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Abstract—Network Function Virtualization (NFV) enables fast
provisioning of packet processing logic on general purpose
CPUs. This approach, however, does not scale well to very high
speed traffic. Programmable hardware solutions, including those
based on programmable switches, are emerging as an option
for accelerating and scaling network functions. Unfortunately,
every type of programmable hardware has specific characteristics
that do not make it suitable for running all possible functions.
We argue that an efficient strategy is decomposing network
functions into components that can run on CPUs or that can
be offloaded to specific programmable hardware depending on
their characteristics.

This paper presents a preliminary work on a framework
for automating the decomposition and deployment of network
functions. The framework includes an orchestrator that chooses
the best decomposition according to the traffic demands, the
network topology and other constraints. It also provides a tool
to combine multiple functions into a single P4 program that can
be deployed to a programmable switch. Finally, the framework
comprises a set of tools to deploy the network functions either
as containers running in a data center or as programs loaded in
a programmable switch.

We present numerical results to highlight the advantages
of partially offloading decomposed VNFs to programmable
hardware over a pure software solution. We also highlight the
robustness of the approach showing how the model reacts in case
of network failures.

I. INTRODUCTION

Network Function Virtualization (NFV) enables fast deploy-
ment of functions on general purpose hardware, and can the
reduce costs of network provisioning. This approach, however,
cannot be easily adopted when Network Functions (NFs) need
to process very high traffic loads in the order of hundreds or
thousands of gigabits per second. A straightforward solution
for processing packets at high speed is horizontally scaling on
multiple CPUs. However, this requires to add load balancers
that can generate packet reordering, non-deterministic latency
and, in general, the inability to work at wire speed. Power
consumption may also become an issue when processing high
volumes of packets on general purpose CPUs.

While NFV is great for complex but low throughput NFs,
like for example those of the control plane, its use can
be extremely challenging with data plane NFs. These func-
tions usually perform simpler tasks, but require much higher
throughput with respect to control plane functions. A possible
option to accelerate this kind of NFs is using programmable
network hardware. This makes working at wire speed easier

but at the price of limitations in terms of the complexity and
the number of operations that can be implemented.

This paper stems from the observation that monolithic
implementations are suitable for low-throughput Virtual NFs
(VNFs) that can be deployed as software components. On the
other hand, when VNFs need to process high traffic, they can
be decomposed into multiple, smaller functions, called uVNFs
and deployed by distributing these smaller functions onto
multiple physical nodes supporting the required operations.
Such nodes can be programmable switches, programmable
Network Interface Cards (NICs), or in-network compute nodes
deployed in micro data centers according to the edge/fog
computing paradigm.

This paper provides the following contributions. We present
an optimization algorithm for selecting, among multiple pos-
sible function decompositions, the one with minimum cost.
The algorithm also identifies on which node each uVNF
must be deployed. We also present an orchestrator capable
of deploying the pVNF onto an SDN network comprising
both hardware programmable using the P4 language [1] and a
software running a virtual P4 switch in a container. Finally, we
present a tool for combining multiple uVNFs into a single P4
program that can be instantiated on a programmable switch.
We provide numerical results showing how deploying pro-
grammable network hardware and decomposed VNFs can be
beneficial with respect to pure monolithic software solutions.
We also investigate the robustness of the algorithm to network
failures showing how the model reacts to link removal.

The paper is structured as follows. Section II describes
the state of the art in NFV decomposition and placement
and reports on similar efforts in the literature. Section III
describes the scenario considered and our assumptions. Section
IV describes the optimization model used to identify and route
the best VNF decomposition. Section V discusses the tools we
developed to perform the deployment of the solution and the
consolidation of different uVNFs into the same programmable
switch. Section VI reports our numerical evaluation of the
advantages of a mixed hardware/software solution. Finally,
Section VII provides some concluding remarks.

