pWCET↓ and pWCET
↑
contains all the possible pWCET

distributions according to our definition of Region of Acceptance. We informally call this space area
of uncertainty and it is depicted as the gray area in Figure 4. This area is strictly correlated with the

region size and parameters spread previously discussed in Section 3.2: the bigger the region R the

bigger the area of uncertainty. Since we moved from the GEV parameters space to the ccdf space,

the area of uncertainty provides a new metric to compare different possible estimations.

Definition 4.3 (Area of uncertainty). The area of uncertainty is defined as the area in the ccdf-space

composed of the points of all ccdf curves of all pWCET distribution belonging to the Region of

Acceptance. Equivalently, it is the area between the pWCET
↑
and the pWCET↓ curves. Let be
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Dealing with uncertainty in pWCET estimations 0:13

pWCET
↑(x) and pWCET↓(x) their respective curve functions D → [0; 1], then the value of this

area is:

A :=

∫ ∞

0

[pWCET
↑(x)]dx −

∫ ∞

0

[pWCET↓(x)]dx . ◁

The value ofA can be easily computed numerically and it represents a novel metric to empirically

evaluate the quality of the probabilistic analysis. Large values of A suggest that our region includes

large values of uncertainty not only in the parameter space, but also in the pWCET space. This

is the case discussed in Section 3.3 when in our region estimation all the three GEV models are

plausible according to the considered statistical test. Vice versa, when the value of A is small, this

is a clue that at least the distribution class is correct. The value of Amay be also infinite: when at

least one point P with ξ ≥ 1, the mean value of the distribution and consequently the area under

the ccdf are infinite. In this case, we can make two possible interpretations: either the analysis has

been incorrectly performed or the system behaviour shows strong evidences of unbounded WCET.

We could also exploit this to compare statistical tests: the area size is a direct measure of their

quality, because a test with a smaller area is able to detect greater violations rather than another

test executed with the same experimental setup but with a larger area.

5 TIGHTNESS AND PESSIMISM TRADE-OFF
This section exploits the previous theoretical results and tools to propose decision-making methods

on the trade-off between tightness and pessimism of the estimated pWCET.

5.1 Best fit point vs best statistic point
According to Section 3.1, the BFP P provided by the estimator and the BSP P∗

provided by the

statistical test are good approximations of the unknown exact pWCET P⊛
. In general, it is not

possible to establish which of P or P∗
is the closest to the exact pWCET. However, the closest point

to P⊛
is not necessarily the best in a real-time context. We could in fact consider a different point

that safely over-estimates the real distribution pWCET using one of the dominance definitions

of Section 3.2. Accordingly, the first decision criterion is to select P if P ≻ P∗
or vice versa. In

alternative, we can consider the left tail-restricted dominance and select P if P
L

≻ P∗
or vice versa;

in this case, our decision remains valid if, in the evaluation of pWCET distribution, the computed

WCET at a given probability level p is higher than the value x of Definition 3.9. These selection

criteria with the statistical dominance concepts can be applied to any other point of the region R.
Unfortunately, it is not always possible to select between two points with stochastic dominance,

due to its partial ordering.

5.2 The robustness ratio
To evaluate the pessimism and tightness of a given pWCET distribution belonging to a point of the

region R, we propose a metric based on an empirical formula. Nevertheless, the next Section 5.3

shows the existence of a relation between this formula and a well-defined statistical parameter.

Definition 5.1 (Robustness ratio). Let us assume that we select a probability p and a distribution

corresponding to a point P ∈ R. At this probability, we can compute three WCETs: from P , from
pWCET↓, and from pWCET

↑
. We call: (1) D↓ the absolute value of the distance between the WCET

computed in P and the WCET computed with pWCET↓; (2) D
↑
the absolute value of the distance

between the WCET computed in P and the WCET computed with pWCET
↑
(see right-side of Figure
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4 for clarity). We can now define the robustness ratio as:

r =
D↓ − D↑

D↓ + D↑
. ◁

This ratio r is always r ∈ [−1;+1]. When r → −1, the distribution of point P is near the tightest

one.When r → +1, the distribution of point P is instead near the pessimist one. The robustness ratio

r is then a metric representing the trade-off between tightness and pessimism. The experimenter

can choose among all the valid distributions based on the value of this ratio, by knowing from the

results of Section 3.1 that the true WCET value is inside this interval.

