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Abstract. The electron beam melting process has been successfully applied in various sectors to produce 

high-value-added products. Being a hot process operating in vacuum environment with x-rays and 

material vaporization among by-products, in-situ sensing and monitoring presents more challenges than 

in laser powder bed fusion. However, an automated and robust detection of unstable process conditions 

represents a key capability to meet challenging qualification requirements imposed by industry. This 

study presents novel in-situ monitoring methods based on high spatial resolution imaging for powder 

bed homogeneity monitoring and high temporal resolution video-imaging for hot-spot detection, i.e., 

the detection of anomalous local heat accumulations.  
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1. Introduction 

The electron beam melting (EBM) technology has been adopted in the recent years in the 

aerospace and biomedical sectors to produce high-value-added products, but its industrial 

development has been growing in other fields too [1 - 2]. EBM allows overcoming some 

common limitations of traditional manufacturing processes, but it also provides enhanced 

capabilities with respect to other additive manufacturing processes, e.g., high preheating 

temperature and high productivity. However, various defects may occur while the part is being 

produced and this pushes the need for the development of automated in-situ monitoring 

methodologies [3 – 5]. The literature on in-situ monitoring methods applied to EBM focused 



on two major streams. One involves the use of infrared or near-infrared imaging either to detect 

volumetric flows and geometrical distortions or to predict the microstructural properties of the 

part [6 – 11]. The second regards the use of back-scattered electron detectors for electronic 

imaging. In this case, the aim consists of identifying surface pores and in-plane or out-of-plane 

geometrical distortions with a less expensive and more integrated sensing setup [12 – 14]. Some 

authors also investigated the use of embedded sensor signals to detect unstable process 

conditions [15 – 17].  

Despite continuous developments, the in-situ monitoring capabilities in EBM are still more 

limited than in laser powder bed fusion (LPBF), and there is a lack of methods to automatically 

detect defects based on in-situ gathered data. The innovative contribution of this study consists 

of presenting two novel in-situ monitoring methods to address two open issues in EBM that 

have not been tackled in the literature so far, namely the identification of powder bed 

inhomogeneities and the automated detection of hot-spots, i.e., areas affected by anomalous 

heat accumulation. To this aim, the paper presents a sensing setup that can be easily 

implemented in industrial EBM systems. It involves either high spatial or high temporal 

resolution cameras exploiting a viewport on the top of the chamber.  

Section 2 briefly describes the sensing setup; Section 3 and Section 4 respectively present the 

two proposed in-situ monitoring solutions. Section 5 concludes the paper and presents possible 

future developments. 

 

2. Sensing setup 

The proposed sensing setup relies on the viewport that is available on the top of the build 

chamber in Arcam EBM systems (Fig. 1). Fig. 1a shows the custom camera mounting device 

that was developed to enable the installation of different cameras on an Arcam A2 system. A 

45 mm width Kapton® Type 100 HN rolling film was used to keep the camera lens free from 

metallization contamination, whereas a 60 ×  60 ×  5.5 mm lead glass was used to shield the 

x-ray emissions. In this study, two cameras were installed: a high spatial resolution camera that 

takes pictures of the powder bed after the powder recoating, and a high temporal resolution 

camera that acquires high-speed videos during the melting phase. The video-image acquisition 

settings used in this study are shown in Fig. 1b. Both cameras work in the visible range, but 

they can be equipped with near infrared filters to reduce the spectrum bandwidth and the 

dynamic range. The field-of-view for both the cameras covers up to 90% of the build area, but 



it can be further increased by modifying the aperture on the top of the heat shield. The current 

sensing setup enables the use of one camera at a time, but future developments may involve 

the use of a beam splitter to allow a multi-sensor configuration. 

 

Fig. 1 – a) customized camera mounting device with rolling protective film; b) main 

specifications and video-imaging settings for the two cameras 

 

3. Powder bed homogeneity monitoring 

The proposed approach consists of acquiring one image after each powder recoating and 

signaling an alarm in the presence of powder bed irregularities. The image acquisition is 

triggered by the recoater current signal transition from motion to idle state. Fig. 2a shows an 

example of a post-recoating image after camera perspective correction where a local 

discontinuity in the powder bed was caused by a damage of the recoater. The brighter regions 

correspond to areas that were scanned by the electron beam and locally pre-/post-heated, which 

are hotter than the surrounding powder. An irregularity like the one shown in Fig. 2a yields a 

local variation of the powder bed thickness, which might cause either a swelling or volumetric 

defect in the part. In LPBF, the identification of this kind of inhomogeneity is made easier by 

