() POLITECNICO
‘éﬁ%” MILANO 1863

s mecce

A review of prognostics and health management of
machine tools

Marco Baur, Paolo Albertelli, Michele Monno

This is a post-peer-review, pre-copyedit version of an article published in The International
Journal of Advanced Manufacturing Technology. The final authenticated version is available
online at: http://dx.doi.org/10.1007/s00170-020-05202-3

This content is provided under CC BY-NC-ND 4.0 license

DIPARTIMENTO DI MECCANICA m POLITECNICO DI MILANO

via G. La Masa, 1 ® 20156 Milano ® EMAIL (PEC): pecmecc@cert.polimi.it
http://www.mecc.polimi.it

Rev. 0



mailto:pecmecc@cert.polimi.it
http://www.mecc.polimi.it/
http://dx.doi.org/10.1007/s00170-020-05202-3
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Noname manuscript No.
(will be inserted by the editor)

A review of Prognostics and Health Management of Machine

Tools

Marco Baur - Paolo Albertelli -

Received: date / Accepted: date

Abstract This paper presents a survey of the applica-
tions of Prognostics and Health Management mainte-
nance strategy to machine tools. A complete perspec-
tive on this Industry 4.0 cutting-edge maintenance pol-
icy, through the analysis of all its preliminary phases,
is given as an introduction. Then, attention is given
to prognostics, whose different approaches are briefly
classified and explained, pointing out their advantages
and shortcomings. After that, all the works on prog-
nostics of machine tools and their main subsystem are
reviewed, highlighting current open research areas for
improvement.

Keywords PHM - Predictive Maintenance - Industry
4.0 - Machine Tool

1 Introduction

Degradation is an unavoidable natural phenomenon,
which not only affects living beings but also engineering
systems. Technicians counteract it by means of main-
tenance activities, which aim either at preserving the
health status of the system, if they are done in advance
with respect to a failure, or to restore it, when they are
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performed after the system has experienced a break-
down.

Maintenance policies have evolved over time: starting
from the elementary reactive maintenance policy (fail
and fix), through the preventive maintenance policy, in
which maintenance activities are performed at regular
intervals determined on the basis of statistical reliability
tests, this evolution process has come firstly to condi-
tion based maintenance, in which repair is done when
a monitoring indicator goes over a predefined thresh-
old, and finally to Prognostic and Health Management
(henceforth referred to as PHM) maintenance policy,
which is the most advanced today available mainte-
nance strategy [46]. Table 1 summarizes the main char-
acteristics of the aforementioned maintenance policies.
So far, Condition Based Maintenance CBM has been
the most investigated maintenance strategy both by
the research community and by industries. Several im-
portant review papers on CBM can be found in the
specific literature. For instance, Goyal and Pabla [29]
focused their attention specifically on machine tool sec-
tor. Although, in this paper, the authors made a com-
prehensive review of the most suitable sensors for mon-
itoring the vibrations in machine tools together with
some available data analysis methodologies, no consid-
erations on how to estimate the machine tool compo-
nents health were reported. In [40], although it does
refer to machinery in general, some additional consid-
erations on the available techniques for reasoning and
for supporting the maintenance decisions were carried
out. PHM encompasses the estimation of the current
health status of the system or component under anal-
ysis along with the prediction of its Remaining Useful
Life (RUL) [57]. The main objective of PHM is the re-
duction of maintenance associated costs, through the
elimination of unnecessary inspections, components re-
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Table 1 Different maintenance strategies: an insight on their main characteristics (this table is a rearrangement of the one

proposed in [46])

Maintenance strategy Reactive Preventive Condition PHM
based
Maintenance interval Determined by  Fixed (determined Based on system Based on system
component failure upon statistical  condition health status and

Severity, or impact, of | Low
the typical associated
fault

Low

Technological require- | Low

ments and complexity
Medium

Human interventions

required

High

reliability tests)

Low-medium

remaining useful life
Medium-high High

Medium-high High

Low Low

placements and system failures [100] Moreover, it is a
significant tool for the reduction of the risk of catas-
trophic events [89]. PHM maintenance policy belongs
to Industry 4.0 paradigm [119,118], as they share sev-
eral technological enabling factors [109]:

— the wide range of sensors today available, which can
register every source of information coming from the
machine (vibrations, acoustic emissions, tempera-
ture etc) at, most of the times, a relatively small
cost and size [118,21];

— the increased computational resources made avail-
able in embedded computer, which can be installed
close to the system to perform some initial process-
ing tasks on data, such as cleaning, interpolation
and feature extraction [56];

— the connectivity or Internet of Things (IoT), which
allows to connect each system to a network of inter-
connected assets [25,118]. Research in open stan-
dards can potentially foster and ease the exchange
of maintenance data [104,54,102];

— big data technologies, which allows to store, manip-
ulate and access all the data collected from each ma-
chine, for a real-time update of system health status
and remaining useful life estimate [55,119,96].

Despite the ease with which companies nowadays have
access to these enabling technological factors, small,
medium and large enterprises are still facing several
challenges when trying to implement a PHM mainte-
nance policy, such as costs and availability of sufficiently
skilled human resources [46].

This paper focuses on the application of PHM main-
tenance strategy to machine tools and their subsystems
and components. For the first time to the best of au-
thors’ knowledge, PHM works dealing with this kind
of machinery equipment are reviewed, while also high-

lighting current open research areas for future improve-
ments. Another novelty aspect of this article lies in the
comprehensive introduction to PHM, which covers in
details its preliminary phases, namely preliminary anal-
ysis, monitoring and diagnostics, to give a global per-
spective on PHM to a maintenance manager interested
into it. In fact, several PHM review paper have been
published so far, but none of them considered all these
phases together, as for example [40,79,93,64,58,127],
while [100,109] concentrated on technological and eco-
nomical aspects.

2 PHM preliminary phases

PHM is made of several consecutive phases, as illus-
trated in Fig. 1. In the following, PHM maintenance
strategy preliminary phases are presented, before diving
into the analysis of health assessment and prognostics,
the core of a PHM maintenance strategy.

2.1 Preliminary analysis

An analysis preliminary to the application of a PHM
maintenance policy is necessary to establish:

— the components, or subsystems, for which it would
be possible to apply a PHM maintenance strategy.
In fact, not all the components are suited for the
application of PHM maintenance policy: only com-
ponents which deteriorate over time emitting signals
of the deterioration can be maintained with a PHM
strategy. So, for example, an electronics component,
whose failure rate is usually assumed to be constant
over time (apart from infant mortality), may not be
suited to PHM if its degradation is not progressive



A review of Prognostics and Health Management of Machine Tools

Preliminary
Analysis

A

- Feature
Monitoring || «—
Selection

o
e

— Diagnostics
.