5.3 Confidence in the pWCET analysis
If we consider the previous definition of robustness ratio, by selecting a desired value of violation

probabilityp, we can derive theWCET interval from the curves pWCET↓ and pWCET
↑
. This interval

is written as I
p
W = [WCET↓;WCET

↑] and, according to Figure 4, its size is D↓ + D
↑
. Since the real

distribution related to point P⊛
is inside the region – from Theorem 3.6 – and since we know that

this interval represents all the pWCET distribution values – from Definitions 4.1 and 4.2 –, then the

real WCET value at the given probability p is inside this interval: WCET
⊛
p ∈ [WCET↓;WCET

↑].

Definition 5.2 (Confidence of the pWCET analysis). Given a probability p and a WCET ∈ I
p
W , the

confidence of the pWCET analysis c is defined as:

c = P
[
P(X > WCET) ≤ p

]
. ◁

It is important to carefully dwell on this definition. The confidence is defined as the probability

that the system violation probability is underestimated. If c = 1, the estimated couple (p,WCET) is

surely safe. If c < 1, there exists a certain degree of uncertainty on the safety of (p,WCET). The

reader should not confuse the two probabilities: p is the chosen violation probability, a run-time

property of the system, i.e. the probability to experience a larger WCET than the estimated one; c
is the confidence, a property of the analysis, i.e. the probability to have estimated an unsafe couple

(p,WCET).

This confidence can be linked with the previously defined robustness ratio: if we select WCET
↑
,

then c = 1 and r = 1, consequently WCET
↑
surely upper-estimates the real WCET at probability p.

If the WCET value selected is not the right-most value, i.e. r < 1, the confidence is potentially less

than the truth value: c ≤ 1. In other words, selecting a less pessimistic, but still valid according to

the chosen test, WCET may be potentially under-estimated. Clearly, c is a non-decreasing function

of WCET, i.e. higher WCETs have higher confidence. The computation of the precise c value with
respect to the variation of the chosen WCET is left as a future work. This is possible thanks to the

previously cited statistical power of the selected GoF test.

6 EXPERIMENTAL EVALUATION
To evaluate the benefits of the previously introduced notations and techniques we considered four

datasets representing different execution conditions and systems. The analysis of the proposed

time traces showed the effectiveness of dealing with the uncertainty of the region of acceptance

and related models.

The state-of-the-art chronovise tool [37] has been used to perform the MBPTA analysis on the

following datasets:
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D1 D2 D3 D4

683620
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-0.3

683600

-0.2

500 683580

-0.5
729500

-0.4

-0.3

729450500

-0.2

729400450

-2

10000

0

59000

2

5000

4

58000
570000

-1.2
800

-1

-0.8

14200

-0.6

600
14100400

n 400 000 400 000 5 000 50 000

P (683595,481.407,−0.244) (729413,485.890,−0.238) (59018.5,2287.920,−0.230) (14169,524.152,−0.597)

P∗
(683602,511.494,−0.319) (729464,491.964,−0.376) (58428.4,2287.920,0.020) (14183.1,602.775,−0.847)

Fig. 5. Region of Acceptance, number of samples, estimator best fit point (BFP) and best statistic point (BSP)
of the datasets under analysis.

D1) An industrial safety-critical application from Airbus, running on a multi-core platform. The

time measured are referred to a single task execution with other tasks running in other cores

and interfering on shared resources
6
.

D2) The same as the previous dataset, but considering a different task of the same safety-critical

real-time application.

D3) A memory-intensive task running on a multi-core T4240, stressing the data-cache with

interferences on the overall cache hierarchy, shared memory and bus [17].

D4) A time trace of a GPU application running under different execution conditions. The dataset

is the same as in [3].

The paper of Nolte et al. [33] proposed a classification for real-time workloads in the context

of probabilistic real-time. Some proposed constraints are however too strict for real applications.