II. RELATED WORK

Examples of packet processing logic offloading to pro-
grammable hardware have been explored in the literature in
recent years. Some works propose to offload the connection



tracking logic in order to reduce the load of DPI engines [2].
Others propose to use programmable hardware for offload-
ing load balancing logic [3], managing key-value stores [4],
or accelerating Linux iptables [5]. More complex scenarios
also consider the coordination of multiple nodes [6], and
MapReduce acceleration [7]. This paper generalizes those
ideas to the case of general VNFs. Additionally, we propose
an optimization model for deciding whether it is best to deploy
a specific function as a software component or as a program
in a programmable network hardware.

The problem of optimal deployment of VNFs has also
attracted researchers’ attention in recent years. The authors of
[8] were among the first to jointly study optimal placement
and routing of VNFs, while the authors of [9] describe a
linear model that takes into account the cost of scaling a
function to multiple CPUs. In [10], the authors propose a
model for choosing among multiple possible VNF functional
decompositions, but do not consider programmable hardware
as a possible target for deployment. In this work, in addition to
what has been done in those papers, we propose a model that
considers a mixed hardware/software scenario with different
constraints and costs depending on the type of node.
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Fig. 1. Example of network with nodes of different types. The group of
nodes in the upper right corner represents a data center that comprises a
virtual switch and a set of VM/container nodes.

III. SYSTEM MODEL

We consider a network with different types of node. Figure 1
shows an example of such network. In particular we consider:

o Nodes with P4 programmable hardware. These nodes can
be programmable switches or servers equipped with smart
NICs. Each node is characterized by a maximum width
for the programmable pipeline (i.e. the number of pipeline
stages executed one after the other), a maximum depth
for the programmable pipeline (i.e. number of entries that
can be installed in a table), and by a set of boolean flags
indicating whether the device provides specific functions
(extern function in P4 language).

o OpenFlow switches. These nodes are switches that can
be controlled via the OpenFlow protocol, they are mainly
used as traffic forwarding nodes.

o Nodes that support the dynamic creation of P4 pro-
grammable virtual switches (e.g. in a container). These
virtual switches support a pipeline of unlimited width and

length and provide all the possible extern functions.
Each of these nodes also includes a virtual OpenFlow
switch for routing traffic among containers and with the
physical interfaces.

In addition, the network includes an ONOS SDN controller
[11], which is responsible of configuring all the switches to
route the traffic end-to-end. ONOS also deploys the flows both
on the pure OpenFlow switches and on the P4 programmable
switches.

Finally, an orchestrator receives the network topology and
the traffic demands for the network functions. Then, it chooses
the optimal decomposition, its routing, and instructs ONOS to
deploy the function code and populate the flow tables.
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Fig. 2. The components of the proposed framework.

Figure 2 shows the components of the framework. Different
NFs can be combined to form a Service Function Chain
(SFC). The implementation of the various network functions
is stored in a catalog. For the sake of simplicity, we assume
that the code for each function is available in the P4 language.
The catalog also contains, for each function, several possible
decompositions into multiple pVNFs. Some of these could
be additionally decomposed into smaller uVNFs. Additionally,
for each uVNF, the catalog may contain multiple implementa-
tions with different requirements in terms of width and depth
of the pipeline and in terms of extern functions available in
the switch. Such decompositions and implementations could
even be generated on-the-fly from a single source. Figure 3
shows an example. In this paper, we assume that multiple
decompositions and implementations are pre-generated and
stored in the catalog.
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Fig. 3. Example of VNF decomposition. A single monolithic network function
can be decomposed in several smaller network functions.