Feature
Selection

Feature

Selection

Prognostics

Fig. 1 General scheme of a PHM maintenance strategy,
which highlights its constitutive phases. Diagnostics and
prognostics thumbnails have been taken from [36] and [37].
respectively

and observable in some way. Indeed, prognostics and

health management of electronic components is at

its infancy [100]. In these cases, the best estimate of
the remaining useful life of the component or system

is given by fleet wide statistics, as the MTTF [26];

— if a PHM maintenance policy would be able to bring
effective results, savings and improvements with re-
spect to other less complicated maintenance poli-
cies. To understand these effects, [57] presented the
chart reproduced in Fig. 2, which should assist the
maintenance manager in the maintenance strategy
decision making process. This chart clusters failures
into four classes, whose boundaries have to be se-
lected based on the component or subsystem under
analysis:

1. the first quadrant in Fig. 2 comprises the compo-
nents who experience a lot of failures with large
downtime. Instead of thinking about a change in
the maintenance policy, the authors of the pic-
ture suggest that resources should be allocated
to the design process, to improve the reliability
of this component;

2. the second quadrant in Fig. 2 is the group of
components whose faults are frequent but not

Component failure frequency

>

e esessss s es s ss s s e —————

>

Downtime caused by component failure

Fig. 2 Chart, adapted from [57], to ease the identification of
components worthy of PHM maintenance policy

expensive, so simply more spare parts are needed
without changes to the currently implemented
maintenance strategy;

3. the third quadrant in Fig. 2 makes reference to
components which are almost not failing and
whose associated downtime is small. No action
is needed,;

4. the fourth quadrant in Fig. 2 is the one devoted
to components suited to PHM, namely compo-
nents which seldom fails but with large associ-
ated downtime, as already suggested by Table 1.

for each critical component worthy of a PHM main-
tenance policy, as more information as possible on
its failure modes should be gathered, as suggested
by the international norm on prognostics [37]. Tools
traditionally adopted for risk assessment of safety
critical systems, can be utilized, as for instance:

1. Failure Mode and Effects Analysis [34] (FMEA)
is an analysis which basically aims at identifying
all the single failures associated to a system and
for each of them their root causes, the sensors
which can detect the presence of the fault and
the suggested maintenance actions. In practice,
the maintenance manager has to fill in a table
as the one presented in [106,14,19]. The main
shortcoming of this analysis tool lies in not be-
ing suited to multiple concurrent and interacting
faults, as it is not able to highlight the interac-
tions among different faults. Alternative versions
of this tool have been proposed in [45] and in
[13], which specifically addresses PHM needs;
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2. Fault Tree Analysis [35] (FTA) is complemen-
tary to the FMEA since its strength is the short-
coming of FMEA: being able to convey a sim-
ple graphical representation of the interactions
among the different faults which can affect the
machine;

3. root cause analysis aims at the identification of
the root cause of a fault. It is particularly suited
for complex assets affected by multiple and in-
teracting faults. The output consists of a causal
graph, called causal tree, which portrays the se-
quence of events which leads to a determined
fault, as illustrated in Fig. 3.

Key — -
Mo ! Maeo |

I'RCj | root cause LRC1 RC2 |

consequential failure mode

oD none

(s> symptom
— “initiates”
— “influences”

2 Probability, p = 0,75.
b The delay is 3 days.

Fig. 3 An example of causal tree [35]

2.2 Monitoring

Monitoring, also referred to as anomaly detection, is
the act of constantly verifying that the machine or as-
set is performing as expected and triggering an alarm
if it is not. Basically, monitoring translates into a com-
parison between the normal asset behavior (which con-
stitute the so-called baseline data [38]) with the current
machine behavior. The difference between baseline and
current data is called residual. When the monitoring al-
gorithm detects an anomalous system behaviour, it sets
an alarm, which in turn triggers the diagnostic module,
which is in charge of establishing which failure mode
has appeared. For instance, statistical process control
is the most known and suitable monitoring tool [40, 71].
One of the main challenges encountered in the monitor-
ing phase are false alarms, which can be caused by [65]:

— the intrinsic difference between different machines,
even of the same model. Indeed, each machine is
different from the others, therefore it may call for a
dedicated baseline;

— a variation of operating conditions;

— the dynamics during machine warm-up time. For
example, data collected during warm-up time may
be misleading due to thermal expansion;

— a baseline shift due to either maintenance adjust-
ment or replacement. As a consequence, baseline
may be recorded again.

As for diagnostics and prognostics phases, monitoring
is not performed over the raw signals but on features,
which are essentially synthetic information carriers. In
other words, information contained in the collected and
cleaned raw signals are usually mapped to a low dimen-
sional feature space for an easier and more tractable
match and comparison process [68]. Features can be ex-
tracted from different sources. In particular, they can
be:

— computed directly from raw signals. It must be no-
ticed that with "raw" we are referring to signal ac-
quired with a sufficient sampling rate, and without
data losses due to compression algorithms [36]. In
addition to this, raw data are cleaned to get rid of
data errors, in order to avoid the so-called "garbage
in garbage out" situation. Data errors can be traced
back to typing or insertion errors, for event data en-
tered manually (as, for istance, maintenance inter-
vents), and sensor faults, for condition monitoring
data [40]. In particular, errors which fall inside the
expected region of operation are the most danger-
ous ones, because they cannot be easily detected,
while outliers can be more easily and automatically
removed [36];

— computed from residuals, to be independent from
operating conditions.

— parameters of a model, which are recursively esti-
mated in real time, as for example in [11].

Finally, when dealing with large feature spaces, multi-
variate analysis tools, as independent component anal-
ysis (ICA) and/or dimension reduction techniques, as
for example principal component analysis (PCA), are
used to handle data with complicated correlation struc-
tures [40], and to reduce the dimension of the feature
space [15], respectively. It must be stressed that the fea-
ture selection phase is of paramount importance for ob-
taining meaningful monitoring, but also diagnostic and
prognostic results. Moreover, the set of features which
yields the best monitoring (or diagnostic, prognostic)
results is heavily dependent on the specific characteris-
tics of the system under analysis.
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2.3 Diagnostics

Diagnostics is the act of tracing back the evidence of
anomaly behaviour to their respective causes, i.e. their
faults. In particular, taking inspiration from [90], [24]
defines a fault as "an unpermitted deviation of at least
one characteristic property or parameter of the system
from the acceptable condition (or baseline). Usually, di-
agnostics is performed after the machine has experi-
enced a breakdown, i.e. it has been conceived as a pos-
terior analysis. Therefore, in the context of PHM, it
is more appropriate to think to the diagnosis phase as
the diagnosis of early fault signs [57|, which basically is
needed to trigger the prognostics module.

While monitoring translates into a comparison between
baseline and current machine data, diagnostics trans-
lates into a comparison between current operating data
and a faults database. From a more technical perspec-
tive, diagnostics is a pattern recognition and classifica-
tion problem:

— pattern recognition because the dataset collected
with a faulty machine are used to search for pat-
terns among the extracted features, to be able to
distinguish among the different faults. It is worthy
to elaborate a bit on this statement. Pattern recog-
nition is a preliminary phase, which comes before
classification, only when supervised learning algo-
rithms are used [8]. In this case, a training dataset
with already recognized faults is needed. When us-
ing unsupervised learning algorithms, pattern recog-
nition is called clustering [2]. Unsupervised learning
algorithms are useful for detecting new faults. For
instance, faults that could not be inferred neither in
the preliminary analysis nor analyzing the training
data-set. The event in which a technician did not
fixed correctly a screw while reassembling the as-
set and this caused unexpected machine vibrations
can be considered as a realistic example. These is-
sues could even happens when the faults contained
in the recorded data are not known a priori that
demonstrates that there is a very limited knowledge
of the system;

— classification because, once the fault database has
been built, the current machine data have to be clas-
sified to decide which faults are affecting the system.