We guaranteed A.3.1 (Avoid usage of shared services and drives in the software architecture.) for D1
and D2, while D3 runs on PikeOS (so we can consider valid A.3.2 that requires predictability of

services) and D4 runs on CUDA, so neither A.3.1 nor A.3.2 applies for D4. Regarding the hardware

states (A4 group), the cache status was disregarded (A.4.2). Finally, the execution time of the tasks

is not affected by the state of the environment (A.5.2).

Datasets D1 and D2 are composed of 400 000 time measurements, while the sample sizes of D3

and D4 are respectively 5 000 and 50 000. All the time traces in the aforementioned datasets are

real measurements of the task execution time acquired with appropriate instrumentation of the

applications. We verified the satisfaction of the iid hypothesis running a standard LjungBox test.

As, the EVT was applicable, we could filter the data via the Block-Maxima method with a block

size of B = 20, empirically chosen but in line with previous works [24] [30] [48].

6.1 Region of Acceptance
From the sample output of the BM approach, the GEV distribution is fitted using the well-known

Maximum Likelihood Estimator (MLE). To build the Region of Acceptance we consider as goodness-

of-fit test the Cramér-vonMises criterion (CvM) [8]. Another possible test is the Kolmogorov-Smirnov

test (KS) [31]. Both tests have correct statistics, i.e. they satisfy Definition 3.4 as proved in the

Appendix B.

6
No more details on the Airbus use case can be provided since it is an actual industrial application currently under

investigation.
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D1 D2 D3 D4

□✓Weibull (ξ < 0)

□ Gumbel (ξ = 0)

□ Fréchet (ξ > 0)

□✓Weibull (ξ < 0)

□ Gumbel (ξ = 0)

□ Fréchet (ξ > 0)

□✓Weibull (ξ < 0)

□✓Gumbel (ξ = 0)

□✓ Fréchet (ξ > 0)

□✓Weibull (ξ < 0)

□ Gumbel (ξ = 0)

□ Fréchet (ξ > 0)

Fig. 6. The Regions of Acceptance for the datasets under analysis with the σ value collapsed.

To find the region R it is necessary to explore the parameter space around the estimated dis-

tribution P̄ . We have begun by uniformly exploring 40 points around each parameter, leading

to a total number of 40
3 = 64 000 explorations. The initial interval has been set to ±10% of the

estimated value and it was step-by-step increased to include the whole region. The CvM test has

been applied to each point obtaining the set of accepted points, i.e. the region R, depicted in Figure

5. The time complexity depends on the number of points explored and how the statistic is computed

for the chosen test. For CvM the computational complexity is O(nm) where n is the number of

time measurements andm is the number of explored points. Instead, for KS the time complexity

becomes O(n2m). In this experimental evaluation, the total time required to build each region was

less than 10 seconds on a standard workstation.

It is possible to notice that in the dataset D2 the estimated point is outside the region: the GEV

distribution estimated by MLE is not a valid distribution according to the CvM test result. This

is a violation of the initial assumption that the best fit estimator point P is inside the region. In

this case, before beginning with the parameter space exploration not only we have no information

on how many points should be explored, we also do not know whether the region exists or not.

For example, assuming that the input time measurements are distributed according to a statistical

distribution that is not in the domain of attraction of any generalized extreme value distribution,

e.g. the Poisson distribution, then no point is expected to pass the test (R = ∅), whatever GEV

distribution is estimated. In our lucky case, the region exists and we have been able to find it

because it is in the ±10% interval of at least one parameter. For completeness, we checked why the

MLE estimator failed to obtain a valid distribution fitting the data, and we discovered the presence

of a local minimum of the MLE optimization function at the estimated P . One possible solution
to this problem, left as future work, is to initially use the Probabilistic Weighted Moment (PWM)

estimator to obtain the point inside the region and then to improve the estimation with MLE. In

the considered corner case of D2, the parameter space exploration guides us to find a set of points

– the region – fulfilling the goodness-of-fit test, i.e. with a valid pWCET distribution otherwise

impossible to find using only the estimated point P . This is another accidental advantage of using
the Region of Acceptance to evaluate the pWCET output of the estimator algorithm.