the uniform pixel intensity pattern of the powder bed [18 – 20]. In EBM, the presence of areas 

with different brightness caused by different cooling gradients imposes the use of additional 

image pre-processing operations. The proposed methodology envisages two pre-processing 

steps. First, a background subtraction based on the concept of the ‘rolling ball’ algorithm [21] 

is used to smooth the background pixel intensities, followed by a thresholding operation [22] 

to isolate darker areas (Fig. 2b). The second step consists of a morphological erosion operation 



to remove isolated pixels and small connected components caused by image noise. The 

connected components obtained at the end (Fig. 2c) are representative of irregularities in the 

powder bed. More details about the image processing methodology and a comparison against 

alternative image segmentation methods are discussed in the Supplementary Material. 

 

Fig. 2 – a) original post-recoating image, b) image after background subtraction and 

thresholding operation, c) final defect identification after morphological operations 

 

An alarm rule based on the area of the identified connected components can be designed to 

automatically signal the presence of a non-homogeneous powder recoating. Irregularities in the 

powder bed may introduce undesired variability and discontinuities in the properties of the 

material. The proposed approach enables their automated detection and it is easy to implement 

in EBM systems. Future experimentations will be aimed at characterizing its performances and 

robustness. A further future development consists of combining the layerwise image 

acquisition with an illumination source to further enhance the quality of the image. 

 

4. Hot-spot detection 

A hot-spot consists of a local over-heating of the layer caused by a diminished heat flow 

towards the surrounding material [23 – 24]. The region of the part where the hot-spot occurs is 

affected by an anomalous heat accumulation and a slower cooling transitory. Hot-spots may 

change the solidification mechanism of the material leading to geometrical distortions and 

microstructural discontinuities, both in EBM and LPBF, but local overheating may also cause 

an increase of material vaporization in EBM [25]. Hot-spots and powder bed irregularities can 

be causally related [23 – 24]: on the one hand, an out-of-plane distortion caused by local heat 



accumulation may damage the recoater and, on the other hand, a local decrease of powder bed 

thickness may increase the local energy density and produce a hot-spot event. 

Previous studies in LPBF [23 – 24] showed that a spatio-temporal Principal Component 

Analysis (ST-PCA) methodology was suitable to separate the hot-spot from the natural process 

dynamic in LPBF. The hot-spot generating mechanism is analogous in EBM and LPBF. 

However, in L-PBF, the presence of plume and spatters makes the pixel intensity patterns more 

“wild” than in EBM, as shown in [23] and [24]. This motivates the proposal of a simplified 

alarm rule in our study with respect to the one investigated in L-PBF, which makes the overall 

algorithm also much more computationally efficient. The proposed method relies on the fact 

that the pixel intensity time series in the presence of a hot-spot exhibits a high intensity for a 

certain time interval followed by a slow cooling transitory as shown in Fig. 3.   

 

Fig. 3 – Comparison between a pixel intensity time series during the EBM with in-control 

process behavior (top panel) and in the presence of a hot-spot (bottom panel) 

 

A synthetic index was computed as 𝑆𝐼(𝑥, 𝑦) = ∑ ℐ(𝐼𝑡(𝑥, 𝑦) > 𝑘1 & ∆𝐼(𝑥, 𝑦) < 𝑘2)𝑇𝑡=0 , where ℐ(∙) is the indicator function, 𝐼𝑡(𝑥, 𝑦) is the pixel intensity of the (𝑥, 𝑦)-th pixel in the 𝑡-th 

frame, ∆𝐼(𝑥, 𝑦) is the difference of (𝑥, 𝑦)-th pixel intensities in the 𝑡-th and (𝑡 − 1)-th frames 



and 𝑘1 and 𝑘2 are constants to be defined during a calibration phase. The estimate of 𝑆𝐼(𝑥, 𝑦) 

can be iteratively updated as new video frames are acquired. 

Fig. 4a shows the 2D map of 𝑆𝐼(𝑥, 𝑦)  estimated during the EBM of a lattice component 

(diameter 40 mm) where some local hot-spots were observed, possibly caused by irregularities 

in the power bed. Fig. 4b compares the proposed descriptor with the 𝑇2  synthetic index 

proposed in [24]. Both the descriptors identified the hot-spot region, but the proposed approach 

is two orders of magnitude more computationally efficient than the competitor. This comes at 

the expense of the need to define two additional thresholds, respectively on the pixel intensity 

and its derivative. The Supplementary Material presents some guidelines on the choice of 𝑘1 

and 𝑘2, together with the results of a sensitivity analysis with respect to these two parameters. 