Several algorithms can be used for pattern recognition
and classification. A review of their application to the
diagnostics problem can be found in [40]. See [57] for a
table which sums up the strengths and shortcomings of
the main diagnostic algorithms today available.

As for monitoring, the feature selection step is crucial.
There are currently two methods for diagnostic feature
selection [50,60]:

— filter based method, which ranks the features
based on a pre-selected criterion. One of the most
used index for feature ranking is Fisher score;

— wrapper based method, which selects the best
features by using the chosen classification algorithm
along with search methods as for instance forward
and backward search [60]. Basically, the feature set
which yields the best classification results is elected
as the diagnostic feature set;

Finally, it must be kept in mind that it is not true that
the more features are used, the better classification re-
sults are obtained. The best accurate diagnosis are ob-
tained when the smallest number of relevant feature is
used, as proven for instance in [60].

A benefit of an accurate and reliable diagnostic system
is shown in [39], in which an artificial intelligence based
automatic fault detection algorithm has been tested on
Columbia space shuttle data and has proven to be able
to detect the fault on shuttle wing minutes after it hap-
pened rather than during re-entry; such a system would
have, probably, saved the life of the whole shuttle crew.

3 Prognostics and Health Assessment
3.1 Health assessment

Once the diagnosis has been performed and therefore
the faults affecting the system have been identified,
the current health status of the machinery equipment
has to be assessed. System’s health status is generally
expressed as a numerical index, which varies from 1
(healthy component) to 0 (broken component). Com-
ponent End of Life (EoL), i.e. health index value at
which system is shutdown in order to prevent failure,
is suitably selected based on experience. Sometimes, a
degradation index (ranging from 0 to a previously de-
termined EoL) is used in place of a health index to
quantify the extent of the degradation process. Health
and degradation index time profiles can follow different
degradation patterns, as represented in Fig. 4 and 5, de-
pending on the degradation mechanism being involved.
In particular:

— asingle stage degradation pattern, as for exam-
ple a linear or an exponential trend, is associated
to a not reversible (or monotonic) and continuous
degradation process, as for instance the degradation
of a machine tool cutting insert;

— a two stage degradation pattern is character-
ized by an healthy stage, with no evidence of fault,
and an unhealthy stage, in which the degradation
process starts and proceeds until machine failure or
stop. The prognostics algorithm has to be started at
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Fig. 4 An example of typical health index time profiles: cir-
cles a,b and c denotes a single stage and monotonic degra-
dation pattern, a two stage degradation pattern and a three
stage degradation pattern, respectively

>

Degradation Index
[

>

Time

Fig. 5 An example of typical degradation index time pro-
files: circles a,b and ¢ denotes a single stage and monotonic
degradation pattern, a two stage degradation pattern and a
three stage degradation pattern, respectively

the beginning of the unhealthy stage, triggered by
the monitoring and diagnostics systems;

— a three stage degradation pattern is the case,
for example, of rolling element bearings inner race
surface fault: initially the impacts of the rolling el-
ements on the surface fault produce a lot of vibra-
tions. Then, the defect is smoothed by the contin-
uous impacts before increasing again in size. Con-

sequently, an increase-decrease-increase degradation
trend is observed;

— in a multi-stage degradation pattern compo-
nent, or system, degradation process goes through
multiple stages. This is often the case of a complex
systems affected by multiple, interactive, concurrent
faults.

In addition to these, one has to consider that for each
failure mode affecting the system, a dedicated health
index must be computed. The overall system health sta-
tus can be displayed with, for example, a radar chart,
as in [57].

Health index selection is a key moment in the set up of
a PHM maintenance policy. It is performed based on a
set of metrics, as for istance monotonicity and robust-
ness to noise, which are estensively reviewed in [58]. For
example, a monotony metric has been used in [63] along
with a genetic algorithm, to return the combination of
features characterized by the best monotonic trend. It is
important to stress that the characteristics of the degra-
dation pattern heavily affects the choice of the prognos-
tic algorithm, making the health assessment and prog-
nostic phases strictly connected to each other. Indeed,
only a few prognostic approaches, as for example Hid-
den Markov Models (HMM), can deal with multi-stage
degradation processes, while a wider range of prognostic
techniques are suited for single stage monotonic degra-
dation patterns.

3.2 Prognostics

The prognostic module is activated after an estimation
of the current system’s health has been computed. Its
purpose is to either predict system’s RUL or, for catas-
trophic failures, the probability that the system oper-
ates without fault(s) or failure up to some future time
(for example, the next inspection or planned mainte-
nance) [40].

Ideally, a prognostic algorithm should be able to:

— work in all the different operating conditions, which
include varying working parameters and environ-
mental factors. Interestingly, to cope with very dif-
ferent working conditions, in [57] only data collected
during transients (which are executed on purpose at
the end of each day of work) are used for PHM;

— integrate event data coming from machine tool Pro-
grammable Logic Controller (PLC) with condition
monitoring data acquired by sensors;

— take into account component aging;

— provide an estimate of RUL of multiple components
with concurrent faults (each with a different speed,
which must be taken into account) and fuse these
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estimates into a unique prediction of RUL, with a
certain confidence level;

— automatically identify new fault types;

— use as feedback of machine current health status ob-
servations and measurements coming from machine
inspections;

— provide a suggested maintenance action and a cor-
responding RUL estimate.

From the technical point of view, prognostics is a time
series forecasting problem, also referred to as a predic-
tion problem [33,50]. In particular, the variable whose
future evolution is predicted is the health or degrada-
tion index, which corresponds to the prognostic feature.
The prediction of the evolution of the degradation pro-
cess is carried out based on past recorded run-to failure
data, taken from other similar components and on an
estimate of the current health status of the machinery
equipment.

When the quantity to be estimated is system’s RUL,
it is computed as the difference between the time at
which the health or degradation index crosses a thresh-
old level which corresponds to the selected component’s
end of life, tg,s,, and the current time instant ¢ [37], as
exemplified in Fig. 6. The Failure Threshold FT does
not necessarily indicate a complete failure of the sys-
tem, but beyond which risk of functionality loss. In-
deed, sometimes a hazard zone is even considered for
the threshold, [73,32]. Specification of FT is a critical
issue. Although the F'T is often chosen according to
experience (data) or requirements there is lack of stan-
dard approaches to support this important choice, [51,
83]. In some applications discrete states were used. In
such cases the use of the classical thresholding tech-
niques is not necessary but the number of faults need
to be known a priori and this is not common in real
machinery. According to this scenario, some research
works (i.e. Javed et al. [42]) developed methodologies
that allow setting the F'T' dynamically and managing
multi-dimensional data.