6.2 Distribution shapes
Figure 6 shows the region collapsing the σ axis to show the spread of the ξ parameter. D1, D2,

and D4 regions contain only points from Weibull distribution. In real-time world it means that the
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D1 D2 D3 D4

6.82 6.83 6.84 6.85

10 5

0

0.2

0.4

0.6

0.8

1

Uncertainty
BFP
BSP

7.28 7.29 7.3 7.31

10 5

0

0.2

0.4

0.6

0.8

1

Uncertainty
BFP
BSP

4 5 6 7

10 4

0

0.2

0.4

0.6

0.8

1

Uncertainty
BFP
BSP

1.2 1.3 1.4 1.5

10 4

0

0.2

0.4

0.6

0.8

1

Uncertainty
BFP
BSP

A = 108.97 107.36 ∞ 329.70

Fig. 7. Area of uncertainty, tightest upper-bound and pessimistic upper-bound curves, BFP and BSP distribu-
tions.

observed phenomenon, i.e. the execution times, has a finite maximum, i.e. a finite WCET. Instead,

D3 is more problematic because it includes both Gumbel and Fréchet distribution classes. Even

more, it includes Fréchet distributions with ξ > 1. This means that the WCET is not finite, but

also its mean value is not finite, suggesting that either there is a problem in the execution time

measurements or the system has actually an unbounded WCET.

It is worth noticing the position of the best fit point and the best statistic point in our datasets.

The latter is in general at the center of the region. The D2 case, where the estimated point is outside

the region, has been already discussed in the previous Section 6.1. The D3 case is interesting: the

estimated point represents a Weibull distribution with ξ = −0.23, while the point that has the best

statistic is near the Gumbel line and is actually a Fréchet distribution with ξ = 0.02. This leads

to an important conclusion: the distribution estimated by the estimator is a light-tail distribution,

but the test is able to accept another distribution with even better statistic having the Fréchet tail.

Consequently, we can conclude that relying on the estimator result without a sensitivity analysis

on ξ may lead to unreliable or untight results, since the real pWCET distribution can belong to

another GEV class.

6.3 Result uncertainty
Referring to Figure 7, the effect of ξ parameter spreading is clear: it is immediately visible that

D3 has the largest area of uncertainty. Moreover, the absolute value of this area is infinite due

to the presence of valid Fréchet distributions with ξ ≥ 1. For the other scenarios, the area has

been computed by performing the numerical integration of Definition 4.3. D1 and D2 have lower

uncertainties compared to D4. This is the consequence of a smaller region of acceptance and, in

particular, less uncertainty on ξ . We notice that there is no general rule on the domination between

P and P∗
. For example, in D3 pWCETP ∗

L

≻ pWCETP while in D4 pWCETP
L

≻ pWCETP ∗ . Instead, as

expected by their definition, pWCET
↑ ≻ pWCETP , pWCET

↑ ≻ pWCETP ∗ , pWCETP ≻ pWCET↓,

pWCETP ∗ ≻ pWCET↓ for all cases. There is only one exception that is not visible in the figure: the

D3 best fit point is outside the region and in this case there are some WCET values for which the

pWCET↓ does not under-estimate the probability, i.e. pWCETP ⊁ pWCET↓. However, the relaxed

version is still valid in this case: pWCETP
L

≻ pWCET↓. The consequence on the WCET estimation is

that the estimated distribution associated with the point P outside the region is potentially unsafe

for some WCET or p values because it underestimates the curve representing the lower-bound on

the distributions accepted by the goodness-of-fit test.
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p Distribution D1 D2 D3 D4

10
−3

pWCET
↑

685 525 731 054 1.3 · 10
15

15 314

P 685 198 731 059 66 943 15 032

pWCET↓ 684 728 730 456 60 192 14 756

10
−6

pWCET
↑

686 075 731 365 1.5 · 10
26

15 368

P 684 773 731 378 68 566 15 046

pWCET↓ 685 494 730 490 60 192 14 757

10
−9

pWCET
↑

686 231 731 425 1.7 · 10
41

15 370

P 685 548 731 439 68 898 15 046

pWCET↓ 684 774 730 491 60 192 14 757

10
−12

pWCET
↑

686 275 731 436 2.0 · 10
50

15 370

P 685 558 731 451 68 966 15 046

pWCET↓ 684 774 730 491 60 192 14 757

Table 1. The computed WCET from the curves of Table 7 at different violation probability levels.