To the aim of automated hot-spot detection, the same clustering-based alarm rule presented in 

[24] can be applied to the descriptor proposed in this study. 

 

Fig. 4 – a) 2D map of the 𝑆𝐼(𝑥, 𝑦) descriptor proposed for automated hot-spot detection; b) 

comparison between our proposed descriptor and the one proposed in [24], where 𝑘1 and  𝑘2 

were set at 90% and 10% of the maximum pixel intensity, respectively  

 

5. Conclusions 



This study presented two novel in-situ monitoring methods suitable to detect either local 

irregularities in the powder bed or local heat accumulations in the printed slice. The two 

methods provide complementary information that can be used to quickly identify departures 

from a stable and in-control EBM process. Their feasibility was discussed by means of real 

examples based on experimental activities on an Arcam A2 system. Future developments will 

focus on the characterization of the in-situ monitoring performances in terms of false alarms 

and actual defect detection capability, on the feasibility analysis of real-time implementation 

and on the evaluation of the correlation between in-situ detected anomalies and actual defects 

in the produced part. 
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Supplementary Material 
 

 

 

6. Introduction 

This document includes additional material for the paper “Powder bed irregularity and hot-spot 

detection in Electron Beam Melting by means of in-situ video imaging”. 

Section 2 presents a comparison analysis between the proposed approach for powder bed image 

processing and alternative algorithms. Section 3 presents some practical guidelines for the 

choice of 𝑘1 and 𝑘2 in the proposed approach for in-line hot-spot detection and a sensitivity 

analysis with respect to these two parameters.  

 

7. Powder bed homogeneity monitoring 

The image processing method for powder bed irregularity detection consists of three 

operations, which are detailed hereafter. The results presented here refer to the same image 

used as an example in the paper. The overall test dataset consists of 50 images of a defective 

powder bed caused by a damage of the recoater.   

Step 1 - background subtraction 

The background of the layerwise image acquired after the powder recoating is characterized 

by bright areas within and around the previously scanned slices, where the temperature is 

higher than the surrounding powder. The goal of the background subtraction operation consists 

of smoothing the pixel intensity variations to reduce the background contrast caused by the 

presence of hot and cold regions in the powder bed. The ‘rolling ball’ algorithm [1] is a method 

commonly used to this aim. It involves a controllable parameter, i.e., the rolling ball radius, 𝑟, 

which is related to the size of the foreground features that should not be filtered out. The smaller 

the radius, the smaller the features of the image that will be smoothed and filtered out. The 

higher the radius, the lower is the background attenuation. Fig. 1 shows one original powder 

bed image during the EBM process and examples of background subtraction results with 

different values of 𝑟. With 𝑟 = 1 pixel, both salient background and foreground features are 

filtered out, whereas, with 𝑟 = 50 pixels, the contrast in the powder bed areas is quite high. In 



this study, a rolling ball radius  𝑟 = 10 pixels was used as a compromise choice, but a further 

tuning of this parameter will be investigated in a future study. 

  

 

Fig. 1 – Original image and examples of background subtraction results with different 

choices of the rolling ball radius 

 

Step 2 – Thresholding 

The thresholding operation is aimed at isolating darker areas corresponding to the irregularities 

in the powder recoating. Fig. 2 shows a comparison of different common thresholding methods 

[2] applied to the image in Fig 1 after background subtraction with 𝑟 = 10 . The method 

proposed in this study is based on the IsoData algorithm [3], which involves an iterative 

identification of the threshold by comparing the average intensity in the background and 

foreground regions. Fig. 2 shows that the proposed approach and the Otsu’s method [4] yield 

similar results, whereas other methods, i.e., the so-called “moments” algorithm [5] and the 

Huang’s algorithm [6], are more affected by the noise of pixel intensity in the background 

region, which may produce worst results in the detection of the actual irregularities of interest.  

The threshold is estimated on a layer-by-layer basis, relying on the histogram properties of the 

powder bed image after the background subtraction. 



 

Fig. 2 – Comparison of four different thresholding methods applied to one powder bed image 

after background subtraction with 𝑟 = 10 

 

Step 3 – Morphological operation 

The last step consists of a simple erosion operation [1] applied to the connected components 

identified in the image after image thresholding. This operation removes the two most external 

pixels from the edges of each connected component in the binary image. This operation resulted 

sufficient to get rid of more than 98.5% of small connected components caused by noise and 

artefacts in the background in all tested images.  

After the erosion operation, a clear isolation of the region of interest corresponding to the defect 

in the powder bed is obtained. Future developments will be devoted to design an automated 

alarm rule to signal the occurrence of an irregular powder recoating and to characterize the 

effect of such irregularity on the final quality of the produced parts. 