Component’s RUL must be thought as a statistical
variable, hence not only its mean value, but (ideally)
its probability density function should be estimated. In
other words, a good prognosis is characterized by an
estimation of the RUL along with its associated confi-
dence interval (C.1.), as suggested by the international
norm on prognostics [37]. It must be taken into account
that, as [89] reports, RUL probability density function
is seldom Gaussian, hence the estimation of its mean
and variance may not be sufficient. In addition to this,
if the confidence associated to the predicted RUL is
too small (or, conversely, the RUL for which the as-
sociated uncertainty is sufficiently large is very short),
prognostics is not providing meaningful information for

Degradation Index
[
|
|
|
I
I
I
I
I
I
|
|
|
|
]
I

~
]
I
!

RUL

Fig. 6 Graphical representation of the computation of the
RUL and of its confidence interval (C.I.)

taking maintenance decisions [26,37]. Fig. 6 depicts an
example of confidence interval, which not surprisingly
becomes larger as the length of the prediction horizon
increases.

In general, more than one fault simultaneously affect
a system. For each concurrent fault, a prognostic al-
gorithm should give an expected RUL with an asso-
ciated confidence level. Then, RUL of all the compo-
nents have to merged into the RUL of the global sys-
tem. Therefore, data fusion techniques which can han-
dle confidence level associated to each prediction, are
of interest [40].

In general, the forecasting of the future health index
values is done by identifying a model which can pre-
dict with a sufficient accuracy, which must be specified
as well, the future evolution of the monitored variable.
This model can be:

— a rule based model, in case in which the model is
built upon expert knowledge. This is the case of the
so-called [37] knowledge, or experience based
prognostic approach;

— a white box model, in case of a physics based model
of component degradation process. In this case, only
some model coefficients have to be determined based
on experimental data (model tuning process), while
the structure of the model is known a priori, since it
is determined by the underlying degradation mech-
anism, whose dynamic equations are known, i.e. de-
rived from first principles. This is the case of the
so-called model based prognostic approach;
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— a grey box model, in case in which there is not a phys-
ical based model describing the degradation phe-
nomenon, but a user-selected dynamic model, whose
coefficients have to be determined based on avail-
able empirical data. In this case, both model struc-
ture and model coefficients have to be determined.
This is the case of statistical based prognostic
approach,;

— a black box model, in case nothing is a priori known
about the model, which is completely identified from
experimental data. This is the case of data-driven
prognostics approach, such as artificial neural
networks and deep learning;

— a combination of the previously mentioned models,
yielding the so-called combined, or hybrid prog-
nostic approach, to leverage on their respective
advantages to outweigh their limiting assumptions,
constraints.

In the following, we're looking more closely to these
families of prognostics approaches.

8.2.1 Knowledge or experience based prognostics
approaches

In knowledge, or experience based approaches intel-
ligence is put in by human experts [15]. Their main
strength is a relatively simple implementation, while
their main shortcoming lies in being applicable only in
cases in which expert knowledge exists. The main fam-
ilies of algorithms are the following:

— expert systems (ES), whose adoption for diag-
nostics dates back to the 1960s, are used to in-
sert explicit knowledge from experts into the PHM
algorithm by means of human coded (qualitative)
rules[15], typically in the form of IF-THEN rules,
which closely resemble the way a human specialist
solves a problem [64]. The advantages are that they
don’t rely on a physical model of the system, ease
of development, transparent reasoning, the ability to
reason under uncertainty, the capability to explain
the solution provided [15]. On the other hand, they
do not perform well when a huge number of rules
is needed (for the combinatorial explosion problem,
with the number of rules which grows exponentially
with the number of variables [40]) and cannot han-
dle new situations not explicitly coded [79]. In addi-
tion to this, expert system cannot directly deal with
continuous variables [64]. Moreover, this approaches
are usually not reconfigurable, meaning that the
given rules cannot be used for another kind of ma-
chinery equipment, even if object oriented rules have
been introduced to adapt to different systems [15];

— fuzzy logic (FL): a human expert gives a linguistic
description of the system. Fuzzy logic based meth-
ods are particularly robust against noise and dis-
turbances, and can be used to define fault classifi-
cation and prognostics rules. Compared to ES, they
can handle the uncertainty intrinsic to human ex-
perts knowledge [40] and they can treat continu-
ous variables [64]. Typically, they are used in con-
junction with artificial neural networks, which opti-
mize membership functions, yielding the so-called
neuro-fuzzy (NF) systems, whose main drawback
lies in being dependent on a huge number of training
data [58], as any other data-driven method.

3.2.2 Model Based prognostic approaches

Model based prognostics approaches leverage on a de-
tailed mathematical model of system degradation pro-
cess. Models are obtained starting from first principles,
and draw on system identification and state estimation
techniques for parameters estimation and unmeasure-
able variables estimation, respectively [24]. Addition-
ally, model parameters can be estimated with the help
of a FEM model [58]. Among the advantages of model
based prognostic approaches, the following characteris-
tics can be mentioned:

— model based prognostic approaches can be more ef-
fective than model-free, or data-driven approaches
when a correct and accurate model is built [40];

— a physics based model can account for different op-
erating conditions, making the prognostic algorithm
more robust and versatile;

— less data, compared to a data-driven method, can
be needed to tune a model based prognostic algo-
rithm [15,11];

— a prognostic model may help the adaptation of the
algorithms to a new machine of the same type [11].

The main disadvantages of model based prognostic ap-
proaches are:

— a model of the system is not always available, due
to either the lack of modelling approaches for the
system of interest, or to the too high cost involved
in modelling, which is tied to the complexity of the
system [64]. This is due to the fact that prognostic
models are degradation models, which rely on the
understanding of physics-of-failure mechanisms [31];

— their performances are strongly dependent upon the
accuracy of the model;

— the impossibility of reusing the model for a different
kind of machine (reconfigurability issue).

In general, a model based PHM strategy has been em-
ployed to predict [64,40] crack growth, creep evolution,
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pipeline tube degradation, battery state of charge, gear-
box, roller bearing deterioration as in [81].

8.2.8 Statistical based prognostic approaches

In statistical based prognostic approaches, the degrada-
tion process is seen as a stochastic process subjects to
different sources of variability and uncertainty. Stochas-
tic models are therefore used to perform prognosis [58].
RUL is considered a random variable, whose probability
density function is estimated, yielding a considerable
advantage for risk analysis and maintenance decision
making [93].