p Distribution D1 D2 D3 D4

10
−1

P∗ −0.093216 −0.066638 −0.994008 −0.310016

P −0.017073 0.669008 −0.995131 −0.042482

10
−3

P∗ −0.255874 −0.265608 −1.000000 −0.513920

P 0.178674 1.017288 −1.000000 −0.012972

10
−6

P∗ −0.372082 −0.367926 −1.000000 −0.549735

P 0.107353 1.030012 −1.000000 −0.052946

10
−9

P∗ −0.417336 −0.395697 −1.000000 −0.551476

P 0.062515 1.031415 −1.000000 −0.055915

10
−12

P∗ −0.432052 −0.402085 −1.000000 −0.551556

P 0.044533 1.031659 −1.000000 −0.056071

Table 2. The robustness ratios of BFP P at different violation probability levels.

6.4 pWCET: tightness vs pessimism
Having computed pWCET

↑
and pWCET↓, it is now possible to estimate the WCET according to a

violation probability p. The WCET value for the different curves and for some values of violation

probability are presented in Table 1. The effect of the presence of valid points with a Fréchet

distribution in D3 is evident: the WCET of pWCET
↑
is clearly too large to be considered feasible

in any scheduling analysis. Instead, P and pWCET↓ provide valid approximations, but with less

confidence: if we select P and pWCET↓, there potentially is a non-null probability that our WCET

result is unsafe according to Definition 5.2. The WCET values of D1, D2, and D3 are distributed in

a smaller interval and are all apparently feasible to be used for scheduling analysis.
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To explore the differences between P and P∗
we presented their robustness ratio in Table 2. In

D1, D2, and in D4, P is more pessimist than P∗
while in D3 it is the opposite. This is in line with our

previous graphical result of Figure 7. The fact that one point is always pessimist with respect to the

other point for all the considered probabilities must not be taken as a general rule: the robustness

ratio is a value at a fixed probability and it may behave differently for different values of it. The

presence of valid pWCET distributions is clear in D3: both points are definitely tighter than the

pWCET
↑
, as it is also experimentally verified in Table 1.

6.5 Summary of the experimental results
To summarize the experimental evaluation, we recap the major steps and the conclusions that can

be drawn from the four datasets under analysis:

(1) The Region of Acceptances of test CvM has been generated by exploring the space around

the GEV distribution parameters provided by MLE estimator;

(2) Even if the estimated point P for dataset D2 does not pass the GoF test, we have been able

to find the Region of Acceptance in the ±10% of P parameter space. Despite there are no

guarantees that this exploration is always successful, in our scenario it was useful to find

valid pWCET distributions that we would not have otherwise found;

(3) From the analysis of shape parameter uncertainty, we noticed that one dataset (D3) includes

all the three distribution types. This has significant impact on the pWCET uncertainty: the

most robust pWCET curve leads to an unrealistic WCET at small probability values;

(4) If a potential reduction in the pWCET confidence is acceptable, the issue of the previous point

can be easily solved by selecting another point inside the region according to its robustness

ratio value and test statistical power;

(5) The estimated distribution P is not necessarily the best one, neither in terms of safety nor in

terms of tightness. The same is valid for the BSP P∗
. A careful evaluation must be performed

by exploiting one of the decision making tools provided.

7 CONCLUSIONS
Any distribution estimation routine suffers from estimation errors caused by the necessarily finite

number of input samples. In probabilistic WCET analyses the safety of the results depends on

several conditions imposed by the EVT conditions. Even considering all the open challenges on

these conditions solved, the estimated pWCET distribution is still affected by uncertainty. This

article discussed this problem by providing a set of mathematical tools to deal with the parameter

uncertainty, with the goal to be a step towards a more reliable pWCET estimation. In particular,

the region of acceptance has been defined on the GEV distribution parameters space. By exploring

this region, it is possible to move the estimated pWCET distribution to more reliable or to tighter

distributions. The advantages on both the safety and the tightness of the pWCET distribution

have been showed by performing the analysis on real time traces of different nature, including

real industrial datasets. Several possible future works on improving the pWCET methodology are

needed to increase the reliability on MBPTA methods. In particular, the representativity problem

is still the most crucial barrier to the introduction of MBPTA in critical systems. The use of the

statistical power, already cited in Section 5.3, can help in improving the estimation uncertainty

quantification and it is currently an ongoing work.
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A NON-APPLICABILITY OF SECOND-ORDER STOCHASTIC DOMINANCE TO
PWCET PROBLEM