IV. OPTIMIZATION MODEL

We propose the following mixed integer linear optimization
model to choose the optimal decomposition of a single SFC,
the positioning of the uVNFs, and the routing of the traffic
through the uVNFs of the chosen decomposition.

a) Sets:

VNF:
DC':
U : Set of all the nodes (OpenFlow-only,

Set of all the possible VNFs and pVNFs

Set of all the possible decompositions

with programmable hardware, with CPUs, and hosts)
U=UorUUpgw UUsw UUgost
E': Set of all the links
E = {eyplu,v € U}
G': Physical topology
G=(U,E)
Set of VNFs or uVNFs in each decomposition
VN4 CVNF VYdce DC
Set of virtual links in each decomposition
Gac ={eijli,j € VNg.} Vdece DC
The virtual graph
C% = (VNge, Gac)
DST € Ugost Destination of the SFC
SRC € Ugost Source of the SFC

VNdCZ
Gye:

cde.

b) Parameters:

Sae € V Ny
Dg. € VN4,

tr Traffic request of the SFC
BW,, , Bandwidth of the link (u,v)

extern; Set of P4 “extern” function required by VNF ¢

dc € DC Source of the decomposition

ex, Set of P4 “extern” function supported by node w
depth; Depth of pipeline stages required by function ¢
width; Width of the pipeline stages required by function @

d,, Maximum pipeline depth supported by node u
w,, Maximum pipeline width supported by node u
CPU, Number of CPUs in node u
Csw Cost (per unit of traffic) of deploying a
function on a software node

Crw Cost of deploying a function on a hardware node

c) Variables: Indicator variable: it is 1 if dc is the chosen
decomposition.

z4e € {0,1} Vdc € DC (1)

dc € DC Destination of the decomposition

Indicator variable: it is 1 if function ¢ is deployed on node
U.
Zdciu € {0,1} Vdc € DC,i € VNg,,ueU  (2)

Indicator variable: it is 1 if virtual link (¢, j) is deployed on
the physical link (u,v).

fac.eisen. €10,1} Vdc € DC,e;j € Gae,eu € E - (3)
d) Objective function:

min costgw + costgw + costparm 4@

with
costgy = Z Zde,iutt - Csw

dceDC
1€V Ngc
ueUgw

E Zde,iuCHW

dceDC
1€V Ngc
ueUpw

costpary = E fac,ei jreus
ei,j€Gac

dceDC
ey vEE

costgw =

e) Decomposition constraints:

> Tgeiu = zse Vdc € DC,i € VNge  (5)

uel
Tde,Sq.,SRC = Zde  Vdc € DC (6)
Zde,Dye,DST = 2de Vdc € DC (7
Tdesyu =0 Vdce DC @®)
u€Uu#SRC
Y %uep.=0 Vdce DC ©)

uelU,u#DST

f) Constraints on node types: Only P4 programmable
hardware nodes and software nodes can allocate functions,
while standard OpenFlow devices and hosts can not.

> Zaeiw=0 VdceDC (10)
dceDC
i€V N,
ueUygUUoFr
g) Capacity constraints:
Tdeinw <1 Vdee DC (11)
V(i,u) € {(i,u)|ex; C externy,i € V.Ngy,
dce DC,ue U}
> depth - wgeiu < dy Yu € Upy UUsy  (12)
dceDC
i€V Ny,
> width; - waeiu < Wy Y € Upy UUsy,  (13)
dceDC
i€V Ny,
Z depth; - tr - x40 < CPU, Yu € Uy, (14)

dee DC
1€V Ngc



h) Link to path mapping:

E fdc,ei jrenn — E Jdc,ei s e0,u = Tdeiu — Tde,j,u

euww€EE ey, u€EE
Vdc € DC,i € VNg,u e U (15)

i) Bandwidth constraint:

Z t’r ! fdc,eiyj,eu,v S BWeu,vveu,v 6 E

dceDC
e, €Gac

(16)

V. DEPLOYMENT

The orchestrator is in charge of deploying the allocated
network functions and routing the traffic accordingly.

From the solution of the optimization model, the orchestra-
tor identifies the nodes where uVNFs must be deployed. The
SFC is then routed through these waypoints using Segment
Routing version 6 (SRv6) [12]. Each SRv6 segment is a 128-
bit address called Segment Identifier (SID). SIDs are used to
identify nodes and network functions together in the network.
In particular, the 64 most significant bits are used to identify
the location that the packet has to reach (e.g., physical or
software node), while the 64 least significant bits are used to
identify the NF that needs to be executed. This usage of SRv6
is in line with the SRv6 Network Programming Internet draft
[13]. The orchestrator generates the SIDs that every packet
of the specific SFC has to carry, and the flow rules that are
installed in each node of the network.