Several stochastic models have been used to model the
system degradation process. Interestingly, [93] classified
them into two categories:

— stochastic models based on directly observed
state processes: these models are based on direct
condition monitoring data or features, i.e. data or
features that can describe the underlying degrada-
tion state of the system directly, as for example the
length of crack when it can be measured or a feature
which can directly represent system’s health status.
In these cases, the prognosis translates into the pre-
diction of the time at which a predefined threshold
will be reached. The following stochastic models fall
into this category:

— regression based models model state evolu-
tion as a continuous process.
The most used ones are Auto-Regressive (AR)
time series models, as Moving Average Auto-
Regressive models (ARMA), which assume that
the future evolution of the predicted variable
is a linear function of both past observations
and normally distributed random noise, under
the assumptions of stationary data and statisti-
cal independence of the errors. Their advantages
are that they are easy to be implemented, they
don’t require a lot of computational resources
for computation and the results can be easily
explained [64]. On the other hand, their per-
formance are heavily affected by the quality of
past observations [58]. Moreover, they are usu-
ally effective for short-term prediction and un-
realiable for long term prediction. Finally, they
don’t perform well under variable load and oper-
ating conditions, and during fault initialization
stage, as in this phase the health index indicator
is typically non-monotonic and noisy [64]. How-
ever, [67] proposed an extension of an AR model,
which took into account the nonlinear aging of
the component;

— Markovian based models represent state evo-
lution as a discrete state space process. In other
words, they assume that the degradation pro-
cess of the system is represented by a series of
transformations in a finite state space, which
obey to the Markov property and hence to a
memory-less assumption. Markovian based mod-
els are prone to describe a multistage degrada-
tion process [58]. In addition to this, they have
been used quite often in condition based main-
tenance and monitoring approaches, thanks to
the fact that model’s states can be selected to be
very easy to understand, as for example "Good",
"Maintenance required" etc. In addition to this,
they have a strong theoretical background. Their
main limitations are:

e memoryless assumption is not always valid
in degradation processes, even if it is worthy
to mention that there is no any method for
testing Markov property for a generic pro-
cess [93];

e transition probability among system states
is determined either by empirical knowledge
or by large datasets, which are not always
available [93].

— stochastic models which are based on indi-
rectly observed state processes, also referred
to as partially observed state process models since
there is a stochastic relationship between the ob-
served condition monitoring data and the unobserv-
able degradation state. These stochastic models are
based on indirect condition monitoring data, i.e.
data that can only indirectly or partially indicate
the underlying (degradation) state of the system, as
for example vibration data. The following stochastic
models fall into this category:

— stochastic filtering based approaches model
the degradation process as a state which has to
be estimated based on observations of output
variables. Examples of filters are Kalman filter
(which provides a point estimate of RUL), parti-
cle filter (which estimates RUL probability den-
sity function (see [113] for a coincise but clear
introduction), Benes filter, multiple model filter.
The limitation of these approaches is that they
need a threshold level for the estimated state,
which is not easy to obtain [93]. Another as-
pect which may be troublesome is that these
approaches need a pre-defined model of health
dynamics. If this model is linear, and the noise is
Gaussian, then Kalman filter can be used. Oth-
erwise, particle filter is the most suited approach
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for nonlinear dynamic models, as for instance ex-
ponential models.

— Hidden Markov model (HMM) is a stochas-
tic, parametric process model, easy to realize in
software and with a well-constructed theoreti-
cal basis, which can be trained with both event
and condition monitoring data. More in details,
it consists of two stochastic process: a Markov
chain with a finite number of states describing an
underlying mechanism, and an observation pro-
cess depending on the hidden state. HMMs have
been adopted for this kind of prognosis since the
beginning of the 21st century [93]. [9] has been
the first to apply HMM to prognostics: the RUL
of a helicopter gearbox was analyzed, where vi-
bration measurements were treated as realiza-
tions of the observation process. The limitations
of this approach are the difficulty encountered
in the HMM parameters estimation (large com-
putational resources and memory required) and
state transition probability estimation. In addi-
tion to this, the Markov property limits the abil-
ity of the HMM to model the temporal struc-
ture of prediction problems. Finally, only RUL
mean and variance can be estimated with this
approach [93].

Other statistical approaches, which can be used with
both the previously mentioned categories, can be found
in the literature, as for example:

— gaussian process regression (GPR) model cu-
mulative damage processes of random variables with
joint multivariate distribution, which are then used
to predict future values. This approach works well
with both small and large sample datasets. Its draw-
back is the need of large amounts of computational
resources [58];

— similarity based pattern matching methods
can be used when abudant run-to-failure data are
available, which is not always the case in machin-
ery field, to yield very accurate predictions. These
methods match health index degradation pattern to
the historical run-to-failure dataset which closely re-
semble its trend [64].

3.2.4 Data-driven prognostic approaches

Data-driven prognostics approaches are built on the as-
sumption that failure prediction can be inferred directly
from data, rather than from a stochastic, experience or
physical model of the analyzed system. More specifi-
cally, data-driven algorithms are not applied directly on
sensors’ signals, but on extracted features, which reduce

data dimensionality [68]. In general, the main short-
coming of data-driven methods is that their efficacy is
highly-dependent on the quantity and quality of the
data used [69]. In addition to this, the lack of efficient
procedures to obtain good training dataset (so, usu-
ally, experimental dataset are used) represents another
limitation of these approaches [40]. Finally, data-driven
methods cannot generally estimate the probability den-
sity function of RUL, since they do not have a proba-
bilistic orientation [93]. However, some approaches to
estimate RUL probability density function have been
proposed, as in [20]. Their advantage lies in not need-
ing any prior physical or statistical model or knowledge
of the analyzed system or components. In addition to
this, they are able to analyze big datasets (also of differ-
ent data types) and find unforeseen data relations [79].
Several machine learning algorithms can be used for
data-driven prognostic methods, as for example:

— Artificial Neural Networks (ANN) are built by
three (input, hidden, output) layers and aim at re-
producing the way a human brain works.

They are considered good approximators of nonlin-
ear functions and complex and unstable systems [64].
For this reasons, they have been mainly used to
learn the relationship between health indexes and
RUL [58].

Their limitations lie in being a black-box approach,
so output cannot be physically explained, in the
complexity of the training procedure, which requires
a large amount of data, and in the difficulties which
have to be faced when selecting network layers and
nodes number [79,64]. Several ANN variants can be
found in the literature, such as dynamic wavelet
neural networks (DWNN), Elmann Recurrent NN

(ERNN) to model non-stationary processes [64];

— support vector machine (SVM) is a supervised
learning tool, built on statistical learning theory [15].
They non-linearly map an input set into a higher
dimensional set, in which a linear classifier separate
classes [35]. Compared to artificial neural networks,
they usually perform better on small datasets. In ad-
dition to this, their computational complexity does
not depend upon the dimensionality of input data
and they provide a unique solution to a given prob-
lem, while ANN are prone to local minima [35].
However, they suffer from several limitations:

— they can provide only a single-value (determin-
istic) prediction, rather than a probabilistic pre-
diction or probability density function. To over-
come this limitation, relevance vector machine
(RVM) has been proposed [64], which is based
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on Bayesian inference! and hence can incorpo-
rate prior knowledge. RVM features also other
advantages over traditional SVM, as less compu-
tational resources needed and a mechanism for
avoiding over-fitting [31];

— their performance is highly dependent on their
kernel function, whose selection, along with their
parameter estimation, has no standard meth-
0ds[58,64], so human expertise is needed.