Moreover, a more extended experimental study is needed to characterize the actual 

performances of the proposed image processing method. This further analysis will also allow 



tuning the overall methodology with respect to different conditions that may arise during the 

production of complex parts via EBM. 

 

8. Hot-spot detection 

The proposed approach for hot-spot detection requires setting two threshold values, i.e., 𝑘1 and 𝑘2. Table 1 shows the results of a sensitivity analysis of hot-spot detection performances with 

respect to the values of these two parameters. This analysis was based on one layer monitored 

during the production of complex shapes where different hot-spot events occurred in a lattice 

component. The pixels where the hot-spot events occurred were manually labelled and the 

proposed approach was tested with different choices of 𝑘1 and 𝑘2 in the following ranges: 𝑘1 ∈[0.5 − 1] ∙ 𝐼𝑚𝑎𝑥  and 𝑘1 ∈ [0.1 − 0.5] ∙ 𝐼𝑚𝑎𝑥 , where 𝐼𝑚𝑎𝑥  is the maximum intensity in the 

video-image data. Assuming that the image histogram covers the entire range of pixel intensity 

values, 𝐼𝑚𝑎𝑥 = 255 for 8-bit images. This saturation intensity is achieved in the melt pool and 

heat affected zones. The metrics used to determine the hot-spot detection performances in 

Table 1 are the percentage of pixels belonging to hot-spot regions properly detected as hot-

spots and the percentage of pixels in the scanned area wrongly signalled as hot-spots (false 

alarms).  

 

Table 1 – Sensitivity analysis of the hot-spot detection method with respect to 𝑘1 and 𝑘2. 

Threshold parameters 
Hot-spot detection False alarms 𝑘1 𝑘2 0.5 ∙ 𝐼𝑚𝑎𝑥 0.1 ∙ 𝐼𝑚𝑎𝑥 100% 0% 0.25 ∙ 𝐼𝑚𝑎𝑥 100% 0% 0.5 ∙ 𝐼𝑚𝑎𝑥 100% 0.05% 0.7 ∙ 𝐼𝑚𝑎𝑥 0.1 ∙ 𝐼𝑚𝑎𝑥 100% 0% 0.25 ∙ 𝐼𝑚𝑎𝑥 100% 0% 0.5 ∙ 𝐼𝑚𝑎𝑥 100% 0.01% 0.9 ∙ 𝐼𝑚𝑎𝑥 0.1 ∙ 𝐼𝑚𝑎𝑥 100% 0% 0.25 ∙ 𝐼𝑚𝑎𝑥 100% 0% 0.5 ∙ 𝐼𝑚𝑎𝑥 100% 0% 𝐼𝑚𝑎𝑥 0.1 ∙ 𝐼𝑚𝑎𝑥 65% 0% 0.25 ∙ 𝐼𝑚𝑎𝑥 65% 0% 0.5 ∙ 𝐼𝑚𝑎𝑥 35% 0% 



 

Table 1 shows that the hot-spots were properly detected with 0.5 ∙ 𝐼𝑚𝑎𝑥 ≤ 𝑘1 < 𝐼𝑚𝑎𝑥 and 𝑘2 <0.5 ∙ 𝐼𝑚𝑎𝑥. When 𝑘1 = 𝐼𝑚𝑎𝑥 the hot-spot detection capability decreases as the threshold value 

is too high. Indeed, the maximum intensity in the hot-spot areas was slightly lower than the 

saturation point for most of the frames. On the other hand, when 𝑘2 ≥ 0.5 ∙ 𝐼𝑚𝑎𝑥, the threshold 

on the variation of the intensity becomes not fully effective in isolating pixels whose intensity 

remains stable for a certain period of time. In this case, a too high threshold results in a higher 

probability of false alarms. With our camera settings, the pixel intensity drop during the normal 

cooling phase is larger than 200, i.e., about 0.8 ∙ 𝐼𝑚𝑎𝑥. Therefore, the closer is the value of 𝑘2 

to this drop, the higher is the risk to signal false alarms.  

Based on these results, the following guidelines can be followed to set the values of parameters 𝑘1 and 𝑘2 in the proposed hot-spot detection methodology. The value of 𝑘1 can be set at an 

intensity close to the saturation point, e.g., at about 80 - 90% of the pixel saturation intensity, 𝐼𝑚𝑎𝑥 . The value of parameter 𝑘2  can be set at a small percentage of the pixel saturation 

intensity, e.g. 10 – 20%.  
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