The function deployment phase includes also the dynamic
generation of P4 programs that are installed on all the nodes
that support P4 (e.g. hardware programmable nodes and virtual
switches running on general purpose hardware). Functions
such as the parsing of SRv6 packets and their routing and
forwarding are common to all the nodes. For this reason,
we define a template pipeline into which the orchestrator
plugs the specific network functions. The orchestrator retrieves
the network functions from the catalog, composes them and
creates the final P4 program that is deployed on the network
nodes.

A standard P4 program is composed of a parser, a packet
processing stage and a deparser. The template pipeline com-
prises a parser and a deparser, which are the same for all
the nodes in the network. The parser support IPv6 packets
with SRv6 headers, while the pipeline is composed of the 3
high-level stages. Figure 4 shows an high level scheme of the
pipeline.

The first stage is dedicated to SRv6 processing. If the
received packet has an SRv6 header, the next SID is extracted
using the Segments Left header field. This SID is used
to override the IPv6 address when the packet is forwarded.
Then, a match on the 64 most significant bits of the IPv6
destination address is performed. If the match is positive,
the local node is the actual destination of the packet, and
the network function identifier is extracted from the 64 least
significant bits of the matched address. The IPv6 destination
address is also overridden to set the next hop. Finally, the next
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Fig. 4. Pipeline of the P4 programmable switch supporting uVNFs deploy-
ment.

hop table is matched to understand on which port the packet
has to be sent out.

The second stage of the pipeline is in charge of executing
the actual network function. If, in the previous stage, a network
function identifier address has been set, then a dispatcher
will execute the correspondent NF. The network function
can override the next hop, modify the packet, or perform
other packet processing functionalities. The state can also be
transferred from a function deployed in one node to the next
or to the following ones. In particular, each network function
can read and write SRv6 metadata. These metadata are parsed
from the packet received and are deparsed and sent to the next
node in the service chain.

The last stage is dedicated to packet forwarding and layer
2 operations. If the current node is not the destination of the
packet and no network function has been executed by the node
itself, the packet is forwarded according to layer 2 information.

The orchestrator generates the P4 programs for the involved
nodes, compiles each of them for the specific hardware, and
then deploys the resulting compiled programs on the selected
network nodes. If the node is a hardware device, the compiler
output is directly installed on it. If the node is a software node,
the orchestrator spawns a new P4 virtual switch on the general
purpose computing node and connects it to the local OpenFlow
switch. Then, it deploys the compiled program. Finally, the
routing information is pushed to ONOS, which, in turn, installs
the corresponding flow rules into the network nodes.

VI. NUMERICAL RESULTS

In this Section we report on the performance of the op-
timization algorithm over a few relevant architectures. We
also report on the robustness of the optimization algorithm to
network failures. Numerical results are based on simulations.
The simulation topology is the BT-Europe from the Internet
Topology Zoo[14]. We generate multiple random instances and
solve the optimization problem using the Gurobi solver.

Four scenarios are considered. The first one, named DC
scenario, comprises a single, large data center in which all
the SFCs and all the VNFs are deployed. For this scenario, we
select a single node at random from the topology as the data
center. The data center node has 50,000 units of computation
capacity. The second scenario, named uDC scenario, is a
network composed of multiple smaller data centers. One third
of the nodes have computation capabilities and can allocate



functions. For these two scenarios, all the other nodes are
considered simple OpenFlow devices that can only forward
traffic. Furthermore, these OpenFlow devices have attached a
host that can be the traffic source for an SFC.