— deep learning is an unsupervised learning algo-
rithm which has received great attention in these
years, thanks to its achievements in the fields of ob-
ject recognition from images and speech processing.
The need of a huge amount of training data to pro-
vide meaningful results is its main shortcoming [40].
We can distinguish between several architectures of
deep learning networks [68,127], such as autoen-
coder, restricted Boltzman machine,deep belief net-
work.

8.2.5 Combined prognostic approaches

Usually, more than one fault affect simultaneously a
component or system. This naturally calls for the adop-
tion of a combined, or hybrid [58,37], prognostic ap-
proach, given the fact that it is unlikely that a single ap-
proach can account for all the possible faults and failure
modes of the analyzed system. In addition to this, each
approach has its strengths, which a combined approach
aims to foster, and shortcomings, whose effects are in
principle minimized by a combined approach through
redundancy and compensation. In [64] a panoramic of
combined prognostics approaches has been presented.
As an applicative example, in [26], a model based prog-
nostic algorithm for avionic roller bearings has been
designed to fuse competing RUL estimates, one coming
from a physics based model of fault propagation and
one coming from experimental data, collected in run-to-
failure experiments. Experimental data collected from a
bearing test rig showed that a fused RUL estimate bet-
ter reproduces system real degradation behaviour com-
pared to either a physical based model, which under-
estimate damage, or an experience based model, which
overestimate damage.

3.2.6 Metrics used in Prognostics

One of the challenges in PHM, as in other forecast-
ing disciplines [87], is to conceive suitable standardized
metrics for evaluating different prognostic approaches,

1 see [23] for a historical-perspective clear introduction to

the different inference paradigms today existing

[89]. Prognostic algorithms, as already deeply discussed,
generally compute different output quantities such as
HI (health index), PoF (Probability of Faiulure) or
RUL (remaining using life) . In order to meaningfully
deal with prognostics, the involved algorithms should
deal with the Uncertainty Representation and Manage-
ment (URM), [85]. The main steps of URM are: uncer-
tainty representation (frequentist (classical) or Bayesian),
uncertainty quantification linked to different sources
(modelling errors, model parameters, sensor noise, mea-
surement errors (outliers), state estimates, future load
and operating and environment conditions), uncertainty
propagation and uncertainty management. For what
concerns the propagation, it is important to understand
that RUL estimations are simply dependent upon the
various uncertainties characterized in the previous step,
and therefore, the distribution type and distribution
parameters of RUL should not be arbitrarily chosen.
Sometimes, a normal (Gaussian) distribution has been
assigned to the RUL; such an assignment is erroneous
and the true probability distribution of RUL needs to
be estimated though rigorous uncertainty propagation
of the various sources of uncertainty through the state
space model and the FOL threshold function, both
of which may be non-linear in practice, [99,98] . In
many of the previous research works, a probabilistic
representation of the uncertainty was adopted, [103]. So
far, most of the research has been using metrics based
on precision and accuracy. For instance, M SE (means
square error), SD (standard deviation), MAD (mean
absolute deviation), MdAD (median absolute devia-
tion) and MAPE (meas absolute percentage error). In
some other applications, metrics more related to busi-
ness have been adopted: ROI (return of investment),
MTBF (mean time between failure), etc. [87,116,53].
These metrics takes into account, from the statistical
perspective, the variation of the prognostic algorithm
output quantities (i.e. RUL). Develop a proper URM
is surely a future research challenge for experts in prog-
nostics, [108,70,18,76,103|. The commonly adopted met-
rics were not specifically conceived for applications where
the prediction is typically updated as more data be-
comes ready to be used. Another important limitation
is related to the incapability of assessing the enhance-
ment of the prediction, both in terms of accuracy and
convergence speed, when new data are available. In or-
der to bridge this gap, several research works were de-
veloped, [108,88,89] . In particular, Saxena et al. in [89],
conceived a hierarchical framework of four metrics for
off-line prognostic applications. The first metric (prog-
nostic horizon PH) provides the time index when the
predictions first meet the performance index in terms
of accuracy. High values of PH means more time avail-
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able to act. The second one is the a — A\ metric. It
assesses if the quality of the prediction fulfills the per-
formance specification over time A. The third one is the
relative accuracy RA that measures the accuracy of the
prediction over the time. The last metric Convergence
quantifies the rate at which any metric improves as new
data become available. Although in [88] the use of such
metrics in some real cases (not connected to machine
tools) was discussed, the development of improved stan-
dardized metrics, suitable even for on-line applications,
still represents a stimulating topic for the research com-
munity. Indeed, even the computational burden of the
algorithms has to be considered if the deployment of
the code on hardware platform is requested. Indeed,
this aspect is very important especially if safety-critical
decisions need to be performed in real-time. Saxena et
al. in [87], Roemer et al. in [84] and [6] defined metrics
for comparing algorithms even from the computational
perspective. Since prognostic parameters are used to
estimate the RUL of a specific component in its spe-
cific environment, the identification of appropriate pa-
rameters is vital for an accurate and precise estima-
tion. Optimization strategies could be used to select the
most suitable parameters for maximizing/minimizing
the considered metrics, [17]. Even the adopted prog-
nostic algorithm can be selected according to an opti-
mization process, [107]. The meta-herustic algorithms
(nature inspired), used even in other fields, could be
particularly suitable for this purpose since the high-
complexity of the task, [80,72].

4 PHM of machine tools

To the best of authors’ knowledge, here works on prog-
nostics of machine tool subsystems are presented, to
shed a light upon their shortcomings and limiting as-
sumption and hence highlight open research areas.

4.1 Reliability of machine tool subsystems

As stated before in Section 2.1, as more information
as possible on the system being maintained have to be
gathered, especially to establish subsystems and com-
ponents suited to the application of a PHM mainte-
nance policy. From our analysis, it immediately emerged
that literature lacks of a large number of works dealing
with the collection of data regarding machine tool fail-
ure rates. We formulated three explanatory hypothesis:

— firstly, often machine tools are customized systems,
produced in small batches. This severily hampers
the collection of large failure datasets [121,123,48];

— secondly, machine tool manufacturers have gener-
ally not extensively and systematically collected fail-
ure data, mainly due to the fact that reactive and
preventive maintenance policies have been preferred
so far over condition based maintenance strategies;

— last but not least, not a lot of time has elapsed since
the introduction of IoT devices, one of the enabling
technologies which allow to collect large datasets
from remotely connected machines.

In [16] failure data from a numerically controlled lathe
were collected for a 5 years period. Hydraulic and elec-
tric subsystem were found to be the most faulty ma-
chine tool subsystems. [78] adds the chunk system as
a reliability critical component, based on failure data
gathered from 50 numerically controlled lathe machines
working three different materials for 7 years. In [120]
failure data from twelve machining centers are ana-
lyzed. Hydraulic system emerged as the most faulty
subsystem, accounting for 18 % of the total number of
experienced machine breakdowns, followed by the elec-
trical system, the tool magazine and the tool clamping
mechanism. Spindle system failures constituted 9.2 % of
the total number of failures; however, they were consid-
ered as critical faults, as their repair time (2.65 hours)
was the second longest of the whole machine. Among
spindle subsystem, in [122] spindle’s bearings were dis-
covered to be far the most faulty component, based on
failure data collected from 500 numerically controlled
machining centers. Bearings failures, together with mo-
tor system and tool clamping mechanism failures, ac-
counted for 92 % of the total number of spindle system
breakdowns. However, these results may be influented
by human errors, which strongly affects reliability re-
sults by representing a consistent source of uncertainty.
In fact, [12] reports that the majority of spindle bearing
failures are due to accidental tool impact.