To overcome the limitation of first-order stochastic dominance as described in Section 3.2, in financial

risk analysis the second-order stochastic dominance is often used. This dominance is defined as:

Definition A.1. A cumulative distribution function F (x) second-order stochastic dominates a

cumulative distribution function G(x) iff:∫ c

−∞

F (x)dx ≤

∫ c

−∞

G(x)dx ∀c ∈ R

with the strict inequality holding for some c . ◁

In financial applications, the cdf F (x) is usually preferred being less risky than the other option.

This is because the average value of a random variable defined under G(x) is greater or equal to
the one defined under F (x) for any possible non-decreasing function of them [16]. However, this

dominance is not sufficient for probabilistic real-time systems. In order to show this, we provide a

counterexample exploiting the following property of a Gumbel distribution [47]: Given a random

variable A distributed according to a Gumbel distribution GEV (µA,σA, 0) and a random variable

B distributed according to a Gumbel distribution GEV (µB ,σB , 0), if µA = µB and σA < σB , then
FA(x) (i.e. the cdf of A) second-order stochastic dominates FB (x) (i.e. the cdf of B). The two cdfs are

depicted in the following figure:

As it is possible to see, even if FA(x) second-order stochastic dominates FB (x), after the inter-
section point (around x ≈ 100) the complementary cdf is no more upper-bounding, leading FA(x)
to underestimate the WCET w.r.t. FB (x). Looking with the other axis, selecting a value for the

probability, the FA(x) provides a smaller value compared to the FB (x), potentially underestimating

the WCET in our application.
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B CORRECT STATISTICS
B.1 Proof: KS has a correct statistic
The test statistic of Kolmogorov-Smirnov test is [28]:

D(X ,A) = sup

x
|Fn(x) − FA(x)|

where Fn(x) is the empirical cumulative distribution function (ecdf) and FA is the cumulative

distribution function of the reference distribution. The ecdf is in turn defined as:

Fn(x) =
1

n

n∑
i=1

1[−∞;x ](Xi )

where 1A(x) is the characteristic function defined as:

1A(x) =

{
1 if x ∈ A

0 if x < A

Thanks to the strong law of large numbers, the ecdf converges to the real cdf almost surely:

P(limn→∞ Fn(x) = F (x)) = 1. Since in our definition the X sample is drawn from the reference

distribution A, then D(X ,A) converges almost surely to zero, i.e. K = 0. The second part of

the definition is easily proved: the KS statistic is always positive, thus ∀n ∈ N it is true that

D(X ,A) ≥ K . □

B.2 Proof: CvM has a correct statistic
This proof is similar to the proof on KS test. The Cramér-von Mises discrete test statistic [9] is:

D(X ,A) =
1

12n
+

n∑
i=1

(
2i − 1

2n
− FA(xi )

)
2

This statistic has been derived from the discretization of the continuous CvM statistic:

D(X ,A) =

∫ ∞

−∞

n ∗ (Fn(x) − F (x))2 dF (x)

Thanks to the strong law of large numbers, we know that the ecdf converges to the real cdf almost

surely: P(limn→∞ Fn(x) = F (x)) = 1. Moreover, the rate of convergence is

√
n, thus (Fn(x) − F (x))2

converges to zero with a linear rate. The product withn is then finite and constant with respect to the
integration variable. For this reason, the final value of the integral is 1. The statistic is consequently

converging to a constant value. For any finite value of n, the difference (Fn(x) − F (x))2 is not zero
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but for sure positive, thus the value of the integral is greater than 1. Finally, n is a positive integer

and the multiplication with the integral is still greater than 1, proving the second part of the

definition. □
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