The following two scenarios enrich the previous two with
P4 programmable hardware (smartNICs and switches). In
particular, in the P4-DC scenario, we still have a single data
center, but half of the other nodes are P4 programmable
hardware. In the P4-uDC scenario, we consider a third of
nodes having a co-located micro data center and half of the
nodes having programmable hardware. For the two scenarios
with programmable hardware, we consider two different kinds
of hardware. We consider smartNICs, which have a pipeline
depth of 20 and a pipeline width of 10, and switches, which
have a pipeline depth of 100 and a pipeline width of 50. For
each node equipped with P4 hardware, the probability of being
a switch is double with respect to smartNICs.

We run the simulations with 150 consecutive SFC requests,
taken from a pool of 10 randomly generated SFCs. Each
SFC requests an amount of traffic between 1 and 50. The
number of network functions within a single SFC is uniformly
distributed between 1 and 10. Each VNF can be implemented
with different decompositions, which is a number between
2 and 5 with uniform distribution. The number of uVNFs
composing a VNF is a uniformly generated number between
1 and 5. Each uVNF is characterized by a pipeline occupancy
in depth and width; these parameters are generated at random
between 1 and 15, and 1 and 20 respectively.
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Fig. 5. Number of accepted SFCs vs number of offered SFCs for the four
configuration options.

Figure 5 shows how the accepted number of SFCs grows as
the number of offered SFCs grows. Similarly, Figure 6 shows,
for the same scenarios, how the total cost of the accepted SFCs
grows as the number of offered SFCs grows. From the Figure
5 we can see that the solutions that comprise programmable
hardware accept more SFCs than the ones with only data cen-
ters. Figure 6 makes possible to get some additional insights.
The solutions with no programmable hardware have a cost that
grows linearly with the number of offered SFCs. Instead, the
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Fig. 6. Total cost of the accepted SFCs vs number of offered SFCs for the
four configuration options.

programmable hardware is able to accommodate a significant
number of SFCs at little cost thus increasing the overall
capacity. It is also worth noting that the uDC solution has
worst performance than the solution with a single data center.
In particular, while the total cost of deployment grows at the
same rate, the uDC starts dropping SFCs earlier, resulting in a
lower capacity. In the scenario with programmable hardware
there is no difference between having a single DC or multiple
smaller uDCs: the cost grows at a similar rate and the two
solutions also start dropping SFCs at the same load.
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Fig. 7. Number of accepted SFCs vs number of offered SFCs for the four
configuration options after removal of 1 link.

We also want to compare the robustness of the various
deployment scenarios to network failures. Thus, we evaluate
how the network capacity, in terms of deployable NFs, changes
when one or two links are removed. Figures 7 and 8 show
the number of accepted SFCs vs the number of offered
SFCs in the network with one random link removed and two
random links removed, respectively. The figures show that the
solutions with puDCs have the least capacity loss both in the
scenario without programmable hardware and in the scenario
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Fig. 8. Number of accepted SFCs vs number of offered SFCs for the four
configuration options after removal of 2 links.

with programmable hardware. Additionally, we note that the
advantage of programmable hardware generally diminishes as
more links are removed.

VII. CONCLUSION

In this paper, we present a framework for decomposing
a network function (NF) in smaller units, called uVNFs,
that can be deployed in a distributed fashion. Each pVNF
can be deployed either as a software program executed on
general purpose CPUs or can be merged with other uVNFs
and deployed on programmable hardware. We propose an
algorithm for choosing the optimal decomposition of the NF,
placement, and the routing of the puVNFs. Finally, we also
present a toolset, based on the ONOS SDN controller, for
deploying the functions. Routing of packets from one uVNF to
the following and selection of the pVNF in a node exploits the
framework for segment routing currently under standardization
by the IETF.

Results show that the availability of programmable hardware
in the network increases the network capacity in terms of the
number of functions that can be deployed and also makes
the network more robust. Future work will focus on the
improvement of the optimization model to include function
consolidation exploiting WVNFs already deployed in the net-
work and to add new constraints for taking into account link
and node delays. We will also work on the development
of heuristics for online allocation integrating them into the
proposed framework.
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