4.2 Feed axis

Although feed axis failures are not so frequent, as ex-
plained in Section 4.1, their repair time is often the
larger of the whole machine tool [120]. In addition to
this, it must be remembered that the deterioration of
machine tool feed axis hamper the quality of the worked
piece, since the accuracy of axis positioning decreases
and vibration increases. Hence, machine tool feed axis
is a subsystem suited to the application of a PHM main-
tenance strategy. Nevertheless, works on prognostics of
machine tool feed axis are very scarce. Moreover, they
focused entirely on ball screw degradation, as summa-
rized by Table 2; so, other transmission layouts, as for
example linear electrical motors or rack and pinion have
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been completely neglected. Beside this, all the prognos-
tic approaches presented took advantage of vibration
signals acquired at ball screw nut to track and predict
ball screw degradation process, which is generally ob-
served to be monotonic. However, attention must be
paid since the installation of an accelerometer at screw
nut may not be always easy or even feasible, due to tight
space constraints in this region of the machine tool.

4.3 Spindle

Although spindle plays a fundamental role in machin-
ing, being partially responsible for the quality of the
worked piece, for machine’s maximum achievable re-
moval rate, and being arguably one of the most critical
subsystems for machine tool’s reliability as explained in
Section 4.1, to date, just a few works explored prognos-
tics of spindles, as illustrated by Table 3. Moreover, all
these works dealt with the prediction of spindle bear-
ings failure, the most faulty component of the spindle
assembly, either due to accidental tool impacts or sim-
ply to wear and aging effects [12]. Both the cited works
took advantage of spindle vibration measurements ac-
quired with accelerometers mounted close to spindle
bearings to compute the features used for prognosis.
Finally, it is worthy to highlight that only in [94] tests
have been carried on a machine tool during milling op-
erations, while in [66] and in [86] tests have been per-
formed on a dedicated test bench which did not feature
a working cutting tool.

4.4 Hydraulic system

Hydraulic system plays a crucial role in the assessment
of whole machine tool reliability. In section 4.1 it has
been shown that hydraulic system is on the most faulty
subsystem, so the ability to foresee an incipient failure
would certainly be a significant advantage for any cus-
tomer.

In machine tools, several hydraulic circuits are present.
Typically, a high pressure circuit is dedicated to the au-
tomatic tool changing mechanism, while a lower pres-
sure circuit is in charge of lubrication. Moreover, other
middle or low pressure circuits can be present for other
auxiliary tasks. Finally, machine tools also feature a re-
frigerant hydraulic circuit and one for the addition of
lubro-refrigerant cutting fluid.

Table 4 lists all the to date available works on the prog-
nostics of hydraulic circuits and their components. It
is evident that literature still lacks of prognostics ap-
proaches devoted to machine tool hydraulic systems,
which is made of several different components, as pumps

with their motor, pipes, valves, accumulators and actu-
ators. Only a few works, from the aeronautic field, dealt
with hydraulic circuit leakages. For hydraulic oil, while
a large number of works on monitoring is available [110],
works on prognosis are scarce. A slightly more large
bunch of paper is available on pump prognostics, which
is commonly referred to as the most faulty hydraulic
component [10]. However, not all the different kind of
pumps have been treated. For example, prognosis of
gear pumps, which are traditionally installed on ma-
chine tools, has not been investigated yet.

4.5 Tool

The prognostics and health management of cutting tool
is an opportunity made available by the fact that the
well-known Taylor formula [47] and its more recent vari-
ants, as the one presented in [75], cannot take advantage
of real time measurements to compute a more accurate,
actual condition based RUL estimate [22].

Tool is machine tool component whose prognostics has
been studied more extensively, as confirmed by table 5.
The attention given to this machine tool component
may be explained by the benefits obtained if changing
the tool at the right moment: [97] stated that up to 40%
of savings on tools cost could be achieved by monitoring
the health of the tool and by consequently changing it
at the right moment, to avoid to damage the piece being
worked (consider that the quality of the worked piece is
affected by tool wear). In addition to this, [52] reported
that approximately 20% of machine tools downtime is
statistically due to tool failure.

However, several shortcomings hamper the results of
the so far published researches on tool PHM . Firstly, in
almost all these works a load cell, or dynamometer, has
been used to measure cutting forces, which are the vari-
ables carrying the largest information content on tool
wear [114]. But this is not a sensor which can be used
in a real production environment [22], because is it not
sufficiently robust and because it modifies machine tool
natural frequencies due to its not negligible mass and to
the reduction of system stiffness which introduces. Re-
cent research works demonstrated the possibility to cor-
relate cutting forces to tool displacements or tool strain,
Wang et al. [111,112] . Cutting forces should be instead
estimated online with dynamic estimators which take
advantage of more easily obtainable measurements, as
vibration and spindle motor current, see for example [3,
4,49,77,44]. Secondly, a few of these researches tested
the robustness of their respective prognostic algorithm
under varying cutting parameters and cut materials,
a common scenario in a real production environment.
For these reasons, we believe that the prognostics of the
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Table 2 Works on prognostics of feed axis

Ref.  Failure modes Sensors installed Health Index (HI) se- HI Prognostic algorithm
lection strategy
[60] Ball screw preload Motor torque and Maximization of sig- Features set ex- Gaussian process re-
loss current sensor, ac- nal to noise ratio and tracted from vibra- gression
celerometer mounted display of a mono- tion signals
at ball screw nut tonic trend
[115] Pitting on screw  Accelerometers, one Ranking based on Weighted Maha- Particle filter, based
surface (as a re- mounted on ball nut trendability index; lanobis distance on an exponen-
sult of accelerated and one on bearing then correlation tial Wiener process
life tests) housing clustering to group model, whose param-
features with  the eters are iteratively
same information updated drawing on
content and extract a Bayesian theory
representative feature
from each class
[126] Ball screw degra- 3 accelerometers, of Principal Component First five principal Dynamic fuzzy neu-
dation which 2 mounted on  Analysis components ral network, whose
bearings housing and parameters have
one on screw nut been tuned with a
quantum genetic
algorithm
Table 3 Works on prognostics of spindle
Ref.  Failure modes Sensors installed Health Index (HI) se- HI Prognostic algorithm
lection strategy
[66] Balls, cage and Bearings and motor Fisher criterion Minimum Quanti- Particle filter, operat-
races failures as vibration and temper- zation Error ing on an exponential
a result of insuf- ature model identified with
ficient lubrication Bayesian statistics
and salt water put
on races to accel-
erate wear
[86] Not specified Bearings vibration  Correlation Polynomial regression
and temperature,
motor temperature
and current
[94] Failure as a con- Spindle vibration and Highest signal to Mahalanobis Dis- Linear approximation
sequence of either temperature noise ratio tance (MD) of MD evolution over

cage, inner race or
outer race defect

time for RUL predic-
tion

tool, despite been already covered quite extensively, is
still not enough mature to be adopted in industry.

5 Conclusions

This paper presented a panoramic of PHM and its pre-
liminary phases in a brief but comprehensive way, to
give to the reader a global picture of what this advanced
maintenance strategy is about. Current available main
families of prognostics algorithms were described. In
particular, works on the prognostics of machine tools
and their main subsystems were review. This analysis
shed a light upon the current limitations (i.e. need of
run-to-failure data, need to rely on robust approaches,
manage the complexity of real system and multiple axes

of information etc.) of these applications of PHM to this
kind of machinery equipment. In general, just a few of
the presented algorithms have been tested in realistic
scenarios, while the robustness of the vast majority of
these algorithms to varying working conditions and cut-
ting parameters has not been assessed. This let us to
believe that PHM of machine tools is still a topic under
development, which will bloom in the next few years.
Up to the authors’ opinion the following aspects, being
the main found limitations, need to be developed and
further enhanced:

— Enhancement of condition based maintenance sys-
tems to collect accurate information, especially event
information. This information would be useful for
model building and model validation too. Moreover,
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Table 4 Works on prognostics of hydraulic circuits and their components

Ref.  Failure modes Sensors installed Health Index (HI) se- HI Prognostic algorithm
lection strategy
[28] Circuit leakages Liquid level (quan- Liquid level Particle filter, based
tized degradation on a discrete time
messages as output) state space exponen-
tial model, whose
slope is online esti-
mated
[128]  Oil contamination  Oil temperature, vis- Particle contamina-  Particle filter
cosity and dielectric tion level
constant
[74] Servo-valve clog-  Actuator (motor) cur-  Sensitiveness and cor- Integral of motor ARMA model
ging rent and valve posi- relation with respect current
tion to clogging
[27] Piston pump: Pressure Not stated average system Kalman filter; Mon-
looseness of pressure tecarlo method for
regulator valve RUL confidence inter-
spring val computation
[30] Piston pump:  Oil return flow Empirical mode de- Oil return flow SVM
wear between composition
valve plate and
cylinder barrel
[101] Piston pump: Vibration Spectrum entropy, Recurrent Neural
loose slipper after discrete co- Network
sine transform and
composite spectrum
computation
[95] Centrifugal Vibration, tempera- Highest signal to Mahalanobis dis- Linear dynamic
pump: seal and ture, flow, pressure noise ratio tance model
impeller failure
and filter clogging
[113]  Slurry centrifugal Vibration Expertise Sum of the am- Particle filter, with an
pump:  impeller plitude  of the exponential model
failure harmonics in the
neighborhood of
the vane pass fre-
quency. Then, a
moving-average
wear indicator is
used to extract
the central ten-
dency from the
time profile of the
previously defined
feature
[31] Slurry centrifugal Vibration Expertise Standard deviation = Relevance Vector
pump: impeller Machine, which esti-
failure mates the paramters

of two
functions

exponential

it is particularly suitable when a great amount of
data (big-data) are available. This is the case of
modern machine tools that are equipped with sev-
eral sensors and emerging Information Communica-
tion Technologies ICT (Industry 4.0 paradigm).

— Development of advanced sensor techniques for ro-
bust on-line data acquisition and development of
methods for extracting, processing and interpreta-
tion of knowledge type information

— Development of efficient and fast on-line signal pro-
cessing algorithms

— Development of fast and precise prognostic approaches.
These would be particularly suitable for develop-
ing real-time maintenance systems. Moreover, as re-
ported in section 3.2.5, prognostics craves for proper
approaches for managing the estimation the linked
uncertainty (URM).
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Table 5 Works on prognostics of cutting tool

Ref.  Type of machin- Sensors installed Health Index (HI) se- HI Prognostic algorithm

ing considered lection strategy

[92] Broaching Cutting forces, strain, PCA Principal compo- SVM
vibration nents out of force

covariance matrix

[5] Drilling Current Fisher criterion energy of wavelet ARMA model

packet signal node

[59] Turning Flank wear Correlation with tool  Flank wear A sort of similarity

wear method

[125]  Milling Vibration Paerson  correlation A set of time- Neuro-fuzzy neural

coefficient domain features network

[105] Milling Cutting forces, vibra-  [1] Rms, peak and Dynamic  Bayesian
tions, acoustic emis- standard deviation network
sions from dynamometer,

rms and kurtosis
from accelerometer,
mean and standard
deviation from
acoustic emission

[61] Milling Cutting forces Genetic algorithm Cutting force peak, Fuzzy inference

amplitude, average
and standard devia-
tion
[62] Milling Cutting forces Automatic Relevance Time-domain fea- Multiple regression
Determination tures models

[43] Milling Cutting forces, vibra-  Genetic algorithm Artificial neural net-
tion, acoustic emis- work (extreme learn-
sion ing machine)

[7] Milling Cutting forces, vibra- Expectation = maxi- Time-frequency do- Support Vector Re-
tion, acoustic emis- mization,PCA and main features gression (SVR) with
sion isometric feature gaussian kernel

mapping

[114] Milling Cutting forces Experience Energy features  Gaussian regression

from time-
frequency domain

[41] Milling Cutting forces, vibra-  Genetic algorithm Four time domain Extreme learning ma-
tion features chine

[22] Milling Spindle power Spindle power rms Artificial Neural Net-

work

[82] Milling Cutting forces, vi- Energy features  Nonlinear regression,
bration, acoustic from Wavelet trans-  with a different model
emissions (sensors form and blind for each cutting tool
installed onto work- source separation tested
piece)

[117] Milling Cutting forces [91] Time and frequency Bayesian multi-layer

domain features perceptron

[124] Milling Cutting forces, vibra-  Expertise Vibration signal ~ Weighted Hidden
tion, acoustic emis- rms Markov Model
sions

— Development of hybrid prognostic approaches that
mitigate the limitations associated to each single
methodology. For instance, it would be necessary
to reduce the need of run-to-failure data.

— Develop specific prognostic solutions suitable for ap-
plications in which only limited data are available
and, at the opposite, for applications in which big
data are involved. For example, the increasing use of
AT approaches is justified if a large number of high
quality training data is available, [58]

— Development of methodologies capable of updating
the prognostic model through on-line data in order
to increase the precision of the prediction and to
capture changes in operating conditions or transient
behaviours

— Development of robust prognostic approaches for
complex systems: for instance, single component with
multiple faults or fault interaction of different com-
ponents at the system level, [58]. Moreover, method-
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ologies suitable for managing multiple axes of infor-
mation are also requested.

— Establishment of efficient validation approaches us-

ing different metrics (see section 3.2.5 for perfor-
mances evaluation approaches)

For what concerns specifically the machine tools,

more attention ought to be devoted to PHM of hy-
draulic systems and spindle bearings, which represents
two of the most faulty components of machine tools,
and to automatic tool change and clamping mecha-
nisms, for which no PHM works have been presented
so far.
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